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FORMULAS OF F-THRESHOLDS AND F-JUMPING COEFFICIENTS
ON TORIC RINGS*

DAISUKE HIROSE

Abstract

Mustatd, Takagi and Watanabe define F-thresholds, which are invariants of a pair
of ideals in a ring of characteristic p > 0. In their paper, it is proved that F-thresholds
are equal to jumping numbers of test ideals on regular local rings. In this note, we
give formulas of F-thresholds and F-jumping coefficients on toric rings. By these
formulas, we prove that there exists an inequality between F-jumping coefficients and
F-thresholds. In particular, we observe a difference between F-pure thresholds and F-
thresholds on certain rings. As applications, we give a characterization of regularity for
toric rings defined by simplicial cones, and we prove the rationality of F-thresholds on
certain rings.

1. Introduction

Let R be a commutative Noetherian ring of characteristic p > 0. Suppose a
is an ideal of R and ¢ is a positive real number. In [HY], Hara and Yoshida
defined a generalized test ideal 7(a) of a with exponent ¢. This is a gener-
alization of the test ideal 7(R), which appeared in the theory of tight closure
(cf. [HH]). On the other hand, this ideal is a characteristic p analogue of a
multiplier ideal (cf. [Laz]). Similarly, one can define a characteristic p analogue
of a jumping coefficient of a multiplier ideal, which is called the F-jumping
coefficient. In other words, a positive real number ¢ is an F-jumping coefficient
of an ideal a of R if 7(a‘) # t(a“*) for all positive real numbers ¢.

Mustatd, Takagi and Watanabe studied F-jumping coefficients. In [MTW],
they defined an another invariant of singularities, which is called the F-threshold.
They proved that an F-threshold coincides with an F-jumping coefficient on a
regular local ring of characteristic p > 0. Using this relation, they proved basic
properties of F-jumping coefficients. Blickle, Mustata and Smith studied F-
jumping coefficients or F-thresholds on F-finite regular rings. In particular, they
proved the rationality and discreteness of F-thresholds for F-finite regular rings
under some assumptions (cf. [BMS1] and [BMS2] for details), which partially
solves an open problem in [MTW].
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However, if rings have singularities, F-thresholds may not coincide with
F-jumping coefficients. In [HMTW], Huneke, Mustata, Takagi and Watanabe
studied various topics of F-thresholds. For example, they defined a new
invariant called the F-threshold of a module, which coincides with an F-jumping
coefficient for F-finite and F-regular local normal Q-Gorenstein rings. As a
corollary, they proved an inequality between the F-threshold and the F-pure
threshold, which is the smallest F-jumping coefficient for a fixed ideal. They also
gave examples of non-regular rings and ideals whose F-thresholds coincide with
their F-pure thresholds.

In this paper, we consider F-thresholds and F-jumping coefficients of
monomial ideals for toric rings, which are not necessarily regular. We give
the explicit formula of F-thresholds in section 3, which is written in terms of
cones corresponding to toric rings and Newton polyhedrons corresponding to
monomial ideals. Using this formula, we attempt a comparison between F-
thresholds and F-jumping coefficients in section 4. As applications, we give
a characterization of regularity of toric rings defined by simplicial cones in
Theorem 5.3. We also prove the rationality of F-thresholds of monomial ideals
for toric rings defined by simplicial cones in Theorem 5.5.

2. The definition of F-thresholds

Throughout this paper, we assume that every ring R is reduced and contains
a perfect field k& whose characteristic is p > 0. Let F: R — R be the Frobenius
map which sends an element x of R to x”. For a positive integer e, the ring
R viewed as an R-module via the e-times iterated Frobenius map is denoted
by ‘R. We assume that a ring R is F-finite, that is, 'R is a finitely generated
R-module. We also assume that a ring R is F-pure, that is, the Frobenius map
F is pure. For an ideal J and a positive integer e, J?! is the ideal generated
by p°-th power elements of J. We recall the definition and some remarks of
F-thresholds which are defined by Mustata, Takagi and Watanabe in [MTW].
These are invariants of a pair of ideals.

