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ON CERTAIN FIBRED RATIONAL SURFACES

Kazuhiro Konno

Abstract

Fibred rational surfaces with a certain extremal property are classified.

Introduction

This is a continuation of [3] in which a systematic study of fibred rational
surfaces is done. Let X be a non-singular projective rational surface and
f : X ! P1 a relatively minimal fibration of curves of genus gb 2. We denote
by F a general fibre of f . Then KX þ F is nef and h0ðX ;KX þ F Þ ¼ g by
[3, Lemma 1.1]. The rational map associated to the complete linear system
jKX þ F j was studied in [3, Proposition 1.1] when it is generically finite onto its
image: It is a morphism if ðKX þ F Þ2 a 2g� 4 that is birational onto the image
if ðKX þ F Þ2 a 2g� 5. See also §1 for further properties.

In this article, we consider the following two cases and give the complete
description of the corresponding fibred rational surfaces.

(A) ðKX þ FÞ2 ¼ 2g� 5, gb 4, and F is either trigonal or plane quintic.
(B) ðKX þ F Þ2 ¼ 2g� 4 and jKX þ F j induces a morphism of degree 2 onto

the image.
Fibred rational surfaces as in (A) are classified into two types and are described
in Theorems 2.8 and 2.9, respectively. Those as in (B) are determined in
Theorems 3.4, 3.9 and 3.10.

The reason why we are interested in these special cases is in the jumping
phenomena of ðKX þ FÞ2 observed in [3, §1] as follows (see also §1): If F is either
trigonal or plane quintic, then either ðKX þ FÞ2 ¼ g� 2 or ðKX þ FÞ2 b 2g� 5.
If F is hyperelliptic, then either ðKX þ F Þ2 ¼ 0 or ðKX þ FÞ2 b 2g� 4. In both
cases, the first possibility is known to occur and easily described (see, e.g.,
[3, Remarks 1.1 and 1.3]). Therefore, it is natural to ask what happens in the
second region. The cases (A) and (B) respectively correspond to the smallest

possible value of ðKX þ FÞ2 to be investigated.
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The organization of the paper is as follows. In §1, we recall some results in
[3] in order to summarize the basic facts on jKX þ F j which clarify the meaning
of (A), (B). In §2, we shall determine all the fibred rational surfaces with the
property (A). Since F is either trigonal or plane quintic, the quadric hull of F is
a surface of minimal degree by the Enriques-Petri theorem. As F moves in the
pencil, such surfaces trace a threefold of minimal degree through the image of X
by the birational morphism defined by jKX þ F j. This enables us to describe the
structure of f : X ! P1 in Theorems 2.8 and 2.9. Among other things, we show
that the g13 on F is induced from a pencil of elliptic curves on X when gb 7. In
§3, by using the double covering method [2], we shall show that f as in (B) is
necessarily a hyperelliptic fibration when gb 5, and list in Theorem 3.4 the
possible branch locus as well as the pencil inducing f , on the rational surface
downstairs. On the other hand, when g ¼ 3 or 4, non-hyperelliptic fibrations
also appear (Theorems 3.9 and 3.10). If g ¼ 3 (resp. g ¼ 4), then we can find a
pencil of curves in j�2KY j (resp. j�3KY j) giving us a non-hyperelliptic fibration
f , where Y is the weak del Pezzo surface of degree 2 (resp. 1) obtained as the
reduction of X (see §1 for the definition of the reduction).

Throughout the paper, we shall work over C and use the following notation.
We denote by Sd the Hirzebruch surface of degree d. Let D0 and G be a minimal
section and a fibre of Sd , respectively. For a subvariety Z of Pn, we denote by
QuadðZÞ the intersection of all hyperquadrics through Z, and call it the quadric
hull of Z. If there are no hyperquadrics through Z, then we put QuadðZÞ ¼ Pn.
A non-singular projective surface S is called a weak del Pezzo surface if �KS is
nef and big. For two divisors D1, D2 on a non-singular variety, D1 @D2 means
that D1 and D2 are linearly equivalent.

1. Preliminaries

In this section, we summarize the results in [3, §1] to fix the notation and
give the background for our problem.

Let X be a non-singular projective rational surface with a relatively minimal
fibration f : X ! P1 whose general fibre F is a non-singular projective curve of
genus gb 2. Then KX þ F is nef and the restriction map H 0ðX ;KX þ F Þ !
H 0ðF ;oF Þ is an isomorphism by [3, Lemma 1.1]. In particular, h0ðX ;KX þ F Þ
¼ g.

If jKX þ F j is composed of a pencil, then f is a hyperelliptic fibration
and ðKX þ F Þ2 b 2g� 2 holds for gb 3 by [3, Lemma 1.3]. If jKX þ F j
defines a generically finite rational map F : X ! Pg�1 onto the image W ,
then the following hold by [3, Proposition 1.1].

(1) If ðKX þ FÞ2 a 2g� 4, then jKX þ F j is free from base points, and
F : X ! W is a birational morphism except in the case where ðKX þ F Þ2 ¼
2g� 4 and deg F ¼ 2.

(2) If ðKX þ F Þ2 a 2g� 5, then the graded ring RðX ;KX þ F Þ ¼
0

nb0
H 0ðX ; nðKX þ FÞÞ is generated in degree one. Furthermore, W has at

most rational double points as the singularity.
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(3) If ðKX þ FÞ2 a 2g� 6, then the homogeneous ideal of W HPg�1 is
generated by quadrics. If ðKX þ FÞ2 ¼ 2g� 5 and gb 4, then it is generated by
quadrics and cubics.

Since F induces the canonical map of F , one sees immediately from the
above facts that either ðKX þ FÞ2 ¼ 0 or ðKX þ FÞ2 b 2g� 4 holds when F is
hyperelliptic. Note that we have ðKX þ FÞ2 b deg W b g� 2 when deg F ¼ 1,
since W is an irreducible non-degenerate surface in Pg�1. By using (3), one can
show, as we did in [3, Theorem 1.1], that F regarded as a canonical curve is
cut out by quadrics provided that g� 1a ðKX þ FÞ2 a 2g� 6. Hence, by the
Enriques-Petri theorem, we see that either ðKX þ F Þ2 ¼ g� 2 or ðKX þ FÞ2 b
2g� 5 holds when F is trigonal or plane quintic.

Let m : X ! Y be the blowing-down of all the ð�1Þ-curves E satisfying
ðKX þ F ÞE ¼ 0 and put G ¼ m�F . Then m�ðKY þ GÞ ¼ KX þ F and F factors
through Y . The original fibration f is obtained from a pencil Lf H jGj by
eliminating the base points. We call the pair ðY ;GÞ the reduction of ðX ;F Þ.
Since the properties (1)–(3) also hold for KY þ G, it is often convenient to
consider ðY ;GÞ instead of ðX ;FÞ.

