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AUTOMORPHY OF THE PRINCIPAL EISENSTEIN SERIES OF
WEIGHT 1: AN APPLICATION OF THE DOUBLE SINE FUNCTION

NOBUSHIGE KUROKAWA

Abstract

We calculate cuspidal values of the modular transform of the principal Eisenstein
series of weight 1. We obtain this by looking at derivatives of the double sine function.
Our result is considered to be an explicit calculation of values of a Stirling modular
function.

1. Introduction

For each non-zero complex number k we put

1 _ o0
Ei(7) = w + Zak—l(n)qn
n=1
with
O'kfl(l’l) = de_]7

d|n

where 7 is belonging to the upper half plane and ¢ = ¢>™*. As is well-known, for
an even integer k > 4, Ey(t) is the Eisenstein series of weight k with respect to
the modular group SL,(Z). Especially, it satisfies the automorphy

1 .
E; < > = ‘L'I”Ek(‘[)
T
and the corresponding zeta function is given by

L(s,E;) ={(s){(s —k+1).

We consider Ej(7) as the principal Eisenstein series of weight k for &k € C\{0} in
general, where “principal” is indicating the “principal character.” It seems to be
an interesting problem to see the automorphy of Ei(r). This means to calculate
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Rile) = Ex (— 1) — *Ei(r)

concretely. We know the result in the following cases:
(1) Ri(r) =0 for each even integer k > 4,
T
2) Ry(1) = ——.
Q) Ra(t) = -
From these results we obtain

E¢(i) =0
and
. 1
Ez(l) == —g

In other words,

and

ZOO: no 1 1
e _1 24 8xn

n=1

as noted by Ramanujan. We notice that the case (2) is shown from the
transformation formula

for the Dedekind #-function by taking the logarithmic derivative, for exam-
ple. It would be a non-trivial problem to investigate Ry(z) for k e C\{0} in
general.

In papers [K7] [KKS8] we proved

: (=) By,
1 R =
rlir} k(T) 2mi

and its higher dimensional analogue for each positive integer k, where By is the
Bernoulli number.
In this paper we look at the case k = 1, where

B =g+ Y dmg =5+ Y

n=1 myn>1

and
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We notice that this k& is the only one case when L(s, E;) has the double pole; in
fact L(s, Ey) = ((s)* is having the double pole at s = 1. We calculate boundary

1 .
values of R;(t) at cusps N and v for each integer N > 1.

THEOREM 1. Let N be a positive integer. Then Ri(t) has the following

1
transcendental numbers as boundary values at cusps N and N

. 1 /1 [N/2] nk 1
(1) lim, .y Ry(7) = % (N e (N —2k) cot(w -
(N/2]

. 1 /1 nk 1
(2) hmr%l/N RI(T) = m (N k=1 (N - 2k) cot <ﬁ> — ;) .

Examples (We omit “lim”.)

Rl(l):—%.
Rl(z):—zim,.
()2
Ri(3) = 215%%/?1"
RI(3) =~ gn* 1ovm
R =L

r(D_ 1,1
N\4)~ " 8n ' 16i°

5
1 1 1 2 2
R1<§) —M—Fﬂ(\/l—ﬁ—F:;\/l—Fﬁ).
1 7

Ri(6) = ——+—~.
1(6) 2ni+6\/§i

R(N__ L7
"\6) 127 " 36v3i
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We notice that it would be difficult to say something about the nature of the
interior value such as

Ri(i) = (1 —i) (— % + Z d(n)ez’m>

n=1

for example.

Our result is obtained by using the theory of the double sine function. This
theory was originated by Shintani [S1] to investigate Kronecker’s Jugendtraum
for a real quadratic field. We refer to [K1]-[K7] and [KK1]-[KKS8] for detailed
studies of multiple sine functions including the double sine function. We
recommend to read the excellent survey [M1] of Manin. Here we need the
double sine function

(w1 + @y — x, (w1, w2))

a(x, (01, @2))
sO)

is the normalized double gamma function of Barnes [B] and

Sa(x, (01, m)) =

where

I (x, (w1, w2)) = exp (%Cz(sv X, (w1, @2))

Gls,x, (@1,0) = Y (moy +moy +x) ™

ny,ny >0

is the double Hurwitz zeta function. By using the regularized product notation
I1 of Deninger [D] S:(x, (w1, w,)) is neatly written as

H (mw; + myw,y + x)

ni,np =0

H (Mo + mo; — x)’

my,my>1
o0 d o0 s
oo 4 (5] )
n=1 n=1 =0

We prove Theorem 1 from the following three theorems.

Sa(x, (w1, m2)) =

where

THEOREM 2. For Im(7) >0

‘[3/2
R; (T) = % 2 (Oa (15 T))
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THEOREM 3. For each positive real number o

3/2
“/ "

lim R () = £ 87(0, (1,).