DeriNiTION 2.1 (F-threshold, cf. [MTW, §1]). Let a and J be nonzero
proper ideals of a ring R such that a = +/J. The p¢th threshold v/(p¢) of a
with respect to J is defined as

v/ (p¢) ;== max{reN|a" ¢ JIP1.

a

Then we define the F-threshold c’(a) of a with respect to J as

J( e
¢’(a) := lim M
e— pe
Remark. Since R is F-pure, if u ¢ JI?l, then u” ¢ JI*"'I.  This implies that
7

vl (p9)/p¢ < v (p*!)/p¢t!, and hence c’(a) exists under our assumption. Fur-

thermore, if a = +/J, then c¢/(a) is a finite number. However, in general, the
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existence of this limit has not proved. In [HMTW], Huneke, Mustata, Takagi
and Watanabe defined ¢”(a) and c/(a) as

J (e T/ e
C{(Cl) := lim inf M, Ci(a) = lim sup _v"‘ (p ) ,
P ¢

for ideals a and J such that a =+/J. When ¢’ (a) = c/(a), they call it the F-
threshold of a with respect to J, which is denoted by c’(a). They give a
sufficient condition when ¢”(a) exists (cf. [HMTW, Lemma 2.3]).

Let R° be the set of elements of R which are not contained in any minimal
prime ideals of R. Let a be an ideal of R such that aN R° # §, and let ¢ be a
positive real number. For an R-module D, we define the a“-tight closure of the
zero submodule in D as the following. We denote it by 0;°. For an element
z of D, an element z is contained in 0} if there exists an element x of R° such
that

xam’q(l ®z)=0e‘R® D,
where e runs all sufficiently large positive integers.
DEFINITION 2.2 (test ideal). Let a be an ideal of R such that a N R° # @, and
¢ a positive real number. We define the R-module E as (P, Er(R/m), where m

runs all maximal ideals of R and Egx(R/m) is the injective hull of the residue field
R/m. The test ideal 7(a“) of a with exponent ¢ is defined as

t(af) := () Anng 05",
D<E

where D runs all finitely generated R-submodules of E.
In [MTW], Mustatd, Takagi and Watanabe also proved the connection

between F-thresholds and test ideals on regular local rings. Moreover, in
[BMS2], Blickle, Mustata and generalized it on regular rings.

THEOREM 2.3 ([MTW, Proposition 2.7] and [BMS2, Proposition 2.23]). Let
a and J be proper ideals of a regular ring R such that a =/J. Then

(@) = J.

On the other hand, for a positive real number c, the ideal a is included in \/t(ac),
and also

@) < c.
In addition, there exists a map from the set of F-thresholds of a to the set of

test ideals of a which sends the test ideal J to c¢’(a). Moreover, this map is
bijective. The inverse map sends an F-threshold c¢ of a to t(a).
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By the two inequalities in Theorem 2.3, F-thresholds on a regular ring are
equal to F-jumping coefficients. They are analogues of jumping coefficients of a
multiplier ideal.

COROLLARY 2.4. For a fixed nonzero proper ideal a of a regular ring R, the
set of F-thresholds of a is equal to the set of F-jumping coefficients of a.

3. A formula of F-thresholds on toric rings

Let us begin with fixing the notation about toric geometries. Let N be the
lattice of rank d, and M the dual lattice of N. We recall that M is isomorphic
to Z9. We denote N®zR and M ®;R by Mg and Ny respectively. The
duality pairing of Mg and Ng is denoted by

<,>2MRXNR—>R.

For a strongly convex rational polyhedral cone ¢ in Ng, we define the dual cone
¥ of g as

" :={ue Mg |<u,v) >0,Yv e a}.

Let R be a toric ring defined by ¢. In other words, R is the subalgebra of
Laurent polynomial k[X;*',..., XF'] generated by sets {X"|ue "N M}, where
X" expresses X|"--- X/ for a lattice point u = (uy,...,uq) of M. Since we
always assume that k is a perfect field, a toric ring is F-finite under our
assumption. A proper ideal a of R is said to be a monomial ideal if a is
generated by monomials. For a monomial ideal a, we define two types of sets
in gv.

DrerFINITION 3.1. The Newton polyhedron P(a) of a is defined as
P(a) :=conv{ue M| X" € a},
and Q(a) is defined as
Qa):= (J u+o".

Xtea
Suppose A is a positive real number. The sets AP(a) is defined as
JP(a) :={Aue Mg |ueP(a)}.
We define AQ(a) by the same way.

The following proposition is basic properties of Q(a) and P(a), which follows
immediately.

ProOPOSITION 3.2.  Let a be a monomial ideal of a toric ring R defined by a
cone o in Ng.
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(i) For ee Z-y, it holds that Q(a) = (1/p¢)Q(alP]).

(i) P(a)+0Y = P(a).
(iii) If a = (X*,...,X™), then P(a) = conv{a;,...,a,} +a".

