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TYPES OF AFFORESTED SURFACES!
MITSURU NAKAI AND SHIGEO SEGAWA

Abstract

We form, what we call, an afforested surface R over a plantation P by foresting
with trees 7, (n € N: the set of positive integers). If all of P and 7, (n € N) belong to
the class (s of hyperbolic Riemann surfaces W carrying no singular harmonic functions
on W, then we will show that, under a certain diminishing condition on roots of trees 7},
(neN), the afforested surface R also belongs to 0.

1. Introduction

In 1961 Parreau introduced two terms, quasibounded and singular, for
positive harmonic functions on hyperbolic Riemann surfaces and showed the
so called Parreau decomposition that any positive harmonic function can be
uniquely expressed as the sum of quasibounded and singular positive harmonic
functions ([6], cf. e.g. [1]). It is well known that there exists a Riemann surface
of any given finite harmonic dimension (i.e. the dimension of the linear space
generated by positive harmonic functions) carrying no singular positive harmonic
functions (cf. e.g. [7]). In view of this it has been asked whether there exists a
Riemann surface of infinite harmonic dimension carrying no singular positive
harmonic functions (cf. e.g. [5]). The purpose of this paper is to give a result
which implies an affirmative answer to the above question.

2. Afforested surface

We take an open Riemann surface P and a sequence (7),),.n of open
Riemann surfaces 7, (neN). We fix a sequence (V),.n of simply connected
Jordan regions V, in P such that (V,),.n does not accumulate in P and
ViNV;=0 (i # j); we also choose a simply connected Jordan region U, in T,
for each n e N.  We identify ¥, and U, as a parametric disc {|z| < 1} in P and
T, for every neN. Let 5,€(0,1/2) and put
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(2.1) On = |—Sp,5n) ={z€V,=U,:|Rez| <s,,Imz=0}

for every n € N so that g, = P and at the same time 0, = T, (n e N). For each
n e N we attach T,\o, to P\U[EN g; by connecting them crosswise along g,. By
the standard procedure we can make the resulting surface R = {P, (T,),.n> @S @
Riemann surface. To make the situation impressive we call R as an afforested
Riemann surface over a plantation P by foresting trees T, (neN). The slit g,
will be called the root of the tree T, for each ne N. In R, the slit g, is also
understood in the Carathéodory topology so that it is viewed as a Jordan curve
o, Uag, by considering both sides ¢ and o, of the cut g,.

3. Classification

An open Riemann surface W is said to be hyperbolic (not parabolic) if there
exists the Green function g¢(z,{; W) with its pole { at any point of W, where
g(-,{; W) is the minimal positive continuous distributional solution of the Poisson
equation

—Ag(-,{; W) = 2ro;

on W with J; the Dirac measure supported at (e W. We say that W is
parabolic if W is not hyperbolic and we denote by (/g the class of parabolic
Riemann surfaces. We denote by H(W) the vector space of harmonic functions
on W. As usual we denote by #* the subclass of # consisting of nonnegative
functions in the function class #. Let HP(W) be the vector subspace of H(W)
consisting of essentially positive harmonic functions # on W in the sense of that
|u| admits a harmonic majorant on W. Therefore HP(W) forms a vector lattice
with lattice operations v and A, where uv v (uAv, resp.) is the least harmonic
majorant (the greatest harmonic minorant, resp.) of u and v in HP(W). Then
ut (u™, resp.) is the positive (negative, resp.) part ut :=uvO0 (u™ = —(un0) =
(—u)" = (—u) v 0, resp.) of the Jordan decomposition u = ut —u~ of any ue
HP(W) so that HP(W) is generated by HP(W)™ = H(W)" : HP(W) = H(W)™"
OH(W)". A function ue HP(W) is said to be quasibounded if ut =
limgs; .0 ut At and singular if u* At =0 for every e RT, where R is the set
of real numbers. We denote by HB'(W) the vector subspace of HP(W) con-
sisting of quasibounded harmonic functions on W and hence HB(W) =« HB' (W)
< HP(W), where HB(W) is the vector space of bounded harmonic functions
on W. We denote by Oyp the class of open Riemann surfaces W such that
HP(W) =R (cf. e.g. [7]). We also denote by @ the class of hyperbolic Riemann
surfaces W such that HP(W) = HB'(W), i.e. s is the class of hyperbolic Riemann
surfaces W carrying no nonzero singular essentially positive harmonic functions on
W. Hence

(31) (OHP\@G c @s-

Concrete examples in Opp\O; given by Toki and also by Sario are famous (cf.
e.g. [7]). From the finite n number of copies of a surface in Oyp\Og it is easy
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to construct a W e (s with harmonic dimension n (i.e. dim HP(W) =n so that
dim HB(W) = dim HB'(W) =n). The question is whether we can construct a
surface W e O from infinitely many copies W; (i € N) of a surface in Oyp\COg.