T—o

THEOREM 4. For each integer N > 1
4> (1 k) 1
4 LN)=—=|—= N —2k — ==
52(07< ) )) N3/2 (Nkz_;( )COt(N> o

In the proof it is important to proceed from the view point of the Stirling
modular function suggested by Barnes [B]. We notice that “boundary values”
are interesting from the study of Shintani [S1] and also from the view point of
“real multiplication” of Manin [M2].

We notice that our method is applicable also to calculate lim,_,,;/y Ri(t) for
positive integers M and N in exactly the same way. Thus we will have
boundary values at all the positive rational numbers. Since the full treatment
would make the calculation a bit complicated, we will treat it in another paper.

2. Multiple sine functions

We recall the theory of the multiple sine function for our use in this
paper. Let

-n!
Si(x, (@1, 00) = [ 0+ x) (H(m : w—x))

be the multiple sine function, where

I'(x,0) = exp (%Cr(& X, 0)

)

is the normalized multiple gamma function obtained from the multiple Hurwitz
zeta function

(s, x,0) = Z(n ‘o +x)7"

n>0
Here we use notation o = (wy,...,»,) and |o| =w; + -+ o,. Tt is obvious
that S,(x, (w1,...,®,)) is symmetric with respect to wy,...,o,.

We need the following properties proved in [KKI1].
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ProroSITION 1.
(1) (periodicity)

Sy (x + wi, 0) = Sp(x,0)Sr_1 (x, (i),

where o(i) = (01,...,0;_1,0141,...,0).
(2) (homogeneity)

Si(ex, cw) = Si(x, 0)

for ¢ > 0.
(3) (differential equation)
S/ . -1
S )= (1) 1n<’; 1) cot(nx).
)
S1(x,w) =2sin <E>
w
(5)
w2
S =,/—
Z(wla(a)th)) 1 )
w1
S =,/—.
2(w2, (w1, 0)) w,
We notice that these properties are at first proved for wy,...,w, >0 (or
Re(w;) > 0,...,Re(w,) > 0), but the same proofs are applicable to the general
case where wy, ..., € C are belonging to one side with respect to a line crossing

the origin 0.

3. Proof of Theorem 4

We use the following result.
PROPOSITION 2.

4n
(1) 550, (w1, 1)) Zw—zSﬁ(wl,(wl,wz))-
(2) For an integer N > 1

N-1
SN = TTS (55 a.1).
o000 = I (55 001)

Proof. We refer (1) to [K4] and (2) to [KK3]. For convenience we sketch
the proof here. To see (1) we start from the periodicity (Proposition 1(1))

Sz(x7 (601,0)2)) = Sz(x + wy, (601, C()z))Sl (X, 602).
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Then the differentiation gives
570, (@1, 2)) = Sy (w1, (01,02))$1(0, 2) + 28 (1, (@1, 2)) 51 (0, 2)
+ Sy (w1, (@1, ®2))S](0,w,).
Hence, using Proposition 1(4)

S] (X, a)z) = 2sin (TC_X)
>
we have

4r
SZN(Ov (wl,w2)) = CLTZS£<COH (601,602))-

This proves (1). Concerning (2) we notice that

G, x, (1,N)) = Z (n+mN +x)™"

n,m=0
N-1
= > (N +k)+mN +x)~°
k=0 I,m>0
N—-1 —s
k
=Ny Y ((l—l—m)—i—x]—; )
k=0 I,m>0
N-1
x+k
:N_Y C2<S7—7(171)>
k=0 N
Hence, by differentiating with respect to s we have
N-1 N-1
/ / X+k x+k
gz(o,x,(l,N)):;CZ(O,T,(M))—(1ogN)k§c2<o, ¥ ,(1,1))
N-1
o x+k
= 4 (0,—,(1, 1)> — (log N)((0, x, (1, N)).
k=0 N
This gives
N—1
x+k 00 x
Io(x, (1,N)) = ﬁ rz( ¥ ,(1,1))N 0% (1,N)
=0
and
N—1
LN+ 1—x(LN) = [[ T2 (%’C*k . 1))ch<o,N+1x,<1,N>>

N—
x+k _ -
= F2(2 ¥ ,(1,1)>N G(0,N+1 x,(l,N));
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in the latter product the correspondence k <+ N — 1 — k is used. Thus

H52<x+k (1 1)>N¢z<0x< N) =620 N+1-x,(1N)

Hence the vanishing
CZ((),xa (LN)) - C2(07N+ 1 - X (laN)) =0

(see [KK1, Theorem 2.1 and the proof]) implies (2). This proves Proposition 2.
]

Now we prove Theorem 4. From Proposition 2 we see that

4r
S5(0,(1,N)) = N »(1,(1,N))
and
S} 1N“Sg<x+k )
2, (ILLN)==) =22 (1,1
Sz(( ) N5\ N (1, 1)
Hence we have
4n 1 8S! /41
S0, (1,N)) = —S,(1,(1,N)) - — ) =2(—— (1,1
£0.0.3) = F5:0.0.0)- 5 - ¢ (. 0n)

from
S>(1,(1,N)) = VN

contained in Proposition 1(5). Then using the differential equation Proposition
1(3) for S»(x,(1,1)) we obtain