Using this notation, we give a computation of F-thresholds. This formula is
a generalization of [HMTW, Example 2.7]. Let R be a toric ring defined by a
cone o in Ng. Let a be a monomial ideal of R. For an element u of ¢¥, we
define A,(u) as

Aa(u) :=sup{A e Rso | u € AP(a)}.
If u is not contained in AP(a) for all positive real numbers A, then we set
Ao(tt) := 0 by convention.
THEOREM 3.3. Let R be a toric ring defined by o, and also let a and J be
monomial ideals of R such that a =+/J. Then

()= sup ().

ueav\Q(J)
Proof.  We assume that a = (X*,... X*) where a; are lattice points of M
for i=1,...,5. To prove the theorem, we need the following two claims.

Cram 1. For all positive integers e, there exists an element u of o¥\Q(J)
such that v/ (p¢)/p¢ < 2a(u).

CLamM 2. For every element u of ¢¥\Q(J), there exists a positive integer e
such that v/ (p¢)/p¢ > Aa(u).

Claim 1 implies that

vi(p)/p¢ < sup  a(u).
uea“\Q(J)
Thus ¢”/(a) < sup Z,(u) by the definition of F-thresholds. By the similar argu-
ment, Claim 2 implies ¢’(a) > sup A, (u).

Proof of Claim 1. We fix a positive integer e. Since the definition of the
p¢-th threshold, there are nonnegative integers r; with > r; = v/(p¢) such that
X2r@ is not contained in JI7). In particular, 3 ra; ¢ Q(JP)). This is equiv-
alent to the condition that (1/p¢)3 ra; is not contained in (1/p€)Q(J?1). By

Proposition 3.2 (i), we have (1/p°)> ra; ¢ Q(J). Hence
1 v/ (p¢) r;
?Zriai = ape ng(p") a;,

which is an element of (v/(p¢)/p®)P(a). Thus v/(p¢)/p¢ < Aa((1/p) > ria;).

O
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Proof of Claim 2. We fix u an element of ¢¥\Q(J), such that A,(u) # 0.
We find an integer e which satisfies the assertion of Claim 2 by three steps.

STEp 1. We prove that there exists an element u’ of the boundary
([p2a(u)]/p°)P(a) such that u’ ¢ Q(J) for sufficiently large e. The following
sequence of real numbers

e+1 e
PP SSS Ve X )| O Vo X R V2 )
pet! p¢ P
induces the sequence of Newton polyhedrons

Ppla(u peha(u Pt (u

[ ;7( )]P(a)gg [ pae( ﬂP(a)E ’V peJrﬂl( )‘|P(Cl)
In particular, the above sequences are strict if A,(u) ¢ (1/p¢)Z for all integers e.
Since u ¢ Q(J), we can find such u’ by taking e sufficiently large.

c...c /la(u)P(a).

StTep 2. We prove that there exist nonnegative integers r; such that
>orifp¢ = A4(u) and > ra;/p¢ is not contained in Q(J). We denote > ra;/p€
by u”. Since u’ is contained in ([ ¢la(u)]/p)P(a), u' can be written as

e;m (Z cia; + a))

where ¢; are nonnegative real numbers with Y ¢; =1 and w € ¢¥ by Proposition

3.2 (iii). Let
ri = [[p2(u)]ei].

Then
Ti > P )m ch > Jaf
p¢
Moreover,
Lo , €a i Aa i 1
u,/Jrfpﬂie(u)]w - Z'”P p(euﬂd Ip p(ﬁ)uﬂé ayl <?Z|ai|.

Since u’ ¢ Q(J), an element u” + ([ p®Aa(u)]/p¢)w is not contained in Q(J) if we
choose e sufficiently large. Hence u” is not contained in Q(J).

Step 3. Since u” ¢ Q(J),

peu” ¢ peQ(J) = Q).

Therefore X?““" is not contained in JI”). On the other hand, X7’ € aX” by
the construction of u”. Therefore > r; <v/(p¢). This implies 1,(u) < v/ (p®)/p®.

We complete the proof of Theorem 3.3. O
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4. A comparison between F-jumping coefficients and F-thresholds

In [TW], Takagi and Watanabe defined the F-pure threshold c(a) of an ideal
a of a ring R as

c(a) :=sup{c e Ry | (R,a®) is F-pure}.

See [TW, Definition 1.3, Definition 2.1] for the details. They also proved that if a
ring R is strongly F-regular, then F-pure thresholds are described as in Definition
4.1. Since F-finite toric rings are strongly F-regular, we define F-pure thresholds
as follows.