2. Fibrations with ðKX þ FÞ2 ¼ 2g� 5

In this section, we study the case ðKX þ FÞ2 ¼ 2g� 5, gb 4, assuming
that F is either trigonal or plane quintic. We let ðY ;GÞ be the reduction of
ðX ;FÞ. Then f corresponds to a pencil Lf H jGj and the graded ring
0

mb0
H 0ðY ;mðKY þ GÞÞ is generated in degree one. Let W be the image

in Pg�1 of Y by the birational morphism defined by jKY þ Gj. Then it is
projectively normal and has at most rational double points as the singularity.
For these facts, see [3] or §1.

A general member G A Lf can be regarded as the canonical curve in Pg�1,
because the restriction map H 0ðY ;KY þ GÞ ! H 0ðG;KGÞ is an isomorphism.
With this identification, we have

G H W

V V

QuadðGÞ H QuadðWÞ

in Pg�1.

Lemma 2.1. The quadric hull of W is a threefold of minimal degree g� 3 in
Pg�1.

Proof. Since G is either trigonal or plane quintic, QuadðGÞ is a surface
of minimal degree g� 2 in Pg�1 by the Enriques-Petri theorem. It is a surface
di¤erent from W for the reason of degrees. Furthermore, QuadðGÞ moves in
QuadðWÞ as G moves in Lf . Therefore, QuadðWÞ has a component of
dimension bigger than or equal to 3 that contains W .
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The multiplication map Sym2 H 0ðY ;KY þ GÞ ! H 0ðY ; 2ðKY þ GÞÞ is sur-
jective and h0ðY ; 2ðKY þ GÞÞ ¼ 4g� 6. Hence there are ðg� 3Þðg� 4Þ=2 inde-
pendent hyperquadrics through W defining QuadðWÞ. It follows that QuadðWÞ
is a threefold of minimal degree. r

From the classification of varieties of minimal degree (see e.g. [1]), we know
that QuadðWÞ is either (i) P3 ðg ¼ 4Þ, or (ii) a hyperquadric ðg ¼ 5Þ, or (iii) a
cone over the Veronese surface ðg ¼ 7Þ, or (iv) a rational normal scroll ðgb 5Þ.

Lemma 2.2. If g ¼ 4, then Y is a weak del Pezzo surface of degree 3 and
G A j�2KY j.

Proof. If g ¼ 4, then QuadðWÞ ¼ P3 and W is a cubic surface with at most
rational double points. Hence �KY is induced from the hyperplane bundle. It
follows KY þ G ¼ �KY and we have G A j�2KY j. Conversely, we get a non-
hyperelliptic curve of genus 4 as a hyperquadric section of a cubic surface. r

Assume that gb 5.

Lemma 2.3. QuadðWÞ is a rational normal scroll of dimension three.

Proof. We first assume that g ¼ 5 and QuadðWÞ is a non-singular hyper-
quadric. Then the Picard group of QuadðWÞ is generated by the hyperplane
class. It follows that any hypersurface on it is of even degree. Since deg W ¼ 5
is odd, this is impossible.

We next assume that g ¼ 7 and QuadðWÞ is a cone over the Veronese
surface. Then by considering the linear system of hyperplanes through the vertex
of QuadðWÞ, we have KY þ G@Dþ 2l, where l denotes the transform to Y of a
line on P2 and D is the divisorial part of the inverse image of the vertex. Since
a general hyperplane does not pass through the vertex, we have ðKY þ GÞD ¼ 0.
Then 9 ¼ ðKY þ GÞ2 ¼ 2lðKY þ GÞ, which is impossible. r

Since QuadðWÞ is a rational normal scroll of dimension three, it has a ruling
by planes which is unique when gb 6. By pulling it back, we obtain a pencil
jDj of curves on Y . Let r : ŶY ! Y be a minimal succession of blowing-ups that

eliminates the base points of jDj. Then we have a fibration c : ŶY ! P1 induced
by the variable part jD̂Dj of r�jDj. Let E be the subbundle of c�OŶY ðr�ðKY þ GÞÞ
generically generated by its global sections. Then it is of rank three and we can
write it as

E ¼ OP1ðaÞlOP1ðbÞlOP1ðcÞ

with non-negative integers a, b, c satisfying 0a aa ba c and aþ bþ c ¼ g� 3.
The composite c�E ,! c�c�OŶY ðr�ðKY þ GÞÞ ! OŶY ðr�ðKY þ GÞÞ induces the
morphism ŶY ! PðEÞ which is birational onto the image ŴW . Let H and G
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denote a tautological divisor and a fibre of PðEÞ, respectively. The Picard
group of PðEÞ is generated by H and G, and we have H 3 ¼ ðg� 3ÞH 2G in the
Chow ring. Clearly QuadðWÞ (resp. W ) is the image of PðEÞ (resp. ŴW ) by the
morphism defined by jHj.

Lemma 2.4. ŴW is linearly equivalent to either
(I) 3H � ðg� 4ÞG, or
(II) 2H þ G

on PðEÞ. If (I) is the case, then either D2 ¼ 0 or D2 ¼ 1, ga 7. If (II) is the
case, then D2 ¼ 0.

Proof. We put ŴW @ aH þ bG. Since W is of degree 2g� 5, we have
ðaH þ bGÞH 2 ¼ 2g� 5, that is, b ¼ 2g� 5� aðg� 3Þ. Let C be a general
member of jKY þ Gj. Then it is of genus g� 3. The image ĈC of C in ŴW
is a section of ŴW with a general member of jHj. Since the canonical bundle of
ĈC is induced from ða� 2ÞH þ ð3g� 10� aðg� 3ÞÞG, we have

ðða� 2ÞH þ ð3g� 10� aðg� 3ÞÞGÞHðaH þ ð2g� 5� aðg� 3ÞÞGÞ ¼ 2g� 8

which is equivalent to ða� 3Þða� 2Þðg� 3Þ ¼ 0. Hence we have either (I) or
(II).

We have ðKY þ GÞD ¼ r�ðKY þ GÞD̂D ¼ a. It follows from Hodge’s index

theorem that a2 b ðKY þ GÞ2D2. Since a ¼ 2 or 3 and ðKY þ GÞ2 ¼ 2g� 5, we
have either D2 ¼ 0, or a ¼ 3, D2 ¼ 1 and ga 7. We have KY þ G1 3D when
g ¼ 7 and D2 ¼ 1, where the symbol 1 means the numerical equivalence. r

We say that the fibration f is of type (I) or type (II) according to whether
the linear equivalence class of ŴW is as in (I) or (II).

We let Q̂Q denote the proper transform of QuadðGÞ to PðEÞ.

Lemma 2.5. Q̂Q is linearly equivalent to either H þ G or 2H � ðg� 4ÞG,
ðg ¼ 5; 6Þ. In the former case, the projection map of PðEÞ presents Q̂Q as a P1-
bundle over P1. Furthermore, Q̂Q@H þ G when f is of type (I) and Q̂Q@ 2H �
ðg� 4ÞG when f is of type (II).

Proof. Since QuadðGÞ is of degree g� 2 in Pg�1, we have Q̂QH 2 ¼ g� 2.