4. Sizes of roots of trees

We fix a reference point 0 € P\( J, _y V» and denote by M, the Harnack con-
stant of the compact set {0} UV, with respect to the class HP(P\| J, x(1/2) V)"
so that M, is the smallest of all numbers ¢ € [1,+0c0) such that

¢ 'h(z1) < h(z) < ch(z))
for every pair (z1,2z) of points z; and z; in {o}UdV, and for every / in
HP(P\|J, x(1/2)V,)", where tV, = {|z| < t} for every 1€ R with 0 <7< 1 (cf.
e.g. [2]).
Suppose that P e O; and let g(z,{; P) be the Green function on P with its
pole { € P. We denote by {, the center of the parametric disc V, so that {, is
also the center of g, corresponding to z = 0 of the local parameter on V,. We

choose an arbitrary but then fixed sequence (¢,),.n Of positive numbers &, such
that

(4.1 pi= Zen < 1.
neN

Observe that

(42) oy = Sup g(Z, Cn;P) <
zeP\V,

for every ne N and

(43) Bui=inf g(z.0,iP) T oo (5, 10)

for each neN, where we recall o, = [—s,,5:] < (—1/2,1/2). Hence we can
choose and then fix an s, € (0,1/2) such that

(4.4) /Py < &n/(4M,+1) (neN).

We are ready to state our main result in this paper.

THE MAIN THEOREM. Suppose that Pe Oy and T, € Oy (neN). Then the
afforested surface R = {P,(T,),.ny> over the plantation P with trees T, (neN)
also belongs to Oy if the roots a, of T, shrink so rapidly as to satisfy the condition
(4.4).

5. Wiener harmonic boundary

We denote by W* the Wiener compactification of an open Riemann surface
W ¢ Og, by y =yW the Wiener boundary W*\W, and by 6 =JW the Wiener
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harmonic boundary of W (cf. e.g. [3], [7]). For any f € C(y) we denote by HfW
the Perron-Wiener-Brelot solution of the Dirichlet problem on W with boundary
values f on y =yW. Then the set of regular points in y = yW is d =6W. We
will repeatedly use the following facts (cf. e.g. [7]): a ue HB'(W) is determined
uniquely by u|6 and u= H)'; a ue HP(W) is nonzero singular if and only if
u|0 =0 and u # 0 on W so that W € ¢, if and only if u|Jd = 0 implies # =0 on
W for every ue HP(W). We also need the maximum principle. Let S be a
subregion of W and ue HB'(W). Then

(5.1) sup u(z) = sup u(z).
zes ze(@WNS)Uas

Thus, if W e O, then (5.1) is true for every u e HP(W).

We now prove a technical lemma which plays an essential role for the proof
of the main theorem mentioned above. Let Pe 0, T,e Oy (neN), and R =
{(P,(Ty),cn> be the afforested surface over the plantation P with trees (7}),.n>
whose roots (g,),.n satisfy (4.4). Then we have the following result.

TeE UNICITY PRINCIPLE. If an he HP(R) vanishes on (6P)U (|, .nOTn),
then h vanishes identically on R.

It may sound more plausible if (6P)U (| ) _\07T,) is replaced by R. Thus the
significance of the above result lies in the fact that (0P)U (| ), \6Ty) is only a
part and not the whole of R. However it is only used in the case /& vanishes on
the whole dR. Using the above unicity principle and actually only a weaker
version of it as mentioned above, we can prove the main theorem instantaneously
as follows. Take any he HP(R) satisfying h|0R=0. Then, in particular,
h|(0P)U(|J,.n0Tn) =0 and the above unicity principle assures that s =0
identically on R so that there is no singular harmonic function in HP(R) and a
fortiori we can conclude that R e 0.