DeriNiTION 4.1 (F-pure thresholds). Let R be a toric ring, and a a mono-
mial ideal. The F-pure threshold c(a) of a is defined as

c(a) :=sup{c e Ry |7(a) = R}.

Hence the F-pure threshold of a is the smallest F-jumping coefficient of a.
In [HMTW], the inequality between an F-pure threshold and an F-threshold on a
local ring was given in terms of the F-threshold of a module (HMTW, Section
4.]). In this section, we consider the inequality on toric rings, by a combinatorial
method. Furthermore, we consider the connection between arbitrary F-jumping
coefficients and F-thresholds. To compute F-pure thresholds and F-jumping
coefficients of monomial ideals, we introduce the following theorem given by
Blickle.

THEOREM 4.2 ([B, Theorem 3]). We set {v;} are the set of primitive lattice
points of N.  We consider a cone o generated by {v;}. Let R be the toric ring
defined by o, and a a monomial ideal of R. Then for a positive real number c,
the test ideal t(a) of a with exponent ¢ is also a monomial ideal. Moreover,
X" e t(a®) for a lattice point u of M if and only if there exists an element @ of
Mg such that

o<1 (j=1,...,n),
and
u+ o € Int(cP(a)).

By this theorem, the F-pure threshold of a monomial ideal of a toric ring can
be described as in the following corollary.

CoROLLARY 4.3. Let R and a be as in Theorem 4.2. Then the F-pure
threshold c(a) of a is described as

c(a) = sup Za(u),
ueav\O

where

O:={uea”|3j,<uv;)>1}.
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Proof.  First, we assume that c(a) < sup A.(#). Then there exists a positive
real number o such that

c(a) < o < sup Aq(u).

By the definition of F-pure thresholds, t(a”*) is a proper ideal of R. Then there
exists a positive real number f such that

o < f < sup Aq(u)

and f = A,(u’) for an element u’ of ¢¥\O. This implies that u’ € fP(a). In
particular, u’ is an element of Int(«P(a)). In addition, <u’,v;> <1 for all j.
By Theorem 4.2, it contradicts that z(a*) & R. Therefore c(a) > sup Aq(u).
Second, we assume c(a) > sup A,(u). There exists a positive number o such that

sup Aq(u) < o < c(a)

and 7(a”) = R. This implies that there exists an element @ of ¢¥ such that
{w,vjy <1 for all j and

w € Int(aP(a)).

If 1>&>0, then {(I —¢)w,v;» <1 for all j. Thus (1 —¢)w is contained in
g¥\O. On the other hand, since w € Int(aP(a)), it holds that

(1 —¢")w € aP(a),
for sufficiently small ¢’. Therefore

sup  Aa(u) < Zo((1 —&w),
ueav\O
which is a contradiction. Thus c(a) > sup 4,(«), which completes the proof of
the corollary. O

Using this presentation, we give an inequality between an F-pure threshold
and an F-threshold with respect to the maximal monomial ideal on a toric ring.

PRrROPOSITION 4.4. Let R, o and a be as in Theorem 4.2, and m the maximal
monomial ideal of R. Then

c(a) < c"(a).

Proof. By the definitions, it is enough to show that Q(m) < O. In par-
ticular, it is enough to show Q(m)NM < O. It follows immediately. O

Remark. In general, for an ideal a, we have ¢’'(a) < ¢”(a), where J and J’
are ideals such that J = J' and a = v/J. Therefore the F-pure threshold of a is
less than or equal to all F-thresholds of a.

Now we give a generalization of this comparison.
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PROPOSITION 4.5. Let R, o and a be as in Theorem 4.2. For a lattice point u
of v, we define the nonnegative number u,(u) as

to(u) == sup Ji(u+ ),

weav\O

and the nonnegative number c¢'(a) as

ca)=inf  p,(u),
Xuer(ae™" @)

where ¢°(a) :=0. Then c'(a) is the i-th F-jumping coefficient of a.
LemMMa 4.6. Let R, o and a be as in Theorem 4.2. Suppose w and o’ are
elements of ¢¥. For all j=1,...,n, we assume that
<60, U]> < <w/a U]>
Then Ao(®) < Aq(0').
Proof. 1If J4(w) =0, it is trivial. We prove this lemma in the case

Ao(®) # 0. By the assumption, there exists an element w” of ¢¥ such that
o' =w+w". Let l:=/,w). Since w/ieP(a) and w”"/ledV,
!

% eP(a)+a".