Then it is easy to see that the possible linear equivalence class of Q̂Q is as stated.
It is well-known that QuadðGÞ is non-singular when gb 5. If Q̂Q@H þ G, then
Q̂Q is also non-singular and KQ̂Q is the restriction of �2H þ ðg� 4ÞG by the

adjunction formula. It follows that K 2
Q̂Q
¼ 8 which implies that Q̂Q is a Hirzebruch

surface. Furthermore, the projection map of PðEÞ gives Q̂Q a pencil of lines.
Now, G regarded as a canonical curve is a curve of degree 2g� 2 contained

in the intersection QuadðGÞVW . Hence Q̂QŴWHb 2g� 2. It follows that we

have Q̂Q@H þ G when ŴW @ 3H � ðg� 4ÞG, and Q̂Q@ 2H � ðg� 4ÞG when
ŴW @ 2H þ G. In either case, we have G ¼ Q̂QV ŴW . r
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We choose sections Z0, Z1 and Z2 of ½H � aG�, ½H � bG� and ½H � cG�,
respectively, such that ðZ0;Z1;Z2Þ forms a system of homogeneous coordinates
on fibres of PðEÞ. We let ðt0; t1Þ be a system of homogeneous coordinates on the
base curve P1. In addition, we sometimes use the following notation especially
when a ¼ 0. Let D be the section defined by Z1 ¼ Z2 ¼ 0 and s : ~PP ! PðEÞ the
blowing-up along D. Then ~PP is isomorphic to the total space of the P1-bundle
$ : PðOðaGÞlOðD0 þ cGÞÞ ! Sc�b, and s�H gives us the tautological line
bundle. The exceptional divisor Hy for s is linearly equivalent to s�H �
$�ðD0 þ cGÞ. When QuadðWÞ is a cone over a surface scroll, ~PP is obtained by
blowing up the vertex and Hy is nothing more than its inverse image.

Lemma 2.6. If f is of type (I), then ba aþ 1 and 2bþ 1b aþ c. If f is
of type (II), then ðg; a; b; cÞ ¼ ð6; 1; 1; 1Þ; ð6; 0; 1; 2Þ; ð5; 0; 1; 1Þ.

Proof. We first consider the case that ŴW @ 3H � ðg� 4ÞG and Q̂Q@H þ G.

Then the equation of ŴW is of the form
P

i; j cijðtÞZ
3�i�j
0 Zi

1Z
j
2 , where cijðtÞ is a

homogeneous form of degree ð3� i � jÞaþ ibþ jc� ðg� 4Þ, and the sum is
taken over all non-negative integers i, j satisfying 0a i þ ja 3. Recall that we
have aþ bþ c ¼ g� 3. If 2bþ 1 < aþ c, then the equation can be divided by
Z2, which is impossible because of the irreducibility of ŴW . If b > aþ 1, then all
the terms containing Z0 disappear, which implies that ŴW has a triple curve along
the section D. We show that it is inadequate. Since ŴW has a triple curve along
D, its proper transform ~WW on ~PP is linearly equivalent to $�ð3D0 þ ð2c� b�
aþ 1ÞGÞ. This implies that it is the restriction of the P1-bundle ~PP to a curve
on the base Sc�b linearly equivalent to 3D0 þ ð2c� b� aþ 1ÞG. Note that the
dualizing sheaf of the curve is induced by D0 þ ðc� a� 1ÞG. Hence ~WW is either
a P1-bundle over an irrational curve or it is non-normal along several fibres.
Both cases are impossible, because W is a normal rational surface. This shows
ba aþ 1. In particular, we cannot have a ¼ b ¼ 0 when gb 5.

We show that jDj has a base point when a ¼ 0 for the later use. Assume
that a ¼ 0. Then b ¼ 1, c ¼ g� 4 and ga 7. In the equation of ŴW , c01,
the coe‰cient of Z2

0Z2, has to be a non-zero constant. It follows that ŴW is
non-singular in a neighborhood of D. Then the proper transform of ŴW by s
is linearly equivalent to 2s�H þ$�D0. Since ðs�H �$�ðD0 þ ðg� 4ÞGÞÞ2 �
ð2s�H þ$�D0Þ ¼ �1, we see that D is a ð�1Þ-curve on ŴW . Then D induces on
ŶY a ð�1Þ-curve E with ED̂D ¼ 1. Therefore, D2 ¼ 1.

We next consider the case that ŴW @ 2H þ G and Q̂Q@ 2H � ðg� 4ÞG.
Then the equation of Q̂Q is of the form

P
i; j jijðtÞZ

2�i�j
0 Zi

1Z
j
2 , where jijðtÞ is a

homogeneous form in t0, t1 of degree ð2� i � jÞaþ ibþ jc� ðg� 4Þ and the sum
is taken over all non-negative integers i, j satisfying 0a i þ ja 2. We claim
that minf2b; aþ cgb g� 4. This can be seen as follows. If 2b < g� 4, then
the equation can be divided by Z2 and Q̂Q is reducible, which is absurd. If
aþ c < g� 4, then Q̂Q is singular along the curve D defined by Z1 ¼ Z2 ¼ 0.
This is impossible when a > 0, because then Q̂Q ¼ QuadðGÞ which is non-singular.
When a ¼ 0, we blow up PðEÞ along D. The proper transform ~QQ of Q̂Q is linearly
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equivalent to $�ð2D0 þ ð2c� gþ 4ÞGÞ on ~PP. This implies that ~QQ is a P1-bundle
over the curve linearly equivalent to 2D0 þ ð2c� gþ 4ÞG. Since ðD0 þ cGÞ �
ð2D0 þ ð2c� gþ 4ÞGÞ ¼ g� 2, we see that ~QQFSg�2 and Hy V ~QQ is the minimal

section of ~QQ. Since QuadðWÞ is obtained from ~PP by contracting Hy, we see
that QuadðGÞ is obtained from Sg�2 by contracting the minimal section. This
is absurd, since QuadðGÞ is non-singular. Therefore, minf2b; aþ cgb g� 4.
Since aþ bþ c ¼ g� 3, this condition is satisfied only when ga 6 and we have
ðg; a; b; cÞ ¼ ð6; 1; 1; 1Þ; ð6; 0; 1; 2Þ; ð5; 0; 1; 1Þ. We study Q̂Q more closely for the
later use. Note that Q̂Q is non-singular, since it can be checked directly by
examining the equation that it is non-singular in a neighborhood of D. By
the adjunction formula, KQ̂Q is induced from �H � G. Then K 2

Q̂Q
¼ ð�H � GÞ2 �

ð2H � ðg� 4ÞGÞ ¼ gþ 2. It follows that Q̂Q is a Hirzebruch surface when g ¼ 6,
and it is a Hirzebruch surface blown up at a point when g ¼ 5. The projection
map of PðEÞ gives Q̂Q the structure of a conic bundle. r

We put L ¼ KY þ G.