6. Proof of the unicity principle

Choose an arbitrary € HP(R) such that 1 =0 on o := (6P)U (|, .NOTn)-
We are to show that s =0 identically on R. Let h=h,+ hy be the Parreau
decomposition of / into the sum of the quasibounded part 4, and the singular
part iy on R. First of all, 47 and A, are singular along with /4, and therefore
hi|0R=h;|0R=0 and in particular A/ |0 =h; |« =0. Secondary, h,|o=
h|o—hg]a=0. Since

hqi = Hnlfax(ihq, 0)

and max(+/,,0)|a =0, we see that /i, | =/h, |o=0. Hence every summand
in the right hand term of & = h; —h_ +hf —h_ vanishes on o. Therefore we
can assume that 7> 0 on R, i.e. he HP(R)", in proving & = 0 identically on R
under the assumption /#|a=0. Moreover we may assume that A(o) < 1/2.
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The first step: We construct auxiliary function u, on R for each ne N as
follows. First on P\UmEN om, U, 1s determined by the following conditions:
u, € HB( P\UmEN om) NC(P*\ay); u, =0 on (UmeN\{n} om) UOP; u, = h contin-
uously on ¢, =g, Ug, considered as the Carathéodory boundary. Second on
the rest of P\, .o in R, ie. on () _\ T, u, is given by u, =h on T,\o,
and u, =0 on each T, for each m e N\{n}.

Let (P);.n be an exhaustion of P such that o€ P, U V<P, and
\U;»i ¥y = P\P; for each ieN; let uy (z >n) be in C(P; \on)ﬂHB P\U
with u,; = h continuously on ¢, =0, Ug, in the Carathéodory sense and
u,; =0 on (U/<l /#ﬂ o;)UdP. We extend u,; to R by setting u,; =0 on
(P\P)U (U/eN\{n} ) and u,; = h on T,\g,. Since (uy);., is uniformly bounded
on P and u, =0 on JP, it is easily seen that

(61) Unpi T Up

on R. Again, since # >0 on R, we see that ) _, u,; <h on R and therefore,
by letting i ] oo, D Uy < h on R for each ne N. We can thus conclude that
the function

i>n

m<n

(6.2) wi=h=> u, >0

neN

is well defined on R.

The second step: We now show that u =0 on R, or equivalently, we have
the representation

(6.3) h=>"u,

on R. By the very definition, u = 0 on R\(P\ >, n0i) and thus we only have to
prove that #u =0 on P. Take the harmonic measure w, of g, on P\g, for each
neN, ie. w, € C(P*)NHB(P\o,) with w,|o, =1 and w, |6P =0. In view of
(4.4), we see that

én

4 -
(6.4) Wy < I, 1

on P\V, for every neN. Then

neN

is finitely continuous on P and harmonic on P\| ), .y .. Clearly 3=, (2M;/p)w;

is a potential on P for every ne N and v =}, N(2M;/p)w; is superharmonic
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on P. Hence v is a potential on P (cf. e. g [4]) so that v =0 on JP. Finally
consider the function u + v € HP(P\ UJ "N C(P). Observe that (u+ v)(0) <

h(o) + > ,en(2My/p) - (en/(4M, + 1)) < 3 and hence u +v < M, on 0V,. On V,,
u+v is the sum of u+ (2M,/p)w, and the function 3\ (3 (2M;/p)w;. Note
that u+ 2M,/p)w, <u+v < M, on 0V, and u+ 2M,/p)w, =2M,/p > 2M,
on o, and therefore u + (2M,/p)w, <2M,/p on V,\a,. Hence the local super-
mean value property is valid at each point of g, and we can conclude that
u+v is superharmonic on P. Clearly u is subharmonic on P and therefore
there exists a g€ H(P) with 0 <u<g<u+v on P. By the assumption that
Pe O, we see that ge HB'(P)*. By the fact that 0 <u < h =0 on JP, we see
that 0 < g <u+v=0 on 6P so that ¢ =0 on JP. By the maximum principle
we can conclude that ¢ =0 on P so that u=0 on P.