By Proposition 3.2 (ii), we have w’/1 € P(a). Hence 1 < 1,(w’). O
Proof of Proposition 4.5. We show that c/(a) is a jumping number of the
test ideal. We assume that
(@' @) = (xP,. . xP,
By Lemma 4.6,

Since {b;} is a finite set, there exists ;/ such that c'(a) = pu,(by). By the
definition of c’(a), for all elements w of ¢¥\O,
b + w ¢ Int(c'(a)P(a)).
This implies that X® ¢ 7(a®'(®) by Theorem 4.2. On the other hand, there exists
an element @’ of ¢¥\O such that
by + ' € Int((c'(a) — &)P(a)),

for all positive real numbers & This also implies that X b/ e 7(ac'®-e),
Therefore 7(a®' @) < 'r(acl(“)‘e) and hence c’(a) is a jumping number.

‘We show that c'(a) is the i-th F-jumping coefficient of a. In other words,
7(a®'®=%) = ¢(a® (@) for all positive numbers ¢ such that c¢’~!(a) <c(a) —e.
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The inclusion 7(a¢ @) = z(a¢"'(@)) follows immediately from Theorem 4.2. The
opposite inclusion follows from the definition of ¢’(a). In fact, if X* e z(a®" @),
then c¢/(a) < pu,(u) by definition of c¢’(a). Hence there exists an element w of
a¥\O such that

u+ o e Int((c’(a) — &)P(a)).
This implies that X* e r(aci(“)’*") by Theorem 4.2. We complete the proof of the

proposition. O

ProposITION 4.7. We have the following inequality:

c'(a) < c’(“Ci(“))(a).

Proof.  Since 7(a®'@) < 7(a¢"' (@), there exists a lattice point u in ¢¥ such
that X* e t(a® ) and X ¢ t(a®@). By Proposition 4.5,

(1) ¢i(a) < py(u).

We claim that for all elements @ of ¢¥\O,

(2) o +ue s’ \Q(r(a®)).
By Theorem 3.3, this claim implies that

() () < ()

The proof of the proposition is completed from inequalities (1) and (3). Now we
prove the claim (2). We assume that there exists an element @ of ¢¥\O such
that u+ w € Q(z(a®™)). There exist a lattice point u’ of M and an element
o' of ¢V such that X* e 7(a®®@) and u+w =u'+@'. Thus u—u' and &’ — @
are lattice points. On the other hand, since u is a lattice point, u = '+ ©’' —
and X“¢1(a'@), we have o' —w¢ag¥. That is, there exists j such that
{(@"—w),v;» < 0. Therefore

0 << vy <<w,v) < L.

It contradicts that '’ — w € M. Hence we have the claim, and then we complete
the proof of the proposition. O

Remark. Since an F-finite toric ring is strongly F-regular, a < r(aci(‘”).
Hence ¢*@")(a) exists and is a finite number.

5. Applications

Let us give some applications of the results of the previous sections. As we
see in Corollary 2.4, for an arbitrary ideal a, the set of the F-thresholds of a is
equal to the set of the F-jumping coefficients of a on regular rings. By Theorem
3.3, if R is a toric ring which has at most Gorenstein singularities, then there
exists a monomial ideal a of R such that c(a) =c"(a).
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PrOPOSITION 5.1.  Let R be a Gorenstein toric ring defined by a cone o in Ng
and m the maximal monomial ideal. There exists a monomial ideal a of R such
that c(a) = c"(a).

Proof. We assume that o is generated by primitive lattice points vy,...,v,
of N. For a Gorenstein toric ring R, there exists a lattice point w of ¢¥ such
that {w,v;> =1 for all j=1,...,n. By Lemma 4.6, for a monomial ideal a of
R, we have

c(a) = Aq(w).

Let a be a monomial ideal generated by X®“. We have P(a) =w + 0¥, and
clearly c(a) = A,(w) = 1. Since w is a nonzero lattice point of M, we have
w € Q(m). Hence P(a) = Q(m). By Theorem 3.3, that implies ¢™(a) < 1. On
the other hand, the inequality c(a) <c™(a) follows by Proposition 4.4. We
complete the proof of the proposition. O

For 2-dimensional toric rings, the opposite assertion of Proposition 5.1 holds.
However, it is false in general toric rings whose dimension are greater than 3.

PropPOSITION 5.2. Let R be a 2-dimensional toric ring, and m the maximal
monomial ideal of R If there exists a monomial ideal a of R such that c(a) =
c"(a), then R has at most Gorenstein singularities.