2.1. Type (I). Assume that ŴW @ 3H � ðg� 4ÞG.
If a > 0, then ŴW ¼ W and we have KY @�D and G@LþD. Therefore,

Y is a minimal rational elliptic surface. Since GD ¼ 3, f is a trigonal fibration.
We assume that QuadðWÞ is singular, that is, a ¼ 0. Then b ¼ 1, c ¼ g� 4,

ga 7 and D2 ¼ 1 as we have already seen. Recall that ŴW is non-singular in a
neighborhood of D defined by Z1 ¼ Z2 ¼ 0 in PðEÞ. Hence ŴW has at most
rational double points, because so is W . Then jD̂Dj is a pencil of elliptic curves
and it follows that E ¼ c�OŶY ðr�LÞ. Since L is normally generated, we see that

ŴW is isomorphic to Projð0
nb0

c�ðOŶY ðnr�LÞÞÞ. Since ŶY is a rational elliptic

surface whose canonical bundle is induced by �D̂D, we see that Y is a weak
del Pezzo surface of degree 1 with �KY ¼ D. We have G A jLþDj. Note that
G A j�4KY j when g ¼ 7, because KY þ G@ 3D in this case.

We have KŶYD̂D ¼ 0. It follows that KYD ¼ �1 and GD ¼ 4, because
3 ¼ r�ðKY þ GÞD̂D ¼ ðKY þ GÞD. Let ĜG be the proper transform of G by r
and E the exceptional ð�1Þ-curve. Since G is non-singular, we have either
ĜG@ r�G � E or ĜG@ r�G. Then we have either ĜGD̂D ¼ 3 or ĜGD̂D ¼ 4. Recall
that E is the inverse image of D.

In order to see that the g13 on G is induced from jDj, it su‰ces to show the
following:

Lemma 2.7. If QuadðWÞ is a cone over a Hirzebruch surface, then G is a
trigonal curve passing through the base point of jDj. In particular, the reduction
map m : X ! Y factors through ŶY.

Proof. Assume that G is a trigonal curve. Then ĜGD̂D ¼ 3, because the
projection map of PðEÞ induces the ruling of Q̂Q as we have already seen. It
follows that G passes through the base point of jDj.
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We assume that G is a plane quintic ðg ¼ 6Þ and show that this is impossible.
Since Q̂Q is isomorphic to a Hirzebruch surface, it has to be the Veronese surface
blown up at a point. Hence Q̂QFS1 and the ruling of Q̂Q induces on ĜG either a
g14 or a g15 according to whether the canonical curve passes through the center of
the blowing-up or not. From ĜGD̂Da 4, we conclude that ĜGD̂D ¼ 4. The minimal
section of Q̂Q arises from the vertex of QuadðWÞ. Hence it must be D. Since
ĜGD̂D ¼ 4 occurs only when the image of ĜG meets the minimal section of Q̂Q, we
must have ĜGE ¼ 1 and ĜG@ r�G � E. But this implies that GD ¼ 5, which is
inadequate. Therefore, G is not a plane quintic curve. r

We remark that the restriction map H 0ðPðEÞ;H þ GÞ ! H 0ðŴW ;H þ GÞ is
surjective. We have shown the following:

Theorem 2.8. The fibration of type (I) is obtained as follows. Let ŴW be a
surface on PðEÞ linearly equivalent to 3H � ðg� 4ÞG with at most rational double
points. Let L be a pencil in jH þ GjŴW whose general member is non-singular.
Then X is obtained by resolving singular points of ŴW as well as 2gþ 1 base points
of L.

2.2. Type (II). We assume that ŴW @ 2H þ G. Then r is the identity
map and D is a non-singular rational curve with LD ¼ 2. It follows that
GD ¼ 4 and E ¼ c�OY ðLÞ. Since L is normally generated, we see that ŴW is
isomorphic to Projð0

nb0
c�ðOY ðnLÞÞÞ. In particular ŴW has at most rational

double points. Hence KY is obtained as the pull-back of �H þ ðg� 4ÞG.
Then K 2

Y ¼ �2gþ 11 and Lf H j2L� ðg� 4ÞDj. Though the restriction map

H 0ðPðEÞ; 2H � ðg� 4ÞGÞ ! H 0ðŴW ; 2H � ðg� 4ÞGÞ is not surjective, any general
member of Lf is obtained by cutting ŴW by a member of j2H � ðg� 4ÞGj. It
follows that Lf is induced by a pencil in j2H � ðg� 4ÞGjŴW .

If ðg; a; b; cÞ ¼ ð6; 1; 1; 1Þ, then we can identify QuadðWÞ with P1 � P2 and
QuadðGÞ is the product of P1 with a conic curve because it is linearly equivalent
to 2H � 2G. Hence QuadðGÞFP1 � P1 and G is a trigonal curve of bi-degree
ð3; 4Þ, since W @ 3Gþ 2ðH � GÞ. We have h0ðY ;�KY Þ ¼ 0.

If ðg; a; b; cÞ ¼ ð6; 0; 1; 2Þ, then Q̂Q is isomorphic to S1 which has D as
the minimal section. This can be seen as follows. Consider the equation of
Q̂Q as in the proof of Lemma 2.6 where we have shown that Q̂Q is a Hirzebruch
surface. Then j01 and j20, the coe‰cients of Z0Z2 and Z2

1 , are both non-zero
constants, and we see that Q̂Q contains D. We blow PðEÞ up along D to get
PðOlOðD0 þ 2GÞÞ ! S1. The proper transform of Q̂Q is linearly equivalent to
s�H þ$�D0. Then ðs�H �$�ðD0 þ 2GÞÞ2ðs�H þ$�D0Þ ¼ �1. This shows
that D is a ð�1Þ-curve on Q̂Q and, thus, Q̂QFS1. Since QuadðGÞ is obtained
from Q̂Q by contracting D, we see that it is isomorphic to P2. Therefore, G
is isomorphic to a plane quintic curve. We remark that it passes through
the vertex of QuadðWÞ, because GD ¼ 4. Note also that j�KY j is non-empty.
Assume that Lf is spanned by G and G 0 whose images are defined in ŴW
by

P
ij jijZ

2�i�j
0 Zi

1Z
j
2 ¼ 0 and

P
ij j

0
ijZ

2�i�j
0 Zi

1Z
j
2 ¼ 0, respectively. Then Lf is
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induced by the pencil
P

ijðl0jij þ l1j
0
ijÞZ

2�i�j
0 Zi

1Z
j
2 ¼ 0, where ðl0 : l1Þ A P1.

Therefore, it has a remarkable member at ðl0 : l1Þ ¼ ðj 0
01 : �j01Þ which is of

hyperelliptic type with one node, and a reducible member corresponding to
ðl0 : l1Þ ¼ ðj 0

20 : �j20Þ.
If ðg; a; b; cÞ ¼ ð5; 0; 1; 1Þ, then Q̂Q is S0 blown up one point, because the

proper transform is linearly equivalent to s�H þ$�D0 on PðOlOðD0 þ GÞÞ !
S0. Since the canonical image of G is linearly equivalent to 3D0 þ 5G in
QuadðGÞFS1, we see that the composite of the inverse of Q̂Q ! QuadðGÞ
and Q̂Q ! S0 is nothing but the elementary transformation with center a point not
lying on the minimal section of QuadðGÞ. Since GD ¼ 4, the transformation
must be performed at a point on G. Note that �KY moves in a pencil.