The third step: We next prove that /& is bounded on each T,\o, (neN).
Take the h, e HB(T,\o,)NC(T,/\o,) determined by #/, =h continuously on
o, =0, Ug, in the Carathéodory sense and £, |6Tn =0. Let (Ty);.n be the
exhaustlon of T, and h,; € HB(T,;\o,) N C(T,;\o,) given by h,; = h continuously
on g, =0, Ug, in the Carathéodory sense and h,; |07, =0. Clearly h,; 1 h,
(n7o0) on T,,\a,, and &, <h. Hence h, <h on T,\g,. Set t,:=h—h,e
H(T,\o,)"NC(T}) and consider f, € HB(T,\c,)" N C(T;) with f,|o, =1 and
fa |6T =0. Recall that U, is a parametric disc in 7, which was identified with
Vi in P. Let b :=sup,y, fo <1, ¢:=supyy, tn, and a:=1+¢/(1 —b) so that
c¢<a(l—b). Observe that t, +af,, € HP(T, \an) NC(T;) with (t, + af,) |0, = a.
Then ¢, +af, <c+ab<a on 0U, and t,+af, =a on a,. Hence ¢, +af, <a
on U,\o, so that the supermean value property is fulfiled at each point of g, and
thus ¢, + af, is superharmonic on 7),. Since f, is subharmonic on 7, and
ty < t, + afy, there exists a pe HB'(T,) such that 0 <1, < p <t,+af,. Then
0<p|oT, < (ty+afy)|6T, =0, or p|6T, =0. The maximum principle yields
that p=0 on T, so that t,=0 on T,. Hence h=h,e HB(T,\o,), i.e. h is
bounded on T,\o, for each neN.

The fourth and the final step: We are ready to show that # =0 on R, which
was the desired conclusion to assure Re (. For each neN, let S,:=
(T\ow) Y,, (Vi\o,), where (X\o)W, (Y\o) for a common slit ¢ in Riemann
surfaces X and Y denotes the Riemann surface obtained by connecting X\o
and Y\o crosswise along . Observe that ie HB(S,) " NC(S,)NC(S?). As
the nonnegative function on P\| J,_\o; with the value at most 1/2<1 at o,
h <M, on dV,. Hence, as the function in HB(S,)", the maximum pr1nc1ple
with /1 |0T, = 0 implies that h<M,onsS, Asthe functlon in HB(P\| J,.x0i) N
C(P*\o,) with vanishing values on (UZGN\{n} 6;)UoP, u, < M,w, on P\o, and
hence, by (6.4), u, <&, on P\V,. A fortiori we see that

h:Zung Zen:p

neN neN
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on P\U”GN V,. 1In particular, h|dV, < p with h|0T, =0 implies 2 < p on S,
for every ne N. This proves that 0 </ <p on R.

Starting from the fact just established that 0 </ <p on R, we proceed
as follows. Since u, =w, =0 on 6P and u, < pw, on UieNai, we see that
u, < pw, on P\g,. On the other hand, since w, < &,/(4M, + 1) <&, on 0V, and

thus
h:Zun < z:e,,p:p2

neN neN

on 0(P\|J,.x Vi) and also on S, = oV, for every n e N. In view of h =0 on 5P
and also on the ideal harmonic boundary part of S, i.e. 07}, for every ne N,
we see that & < p? on P\UieN V; and also on S, for every n e N. This finally
assures that 4 < p?> on R. By the same method, starting from /4 < p?> on R, we
can deduce that # < p? on R. Repeating the same procedure we can show that

0<h<pt (keN)

on R. On letting kT oo in the above inequality and recalling p e (0,1), we
deduce & = 0 identically on R as desired. O

7. Conclusion

Take the Sario or Toki surface S already referred to in Section 3, which is a
Riemann surface in the class Oyp\Og. Let

(7.1) P=S, T,=S (neN).

We form the afforested surface S = (P, (Ty),cn> by using the special plantation
P and trees (T,),.n given by (7.1) with roots g, of trees T, satisfying the
condition (4.4). By our main theorem, noting (3.1), we can conclude that

(7.2) S e,

Concerning the Wiener harmonic boundaries 35S, 6P, and 0T, (neN), respec-
tively, of Riemann surfaces S, P, and 7, (n e N), respectively, we have

08 5 OP)U (|, x0T

with 6P =0T, =4S, which consists of a single point. Therefore 5S consists of
infinitely many points. In general the linear space HB(W) over a Riemann
surface W is of finite dimension m if and only if the Wiener harmonic boundary

0 W consists of finite m points (cf. [7]). Therefore we have dim HB(S) = co. By

the Parreau decomposition, (7.2) is equivalent to HP(S) = HB'(S) = HB(S) and
a fortiori

(7.3) dim HP(S) = dim HB'(S) = dim HB(S) = 0.
Thus we can conclude that S is a concrete example of a Riemann surface of

infinite harmonic dimension carrying no singular essentially positive harmonic
functions on it.
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