Proof.  Suppose that R is defined by a cone ¢. By taking a suitable change
of coordinates, it suffices to consider cones generated by (1,0) and (a, b) such that
b >0 and the greatest common divisor of ¢ and b is 1. The following three
cases are trivial: If ¢ =0, then R is the polynomial ring. If a=1 and b =1,
then R = k[X1, X;'X,], which is a regular ring. If a=1 and b > 1, then R =
k[X1, X2, XP X571 = k[x,p,2]/(xz — p?). We recall that Spec R has an A,
singularity. Hence R is a Gorenstein ring. In the following, we assume that
a>1. The dual cone ¢¥ is generated by (0,1) and (b, —a). We set the point
o= (1,(1 —a)/b), which satisfies

o, (1’0)> = <o, (Cl,b)> =L

If o ¢ Q(m), then for all monomial ideals a, we have c(a) < c"(a). In fact, by
taking ¢ > 0 with (1 +¢)w ¢ Q(m), we have a strict inequality;

cla) < A ((1 +¢)) <c™(a).

By the assumption of the proposition, w € Q(m). Thus it is enough to prove
that w € M under the assumption we Q(m). By the definition of Q(m), if
w € Q(m), then there exists a nonzero lattice point u of ¢¥ such that w —uea".
Since u € ¢V, the lattice point u is written as u = 4;(0,1) 4+ A2(b, —a), where 4,
and A, are positive. Since w —u € ¢¥, we have (1/b) —2; =0 and (1/b) — 1, = 0.
Since u is a nonzero lattice point and b is a positive integer, we have 1, = 1/b.
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Hence u = (1,4, — (a/b)). Since u is a lattice point, there exists an integer / such
that / = 4, — (a/b) and

l1—a

<l<
- T b

SR

Since @ and b are integers and the greatest common divisor of a and b is 1, we
have b/ =1—a. Thus 1 —a is divisible by b. This implies that w € M. The
remaining cases are a < 0. They follow by the same argument. We complete
the proof of the proposition. O

Example 1. Suppose N = Z3. We define generators {v;} of a cone o in
Ngr as
vy = (1,0,0), 0 1= (17170)3 U3 1= (0,1,}")-

We also define an element w of ¢ as (1,0,1/r). Since {w,v;»> =1 for all i, the
toric ring R defined by ¢ has an r-Gorenstein singularity. A set of generators
{u;} of gV is written as

Uy = (V,—V,l), U 1= (Oarv_l)v Uz = (070»1)
Then

w=-u; +—uy +—u;s.
r r r

Since w — (1/r)us is a lattice point of ¢¥, we have @ € Q(m), where m is the
maximal monomial ideal of R. Let a be a monomial ideal generated by X'.
Then (1/r)P(a) =w+ Y. Hence (1/r)P(a) = Q(m). The same argument in
the proof of Proposition 5.1 implies c(a) =c"(a) = 1/r.

Example 2. Suppose N = Z“ where d > 3. We consider the cone ¢ gen-

erated by

v :=(1,0,0,0,...,0)

vy = (1,1,0,0,...,0)

vy :=(0,1,r,0,...,0)

v; == (0,0,0,0,...,0,1,0,...,0), 3<i<d.
Let R be a toric ring defined by o, then R is a d-dimensional r-Gorenstein
ring. By the same argument in Example 1, there exists a monomial ideal a of R

such that c(a) = c™(a).

Using F-thresholds and F-pure thresholds, we give a criterion of regularities
of a toric ring defined by a simplicial cone.
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THEOREM 5.3. Let R be a toric ring defined by a simplicial cone o, and m the
maximal monomial ideal. If there exists a monomial ideal a such that /a =m
and

c(a) = c"(a),

then R is a regular ring.

Proof. Since ¢ is simplicial, we may assume that
o =Rxov1 + - Rxovu,

where v; e N and {vi,...,vs} are R-linearly independent. Hence there exist
lattice points u; of M and positive integers /; such that

" = Rsoup + - + Rxouy,

and <u;,v;) = ;0;. Moreover, for all i,j=1,...,d, we assume that v; and u;
are primitive. Since ¢ is simplicial, R is Q-Gorenstein. Hence there exists a
rational point @ of Mg such that

c(a) =c™(a) = A(w).

By Theorem 3.3,
(4) 4a(@)P(a) < Q(m).
To prove the theorem, it is enough to show that /; =1 for every i=1,...,d.
We derive a contradiction assuming /; > 1 for some i. Since /a=m, for a
sufficiently large nonnegative integer /, we have X e a. In particular, A(w)l; €
Ao(@)P(a). If we choose sufficiently large /, then we have

Ii—1 -
Ja(@)ll; — 1
Let o be a positive real number such that 0 < o < ([; — 1)/(Aq(w)ll; — 1). By the
definition of P(a) and (4),

ala(@)lu; + (1 — ) € Q(m).