We remark that when g ¼ 5 we cannot distinguish fibrations of types (I) and
(II) in the sense that Y has both pencils: Recall that QuadðWÞ is a quadric of
rank four in P4 and it has two rulings by planes. Then Y also has two induced
pencils one of which represents Y as a surface of type (I) and another represents
it as a surface of type (II).

We have shown the following:

Theorem 2.9. The fibration of type (II) is obtained as follows. Let ŴW be
a surface on PðEÞ linearly equivalent to 2H þ G with at most rational double
points, where EFOP1ðaÞlOP1ðbÞlOP1ðcÞ and ðg; a; b; cÞ ¼ ð5; 0; 1; 1Þ; ð6; 1; 1; 1Þ;
ð6; 0; 1; 2Þ. Let L be a pencil in j2H � ðg� 4ÞGjŴW whose general member is non-
singular. Then X is obtained by resolving singular points of ŴW as well as 12 base
points of L.

Let f be a fibration of type (II) with g ¼ 6.
(1) If ða; b; cÞ ¼ ð1; 1; 1Þ, then any non-singular non-hyperelliptic fibre of f is a

curve of bi-degree ð3; 4Þ on P1 � P1.
(2) If ða; b; cÞ ¼ ð0; 1; 2Þ, then any non-singular non-hyperelliptic fibre of f is a

plane quintic curve.

It should be noticed that the threefold scroll of type ð0; 1; 2Þ is a special-
ization of that of type ð1; 1; 1Þ, while trigonal curves cannot specialize to a quintic
curve. Therefore, the above two kinds of fibrations cannot deform to one
another.

Example 2.10. Here we give a down-to-earth construction of fibrations of
type (II). Let d be an integer with 0a da 3. We choose 9 distinct points
p1; . . . ; p9 on Sd and let t : Y ! Sd be the blowing-up with center p1; . . . ; p9.

We put ei ¼ t�1ðpiÞ, 1a ia 9, and L0 ¼ t�ð2D0 þ ðd þ 3ÞGÞ �
P9

i¼1 ei. Let
ðt0 : t1Þ be a system of homogeneous coordinates on P1.

We assume that the pi’s are in su‰ciently general position so that there
are no curves in j2D0 þ ðd þ 2ÞGj passing through all those points. Since
h0ðSd ; 2D0 þ ðd þ 3ÞGÞ ¼ 12, we may assume that h0ðY ;L0Þ ¼ 3 and that jL0j
is free from base points. Since L2

0 ¼ 3, we have a morphism f : Y ! P2 of
degree 3. Let z0, z1, z2 be a basis for H 0ðY ;L0Þ and consider a non-singular
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curve G defined by a quadratic form in the zi’s. Then G is of genus 6 and the
restriction of f to G is a morphism of degree 3 onto a conic curve. It follows
that G is a trigonal curve. We choose two such curves G0 and G1, and let L
be the pencil spanned by them. We blow Y up at G0 VG1 to get a fibration
f : X ! P1 induced by L. We have a morphism Y ! PðEÞ over P1 by putting
Zi ¼ zi ð0a ia 2Þ, where E ¼ OP1ð1Þl3. Hence this is a fibration of type (II)
with ða; b; cÞ ¼ ð1; 1; 1Þ.

We slightly modify the construction by putting p1; . . . ; p9 in a special
position. Let C1 A j2D0 þ ðd þ 3ÞGj and C2 A j2D0 þ ðd þ 2ÞGj be general mem-
bers. We assume that they meet at distinct 10 points and put C1 VC2 ¼
fp0; p1; . . . ; p9g. There exists a member C0 A j2D0 þ ðd þ 4ÞGj which passes
through p1; . . . ; p9 but not p0. Let t : Y ! Sd and L0 be as above. Then
jL0j has a transversal base point at p0, because it comes from the net spanned by
C2 þ G1, C2 þ G2 and C1, where G1, G2 are distinct fibres. Let zj be the section
defining the proper transform of Cj , 0a ja 2. Then we have a morphism
Y ! PðEÞ over P1 by putting Zi ¼ zi ð0a ia 2Þ, where E ¼ OP1 lOP1ð1Þl
OP1ð2Þ. Let G A j2L0j be a non-singular member which passes through p0
simply. More precisely, we let G be defined by the equation of the form
c0z0z2 þ c1z

2
1 þ c2z1z2 þ c3z

2
2 ¼ 0, where c0 and c1 are non-zero constants and c2,

c3 are the homogeneous forms of degree 1 and 2 in t0, t1, respectively. Elimi-
nating the base point of jL0j, we see that G is mapped birationally onto a plane
quintic curve. We choose two such curves G0, G1 and consider the pencil
spanned by them. Then the induced fibration is of type (II) with ða; b; cÞ ¼
ð0; 1; 2Þ.

3. Fibrations with ðKX þ FÞ2 ¼ 2g� 4

We assume that ðKX þ FÞ2 ¼ 2g� 4 and that the rational map F induced by
jKX þ F j is a generically finite map onto the image W HPg�1. By [3, Prop-
osition 1.1], jKX þ F j is free from base points. We further assume that F is
of degree 2 as a morphism onto W . Since ðKX þ F Þ2 ¼ 2g� 4, we see that
W HPg�1 is a surface of minimal degree g� 2.

In the course of the study, we freely use the results in [2] for double
coverings.

3.1. Branch loci and hyperelliptic case. Let ðY ;GÞ be the reduction of
ðX ;FÞ. Then f corresponds to a pencil Lf H jGj and F factors through
Y . We denote by j : Y ! W the induced morphism of degree 2. Recall
that jKY þ Gj induces the canonical map of G. Let C be the image of G.
It follows that C is a rational normal curve of degree g� 1 or it is a canonical
curve of degree 2g� 2. In either case, j�G is of degree 2g� 2 as an algebraic
cycle.

From the list of surfaces of minimal degree (see, e.g., [1]), we see that W is
either (i) P2 ðg ¼ 3Þ, (ii) the Veronese surface in P5 ðg ¼ 6Þ, or (iii) a rational
normal scroll ðgb 4Þ. If (iii) is the case, then there is an integer d with d þ g
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even and 0a da g� 2 such that W is the image of Sd by the morphism defined

by D0 þ
d þ g� 2

2
G

����
����. In particular, we have d ¼ g� 2 if and only if W is a

cone over the rational normal curve.