S7(0,(1,N)) = ]\?3/2 n ( _%) COt(?\l’c)
W(___kz_j— cot(nk)>

 4n? 1+N2]N72kcot
SN2\ n &~ N N) )

~

)

Thus we have Theorem 4.
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4. Proof of Theorem 2

This is contained in Theorem 3(1) of [K4]. We sketch the proof. Exactly
as in the proof of Proposition 2(1) above (after interchanging under w; < w;) we
have

S7(0,(1,7)) = 4rnS5(z, (1,7))
S e
_\/% Sz( ’(1’ ))
since
1

Sa(7, (1,7)) = 7?

Then, using Shintani’s product expression (Proposition 5 of [S1])
B HZC:O(I _ e2nix627zinr) i x2 1 1 1
S2(x’(l"[)) o H;C:](l _eZTLix/r€72nin/r) €Xp ? 77 1 +; X+8(T+ 1)4’5

we have

SZ/ mi 1 . o 2ninmz ,2nimt 2 N —2minm/<
(L) ==(1-= —ZmZZe e +—ZZ€
S2 2 T n=0 m=1 n=1 m=1
i 1 . 1 27 1 1
—E (1 —;) —an(El(T) +Z> +T (E] (—;) +Z>
27
=—R .
R0
Thus
8n2i
S3(0.(1.7)) = 33 R (). n

5. Proofs of Theorems 3 and 1

From the continuity of S5(0,(1,w)) in w e C\(—o0,0], Theorem 3 follows
from Theorem 2. Consequently, Theorems 3 and 4 give (1) of Theorem 1. To
see (2) of Theorem 1 it is sufficient to use the relation

Sy (o, (1%)) = N28J(0,(1,N)).

In fact, combining with Theorem 3, we have
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1 N2, 1
w(3) S (14)
VN
1

:NRl(N)7

where we simply write R;(a) for lim. ., R;(z). Lastly, the needed relation for SY
is a special case of a bit general relation

S50, c) = ¢ S0, ),
which in turn is obtained from differentiating k-times the homogeneity identity
Sy (ex, co) = S, (x, w).

For our case, put r =2, k =2, (w;,w,) = (1,N), and ¢ =1/N. This completes
the proof of Theorem 1. |

6. Stirling modular functions

We add a brief explanation of our calculation from the view point of Stirling
modular functions. Stirling modular functions were first suggested by Barnes
[B]. His example is

!
pr(wla~~'7wr) = ]:[ (111(1)1 ++nrwi’)

For example

() = T = /2.

n=1

We notice the name “Stirling” comes from the famous Stirling’s formula

V2r = lim

n!
n—oo phtl1/2e-n

since the regularized product

explains the constant term via the Euler-Maclaurin summation formula; see
Hardy [H] for details. The idea of the Stirling modular function is to consider a
function of the semi-lattice Z-ow = Z>ow; + --- + Z>ow, instead of the lattice
Zo =Zw) + -+ Zw, used in the usual theory of modular functions.
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We put

€= {00 €| o, P o one i
We say that a function
J:R;—=C
or
f:CL—=C
is a Stirling modular function if it satisfies the following two conditions:
(1) f is symmetric, i.e.
flwsy, - 0p) = floo1,. .., 0;)
for all g€ S,,
(2) f is homogeneous, i.e.
flewy, ... ;co) = fwr,...,0)

for all ¢ >0 (or ce C\{0}).
There exist many interesting examples of (real analytic) Stirling modular
functions associated to multiple sine functions. We notice two of them:
(A) For an integer N > 2, the N-division value

H, y(oi,...,0,) = S,.(IN, (w1, ... 7a),.)>
is a Stirling modular function.
(B) Let
Si(x + y,0) = S,(x,0) + S,(y, 0) + c11(@)S,(x, 0)S,(y, 0)

+ Y e(@)S(x.0)'S,(y.0)’
i,j>1
i+j>3

be a local addition relation around x = y =0. For example

S7(0,w
S57(0,0)
and
S0, ®)S'(0, ) — S"(0, w)*
1) = en(a) = 0)S/0.0)  5/0.0)°
25/(0, w)
Then, the coefficients c;(w1,...,w,) are Stirling modular functions.

Example (A) is important for Kronecker’s Jugendtraum as indicated by Shintani
[S1] in case of r=2 leading to interesting algebraic values. We notice an
example of special value in r=3:
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Hi(1,1,1) =S5 (%, (1,1, 1)) —-1/8 exp(— 3{%52)

Example (B) is directly related to the theme of this paper. From this view point,
our result is expressed as the calculation of the special value

(v/2]
1 1 [1 kn 1
611(17N)—611(1aﬁ>—ﬁ N E (N —2k) COt<W>_;

k=1

for an integer N > 1. u
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