On the other hand, for all j,

0< 1.

. : £ D),
{ada(@)lu; + (1 — a)w, v;) = {aia(io)jli +1-a<i 8 = 3

By the definition of Q(m), there exist a positive integer //, a lattice point u of
Q(m) and an element u’ of ¢ such that

L (j#10)
<”’”">{1/<lf (=),
and
odo(@)lu; + (1 — ) = u+u'.
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However, the existence of u contradicts the primitiveness of u;. Thus /; = 1.
Eventually, for every i =1,...,d, we have [; = 1. Therefore we complete the
proof of the theorem. O

On the other hand, there exist a toric ring R defined by a non-simplicial cone
with a maximal ideal m such that c(m) = c™(m).

Example 3 ([HMTW, Remark 25]) If R= k[X1X3,X2X3,X3,X1X2X3} and
m = (X1 X3, X2 X3, X3, X1 X2X3), then R is a toric ring whose defining cone is

0 =R50(1,0,0) + R50(0,1,0) + R>o(—1,0,1) + R>(0, -1, 1).
We denote by w the element (1,1,2) of ¢¥. Then
<w7(15050)> = <CO, (07 170)> = <CU, (_1707 1)> = <CO, (07_17 1)> = 1

By Corollary 4.3 and Lemma 4.6, for every monomial ideal a, we have c(a) =
Ja(w). Hence c(m) =2. On the other hand, c¢"(m) = 2.

Finally, we discuss the rationality of F-thresholds. This was given as an
open problem in [MTW]. For some regular rings, Blickle, Mustata and Smith
give the affirmative answer. In [BMS2], they prove the rationality of F-thresholds
of all proper ideals a with respect to ideals J which entail a < v/J on an F-finite
regular ring essentially of finite type over k£ ((BMS2, Theorem 3.1]). In addition,
they also prove in cases that a is a principal ideal on an F-finite regular ring
((BMSI1, Theorem 1.2]). On the other hand, Katzman, Lyubeznik and Zhang
prove it in cases that a is a principal ideal on an excellent regular local ring, that
is not necessarily F-finite ((KLZ]). We will prove the rationality of an F-
threshold of a monomial ideal a with respect to an m-primary monomial ideal J
on a toric ring. For an element v of Ng and a real number A, we define the
affine half space H (v; 1) as

H*(v;4) :== {ue Mgr | {u,v) > 1}.
We also define the hyperplane dH ™ (v; 1) as
OH' (v;2) = {ue Mg |<u,v) = 1}.

Assume that a i3 a monomial ideal of a toric ring. Since P(a) is a convex
polyhedral set, it is written as an intersection of finite affine half spaces. We
observe a form of P(a).

LEMMA 5.4. Let R be a toric ring defined by a cone o in Ng, and a a
monomial ideal of R. Then there exist rational points v; of N and rational
numbers 2] for 1=1,....t such that P(a) = (),_, H"(v}; 1]).

Proof. Since ¢ is a rational polyhedral cone, so is ¢¥. Hence there exist
lattice points u; of M such that

" =Rsoui + - - + Rxotty,.
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We assume that a = (X?*,..., X*). We define the rational polyhedral cone 7 of
Mg xR as

T:= Rzo(al, 1) + -+ Rzo(ax, 1) + RZQ(MI,O) + -+ Rzo(um,O).
For such 7 and P(a),

(5) TN (Mg x {1}) = P(a) x {1}.
In fact, let (u,1) be an element of the left-hand side. Then

(u7 1) = Za,-(a,-, 1) + ij(Uj,O),
=1 J=1
where a; and b; are nonnegative numbers. By the definition, > a; =1. By
Proposition 3.2 (iii), # € P(a). The similar argument implies the opposite inclu-
sion. Since 7 is the rational polyhedral convex cone, for [ =1,...,¢, there exist
rational points (vj,x;) of Ng such that

4

(6) r=(VH"((t],1);0),

I=1

where H"((v],44);0) is the affine half space of Mg x R. The duality pairing of
Mg x R and Ny x R is defined as

L(u, 2), (0, 1) = <u,v) + Ap,

for all elements (u,4) of Mg x R and all elements (v, 1) of Ng x R. Under this
duality,

H* (0, 0) N (M x {1}) = H (65—p0) x {1}.