3.1.1. Assume that g ¼ 3 and W ¼ P2. We have KY þ G ¼ j�l, where l
denotes a line on P2. We denote by R and B the ramification divisor and
the branch locus of j, respectively. Then R ¼ KY � j�KP2 @KY þ 3ðKY þ GÞ
and B ¼ j�R@ j�KY þ 6l. We have ðj�KY Þl ¼ KYj

�l ¼ KY ðKY þ GÞ ¼ �2.
Hence j�KY ¼ �2l and B A j4lj. Let Y0 be the finite double covering of P2

with branch locus B constructed in the total space of ½2l�. Then the dualizing
sheaf of Y0 is induced from KP2 þ B=2 ¼ �l. By a well-known formula for
double coverings [2], we get o2

Y0
¼ 2 and wðOY0

Þ ¼ 1. Since wðOY Þ ¼ 1, we see
that B has at most simple triple points by considering the canonical resolution.
Then Y0 has at most rational double points as its singularities and Y is the
minimal resolution of Y0. In particular, we have KY ¼ �j�l. It follows that Y
is a weak del Pezzo surface of degree 2. Furthermore, since KY þ G ¼ j�l, we
have G A j�2KY j and j�G ¼ 4l. If G is hyperelliptic, then it should be obtained
as a double covering of a conic curve, because j�G ¼ 2ð2lÞ. Since the branch
locus is a quartic curve, we indeed have a hyperelliptic curve of genus 3 in this
way by the Hurwitz formula.

3.1.2. We assume that g ¼ 6 and W is the Veronese surface. We shall
show that this cannot happen. Indeed, let l be a line on P2. Since W is the
image of P2 under the morphism defined by j2lj, we have KY þ G ¼ 2j�l. It
follows that KYj

�l ¼ ð1=2ÞKY ðKY þ GÞ ¼ �1. This implies that KYj
�lþ

ðj�lÞ2 ¼ 1, which is impossible because it must be even. Therefore, W cannot
be the Veronese surface.

3.1.3. We assume that gb 4 and that W is a rational normal scroll.

Lemma 3.1. Suppose that W is a cone over a rational normal curve. Then
j : Y ! W can be lifted to a morphism h : Y ! Sg�2 of degree 2, except possibly
when g ¼ 4.

Proof. If W is a cone over a rational normal curve, then we get Sg�2

by blowing up the vertex w of W . We let D denote the divisorial part of
the inverse image on Y of w. Then ðKY þ GÞD ¼ 0. By pulling back to Y
the linear system of hyperplanes through w, we have a linear pencil jDj such
that KY þ G@Dþ ðg� 2ÞD. Since 2g� 4 ¼ ðKY þ GÞ2 ¼ ðg� 2ÞðKY þ GÞD,
we have ðKY þ GÞD ¼ 2. Then 2 ¼ ðKY þ GÞD ¼ DDþ ðg� 2ÞD2. Since
gb 4 and DDb 0, we get D2 ¼ 0 except when ðg;D2;DDÞ ¼ ð4; 1; 0Þ. In the
exceptional case, we have D ¼ 0 by Hodge’s index theorem. If D2 ¼ 0, then
D0 0 and we can lift j : Y ! W to h : Y ! Sg�2. r
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Assume for a moment that Y ! W can be lifted to Y ! Sg�2 even when
g ¼ 4. For simplicity, we use the symbol j to denote its lift h. Let R and B
denote the ramification divisor and the branch locus of j, respectively. Then
R ¼ KY � j�KSd

¼ KY þ j�ð2D0 þ ðd þ 2ÞGÞ and B ¼ 6D0 þ ðgþ 3d þ 2ÞG� j�G,
because KY þ G ¼ j�ðD0 þ ðd þ g� 2Þ=2GÞ. Since B is divisible by 2 in PicðSdÞ,
we can put j�G ¼ 2aD0 þ 2bG with non-negative integers a and b. Recall that
we have ðj�GÞðD0 þ ðd þ g� 2Þ=2GÞ ¼ 2g� 2. It follows 2b ¼ �aðg� 2� dÞþ
2g� 2 and we have B@ ð6� 2aÞD0 þ ð2d þ 2þ ða� 1Þðg� 2� dÞÞGÞ. We have
D0ðB� D0Þb 0 and D0j�Gb 0, because B does not have multiple components
and the support of j�G is irreducible. Then we have the following numerical
possibilities:

(i) a ¼ 0: d ¼ 0, g ¼ 4, B@ 6D0, j�G@ 6G
(ii) a ¼ 1: da 2, B@ 4D0 þ ð2d þ 2ÞG, j�G@ 2D0 þ ðgþ dÞG
(iii) a ¼ 2: da 1, B@ 2D0 þ ðgþ dÞG, j�G@ 4D0 þ ð2d þ 2ÞG
(iv) a ¼ 3: d ¼ 0, g ¼ 4, B@ 6G, j�G@ 6D0

The first and the last alternatives are impossible, because the support of j�G is
irreducible of degree g� 1 or 2g� 2. Note further that, in the second alter-
native, D0 is a component of B when d ¼ 2.

Lemma 3.2. In the above situation, f : X ! P1 is a hyperelliptic fibration
and there are the following two cases:

(1) B@ 2D0 þ ðgþ dÞG, j�G@ 2ð2D0 þ ðd þ 1ÞGÞ (gþ d is even, d ¼ 0; 1)

(2) B@ 4D0 þ ð2d þ 2ÞG, j�G@ 2 D0 þ
gþ d

2
G

� �
(gþ d is even, d ¼ 0; 1; 2)

Proof. Assume that G is non-hyperelliptic. Then j�G is a canonical curve
of genus g. If (ii) is the case, then jGj gives j�G a g12 and j�G is a hyperelliptic
curve, which is inadequate. If (iii) is the case, then d ¼ 0 is inadequate for the
same reasoning by considering the ruling jD0j. Therefore, we have (ii) with
d ¼ 1, that is, W ¼ S1 and j�G@ 4D0 þ 4G. But then j�G is isomorphic to a
plane quartic curve, which is also inadequate because gb 4. Hence G is a
hyperelliptic curve. r

In particular, we see that W cannot be a cone over a rational normal curve
when gb 5, since da 2 < g� 2. We let Y0 be the double covering of Sd with
branch locus B and Y � its canonical resolution. If (1) above is the case, then we
have KSd

þ B=2@�D0 þ ððgþ dÞ=2� 2ÞG. It follows that wðOY0
Þ ¼ 1. Hence

B has at most simple triple points and Y � ¼ Y . Then K 2
Y ¼ o2

Y0
¼ �2gþ 8. G

is obtained as a double covering of a rational curve linearly equivalent to
2D0 þ ðd þ 1ÞG. Since Bð2D0 þ ðd þ 1ÞGÞ ¼ 2gþ 2, the curve thus obtained is in
fact a hyperelliptic curve of genus g. If (2) above is the case, then we have
KSd

þ B=2@�G and wðOY0
Þ ¼ 1. Hence B has at most simple triple points and

Y � ¼ Y . We have K 2
Y ¼ o2

Y0
¼ 0 which implies that Y is a rational elliptic

surface. Furthermore, G is obtained as a double covering of a rational curve
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linearly equivalent to D0 þ ðgþ dÞ=2G. Since BðD0 þ ðgþ dÞ=2GÞ ¼ 2gþ 2, the
curve thus obtained is in fact a hyperelliptic curve of genus g.

We should be more careful when d ¼ 2 in (2). Then D0 is a component of
B and we write B0 ¼ B� D0. We remark that B0 and D0 are disjoint. Then the
ð�2Þ-curve D0 produces a ð�1Þ-curve E on Y . In fact, we have j�D0 ¼ 2E.
Since D0ðD0 þ ðg=2þ 1ÞGÞ ¼ g=2� 1, we get GE ¼ g=2� 1. When g ¼ 4, we
get ðKY þ GÞE ¼ 0, which is inadequate because ðY ;GÞ is the reduction of
ðX ;FÞ. This shows that Y ! W cannot be lifted to a morphism Y ! S2 when
g ¼ 4 and W is a quadric cone.

Now, we study the case that g ¼ 4 and W is a quadric cone. We use the
same notation as in the proof of Lemma 3.1. Recall that we have D2 ¼ 1. We
let r : ŶY ! Y be the blowing up at the base point of jDj. We put D̂D ¼ r�D� E,
where E denotes the exceptional ð�1Þ-curve. Then r�ðKY þ GÞ ¼ 2E þ 2D̂D and
2E is the inverse image of the vertex of W . We can lift the induced morphism

ŶY ! W to a morphism h : ŶY ! S2 such that 2E ¼ h�D0, D̂D ¼ h�G. Let R̂R and
B denote the ramification divisor and the branch locus of h, respectively. Then
R̂R ¼ KŶY � h�KS2

and B@ h�ðr�KY þ EÞ þ 2ð2D0 þ 4GÞ. Since r�ðKY þ GÞ ¼
h�ðD0 þ 2GÞ, we have B@ 6D0 þ 12G� h�r

�G þ h�E. We have Eh�ðD0 þ 2GÞ ¼
0 and ED̂D ¼ Eh�G ¼ 1. It follows that h�E ¼ D0 and B@ 7D0 þ 12G� h�r

�G.
We put h�r

�G@ aD0 þ bG. Since h�r
�GðD0 þ 2GÞ ¼ 2g� 2 ¼ 6, we have b ¼ 6.

Then B@ ð7� aÞD0 þ 6G. Since it must be divided by 2 in the Picard group, we
see that a is odd. Let ĜG be the proper transform of G by r. Since G is non-

singular, we have either ĜG@ r�G or ĜG@ r�G � E. Then we get a ¼ 3, since the
support of h�ĜG is irreducible and D0ðB� D0Þb 0. Therefore, we have either

h�ĜG@ 3D0 þ 6G or h�ĜG@ 2D0 þ 6G according as ĜG@ r�G or not.

Lemma 3.3. If W is a quadric cone, then B@ 4D0 þ 6G and Y is a weak del
Pezzo surface of degree one and G A j�3KY j. Furthermore, there are the following
two cases:

(1) G is hyperelliptic and h�ĜG@ 2D0 þ 6G.
(2) G is non-hyperelliptic and h�ĜG@ 3D0 þ 6G.

Proof. We can show that B has at most triple points and that the canonical
resolution Y � is isomorphic to ŶY as before. We have the decomposition
B ¼ D0 þ B0 with D0 and B0 being disjoint. Then B is non-singular in a
neighbourhood of D0, and D0 produces a ð�1Þ-curve E on ŶY . By contracting
E, we get Y . We have KŶY ¼ �h�G ¼ �D̂D. It follows that r�KY þ E þ D̂D@ 0,
that is, r�ðKY þDÞ@ 0. Hence KY @�D and Y is a weak del Pezzo surface of
degree 1. Since KY þ G@ 2D, we have G A j�3KY j. The rest may be clear.

r

If G is hyperelliptic, then ĜG is a double covering of a member of jD0 þ 3Gj.
We have BðD0 þ 3GÞ ¼ 10 ¼ 2� 4þ 2. Hence we surely get a hyperelliptic
curve of genus 4 in this way. Furthermore, we have D0ðD0 þ 3GÞ ¼ 1. Hence
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ĜG meets E normally at a point and it is blown down to a non-singular
hyperelliptic curve of genus 4 on Y . We remark that the reduction map
m : X ! Y factors through ŶY .

In sum, we have shown the following:

Theorem 3.4. Assume that f : X ! P1 is a hyperelliptic fibration with
ðKX þ F Þ2 ¼ 2g� 4, gb 3. Then it is obtained from one of the following datum.

(1) A double covering of P2 with branch locus a quartic curve and the pull-
back of a pencil of conic curves ðg ¼ 3Þ.

(2) A double covering of Sd with branch locus linearly equivalent to
2D0 þ ðgþ dÞG, and the pull-back of a pencil of curves in j2D0 þ ðd þ 1ÞGj,
where d ¼ 0; 1 and gþ d is even ðgb 4Þ.

(3) A double covering of Sd with branch locus linearly equivalent to

4D0 þ ð2d þ 2ÞG, and the pull-back of a pencil of curves in D0 þ
gþ d

2
G

����
����, where

d ¼ 0; 1; 2 and gþ d is even ðgb 4Þ.
In all cases, the branch locus has at most simple triple points as its singularity.

3.2. Non-hyperelliptic case. As we have already seen, if f : X ! P1 is a
non-hyperelliptic fibration, then g ¼ 3 or 4. We shall study these cases sepa-
rately.

3.2.1. g ¼ 3. The branch locus B is a quartic curve with at most simple
triple points, and j�G is also a quartic curve which is non-singular for a generic
choice of G A Lf . Put C ¼ jðGÞ and assume that it is non-singular. We also
assume that C0B.

Claim 3.5. C meets B at non-singular points of B.

Proof. Recall that Y0 has at most rational double points. If e is a ð�2Þ-
curve on Y lying over a rational double points of Y0, then we have ðKY þ GÞe ¼
0. Since KYe ¼ 0, we get Ge ¼ 0. This implies that G does not meet any ð�2Þ-
curves coming from rational double points of Y0. If C passes through a singular
point of B, then, in the course of the canonical resolution, the proper transform
of C has an intersection with an exceptional curve over that point. Since such
an exceptional curve produces a ð�2Þ-curve on Y , from what we have just seen,
we conclude that C does not pass through any singular points of B. r

Claim 3.6. C contacts B at every intersection point.

Proof. The previous claim shows that j : Y ! P2 is finite over a neigh-
bourhood of C. Since C0B, j�C contains G as a component of multiplicity
one. If C meets B normally at a point, then j�C is irreducible and it would
follow G ¼ j�C. But this is impossible, because we have G2 ¼ 8 and ðj�CÞ2 ¼
2C2 ¼ 32. r
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Hence C contacts B at least to the second order at any points of C VB. We
also remark that the order of contact must be even to have a non-singular curve
G over C. Then we have j�C ¼ G þ G 0 with another curve G 0 isomorphic to G.
Since C@ 4l and G@�2KY ¼ 2j�l, we get G 0 @G. Let i be the involution on
Y associated to the double covering Y ! P2. Then i�Lf is also a pencil of non-
hyperelliptic curves and G 0 A i�Lf .