Therefore if we set A; := —u; for each /=1,...,t, the assertion of the lemma
follows by (5) and (6). O

THEOREM 5.5. Let R, o and a be as in Lemma 5.4. Furthermore, we assume
that o is a d-dimensional simplicial cone. Let J be an m-primary monomial ideal,
where m is the maximal monomial ideal of R. Then the F-threshold c¢’(a) of a
with respect to J is a rational number.

Proof. We denote by dQ(J) the boundary of Q(J) in ¢, and also denote
by Mg the set of the rational points of Mr. By Lemma 5.4, if there exists a
finite set B of Mg NdoQ(J) such that

¢’(a) = max Ja(@),

then c¢”/(a) is a rational number.
First, we prove that

c(a)= sup (o).
wedQ(J)
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By Theorem 3.3, if there exists an element w of ¢V such that ¢/(a) = A,(w), then
o is an element of 0Q(J). In fact, if such w is contained in ¢¥\Q(J), there
exists a positive real number ¢ such that (1 +¢)w e a¥\Q(J). This implies that
c/(a) > (1 +¢)Ao(w). Tt is a contradiction.

Second, we prove the existence of B. We assume that ¢ = Ryovq +---+
R ovs, where v; are primitive lattice points. Since ¢ is simplicial, for every j,
there exists an element u; of Mq such that

<Llj,l)]>:5j[, lE{L,d}
Since J is m-primary, there exist nonnegative integers r; such that rju; € Q(J).
That implies 0Q(J) is bounded. The order <, over 0Q(J) is defined by u <, u’
if
uyvy < ulyvyy, Vi=1,....d.
Then 0Q(J) has maximal elements with respect to this order. Let B be the set

of maximal elements of dQ(J) with respect to the order <,. By Lemma 4.6, we
conclude

c/(a) = sup Ao(w) = sup Aq(w).
wedQ(J) weB

To show that B is a finite set of Mg, we prove the following claim.

CramM. Let J be the ideal of R generated by elements X ..., x> We
assume that u € B, that is,

(i) uedQ(J),

(i) u is a maximal element with respect to the order <, in dQ(J).

Then for every j=1,...,d, there exists integer i; such that
d
(7) ue (V(b; + ((H"(v;;0)Na")).
j=1

In particular, B is a finite set and u e M.

Proof of Claim. We suppose that u does not satisfy (7). Then there exists
j'in {1,...,d} such that
(8) u¢b;+ (H" (v;;0)Na"),
for all i=1,...,t. We choose an element u’ of ¢¥ such that
oy = Suvy, (G #77),
vy =[] + 1

Since ¢ is simplicial, ¥’ uniquely exists. We will show that the existence of u’
contradicts the assumption (ii). By the construction of u’, we have u' e Q(J).
To see u' ¢ Int Q(J), we paraphrase the assumption (i). Since u ¢ Int Q(J), we
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have u ¢ b; + Int(g¥) for all i =1,...,7. Furthermore, this is equivalent to the
existence of /; such that

(9) <1/l, U],.> < <bi7 U1i>7

for each i=1,...,t. If [; is not j’, we have directly

u' vy = uy oy < by,

by the construction of #’ and the relation (9). On the other hand, if /; is j/, then
the relations (9) and (8) imply

L<M, vj’>J < <bian'> - 17

because b; is a lattice point of M. Hence <u',v;» < <b;,v;>. Eventually, in
both cases, v’ ¢ Int Q(J). Therefore u’ € dQ(J). By the construction of u’, the
element u is not a maximal element in 0Q(J). It contradicts the assumption
(i)). We complete the proof of Claim. O

We complete the proof of the theorem. O

Now we consider the rationality of F-jumping coefficients on Q-Gorenstein
toric rings. The rationality of F-jumping coefficients is the consequence of the
fact that test ideals are equal to multiplier ideals ((HY, Theorem 4.8] and [B,
Theorem 1]). However, we also give its proof by a combinatorial method.

PrOPOSITION 5.6. Let R, ¢ and a be as in Lemma 54. Moreover, we
assume R is an r-Gorenstein toric ring. Then for all i, the i-th F-jumping co-
efficient ¢'(a) of a is a rational number.

Proof. In the proof of Proposition 4.5, we have seen that there exists a
lattice point b of M such that ci(a) = u,(b), where X® is one of generators of
t(a¢"'@). By the similar argument in the proof of Proposition 5.1, there exists
an element w of ¢V such that ¢’(a) = Z4(b+ w/r). Let wg be the canonical
module of R. Since w corresponds to the generator of a)g), we see we M.
Hence b+ w/r is in Mg. Therefore ¢/(a) is a rational number. O
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