Claim 3.7. Lf 0 i�Lf .

Proof. Recall that j is induced by the relative canonical map of f , which is
a birational morphism onto the image in our case, followed by the projection.
Assume that G 0 A Lf . Then the covering transformation group hii of j : Y !
P2 acts on Lf FP1 as an automorphism group of order 2. There are two
members G1 and G2 of Lf fixed by this action. Then G1 þ G2 is a part of the
ramification divisor. Since R ¼ 2j�l, this is impossible. Hence i�Lf 0Lf .r

Claim 3.8. R A Lf .

Proof. Recall that R@ 2j�l. Let x A H 0ðY ; 2½j�l�Þ be the equation of R.
We may assume that i�x ¼ �x. We have the eigen space decomposition with
respect to the action of hii:

H 0ðY ; 2j�lÞFH 0ðP2; 2lÞlH 0ðP2;OP2Þ
in which x generates the last summand, the ð�1Þ-eigen space. The module of Lf

is a 2-dimensional linear subspace of H 0ðY ; 2j�lÞ. It follows that it would be
spanned by invariant sections if R were not a member of Lf . This is impossible,
because j�C ¼ G þ G 0 and G 0 ¼ i�G. Therefore, R A Lf . r

We have shown that the module of Lf is generated by x and a section h with
i�h ¼ h. Namely, Lf is spanned by R and the pull-back to Y of a (possibly
singular) conic curve. Note that B and the conic curve cannot have any
common components. Hence

Theorem 3.9. If f : X ! P1 is a non-hyperelliptic fibration of genus 3, then
it is obtained from a pencil (without fixed components) of quartic curves on P2

spanned by a reduced but not necessarily irreducible quartic curve B and the double
of a conic curve D.

The double conic produces on X a fibre of hyperelliptic type. This can be
seen as follows. We already know that Y0 is a hypersurface of degree 4 in the
weighted projective space Pð1; 1; 1; 2Þ defined by

v2 ¼ a4ðu0; u1; u2Þ;
where ðu0; u1; u2; vÞ is a system of coordinates with deg ui ¼ 1, deg v ¼ 2. Since
G A j�2KY j, it is given by cutting Y0 with a hypersurface defined by
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cvþ b2ðu0; u1; u2Þ ¼ 0, where c is a constant and b2 denotes a quadratic form in
u0, u1, u2. It follows that non-hyperelliptic Lf is given by the family of curves in
Pð1; 1; 1; 2Þ:

v2 ¼ a4ðu0; u1; u2Þ
l0v ¼ l1b2ðu0; u1; u2Þ;

�
ððl0 : l1Þ A P1Þ

Therefore, the member corresponding to ð0 : 1Þ is of hyperelliptic type.
Similarly, if we replace the second equation by l0b2ðu0; u1; u2Þ ¼

l1b
0
2ðu0; u1; u2Þ, then we get a hyperelliptic Lf . Such a hyperelliptic pencil is a

specialization of a non-hyperelliptic one.

3.2.2. g ¼ 4. As usual, we let G A Lf be a general member and put
hðĜGÞ ¼ C. Since B is non-singular in a neighbourhood of D0, every ð�2Þ-curve
contracted by h is disjoint from E. Hence we can argue as in the previous case
to see that C does not pass through any singular points of B and it contacts B at
least to the second order at every point of C VB. Then we have h�C ¼ ĜG þ ĜG 0

with another non-singular curve ĜG 0 isomorphic to ĜG. Since C@ 3ðD0 þ 2GÞ and
2E ¼ h�D0, we have h�C@ 6E þ 6D̂D. Recall that ĜG ¼ r�G@ 3r�D@ 3E þ 3D̂D.
It follows that ĜG 0 @ ĜG. If Lf is invariant under the action of Z2, then similarly
as in the case of g ¼ 3, we can find two members G1, G2 of Lf such that
r�ðG1 þ G2Þ is a part of the ramification divisor. Since R̂R@ 4E þ 3D̂D, this is
impossible. Note that R̂R is of the form E þ R0, where 2R0 ¼ h�B0. We have
the following decomposition of H 0ðŶY ; h�ð2D0 þ 3GÞÞ into the ðG1Þ-eigen spaces
under the action of the covering transformation group of h:

H 0ðŶY ; h�ð2D0 þ 3GÞÞFH 0ðS2; 2D0 þ 3GÞlH 0ðS2;OS2
Þ

We remark that the ð�1Þ-eigen space is generated by the equation of R̂R and that
we have j2D0 þ 3Gj ¼ D0 þ jD0 þ 3Gj. Then it can be shown that r�Lf is
spanned by R0 and E plus a curve obtained by the pull-back of a member
of jD0 þ 3Gj similarly as in the previous case. This yields the following:

Theorem 3.10. If f : X ! P1 is a non-hyperelliptic fibration of genus 4, then
it is obtained from a pencil of curves on S2 spanned by a reduced irreducible curve
B0 A j3D0 þ 6Gj and D0 þ 2D, where D A jD0 þ 3Gj.

It is possible to write down the equation defining Lf . Let fu0; u1g be a
basis for H 0ðY ;�KY ÞFC2. Two curves u0 ¼ 0 and u1 ¼ 0 meet at the base
point P of jDj. We have for mb 2

h0ðY ;�mKY Þ ¼
1

2
mðmþ 1Þ þ 1

In particular, H 0ðY ;�2KY ÞFC4 has an element v linearly independent from the
three products uiuj. Since �2KY @KY þ G and BsjKY þ Gj ¼ j, v does not
vanish at P. Then ðu0; u1; vÞ defines the double covering Y ! W ¼ Pð1; 1; 2Þ.
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We have h0ðY ;�3KY Þ ¼ 7. We can find 6 elements uiujuk, uiv in H 0ðY ;�3KY Þ.
Clearly they are linearly independent. Hence there is a new element w A
H 0ðY ;�3KY Þ which does not vanish at P. It is not so hard to see that the
4 elements u0, u1, v, w generate the anti-canonical ring RðY ;�KY Þ. Since
w2 A H 0ðY ;�6KY Þ, there is a relation of the form

w2 ¼ a0v
3 þ a4ðuÞvþ a6ðuÞ; 00 a0 A C;

that is, the anti-canonical model is a hypersurface of degree 6 in Pð1; 1; 2; 3Þ.
Since G A j�3KY j is given by cwþ b1ðuÞvþ b3ðuÞ ¼ 0, this shows that non-
hyperelliptic Lf is the family of curves defined by

w2 ¼ a0v
3 þ a4ðu0; u1Þvþ a6ðu0; u1Þ;

l0w ¼ l1ðb1ðu0; u1Þvþ b3ðu0; u1ÞÞ;

�
ððl0 : l1Þ A P1Þ

in Pð1; 1; 2; 3Þ. Again, the member corresponding to ð0 : 1Þ is of hyperelliptic
type. When Lf is hyperelliptic, the second equation should be replaced by a
cubic not involving w.
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