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MIRROR SYMMETRY, KOBAYASHI’'S DUALITY,
AND SAITO’S DUALITY

WOLFGANG EBELING*

Abstract

M. Kobayashi introduced a notion of duality of weight systems. We tone this
notion slightly down to a notion called coupling. We show that coupling induces a
relation between the reduced zeta functions of the monodromy operators of the cor-
responding singularities generalizing an observation of K. Saito concerning Arnold’s
strange duality. We show that the weight systems of the mirror symmetric pairs of M.
Reid’s list of 95 families of Gorenstein K3 surfaces in weighted projective 3-spaces are
strongly coupled. This includes Arnold’s strange duality where the corresponding
weight systems are strongly dual in Kobayashi’s original sense. We show that the same
is true for the extension of Arnold’s strange duality found by the author and C. T. C.
Wall.

Introduction

The mirror symmetry of Calabi-Yau threefolds has attracted the attention of
many physicists and mathematicians. One- and two-dimensional Calabi-Yau
varieties are elliptic curves and K3 surfaces respectively. It is well-known that
there exist 3 families of weighted projective elliptic plane curves. The cones over
these curves are the simple-elliptic singularities of type Eg, E7, and Eg (see below).
They are self-dual with respect to mirror symmetry.

M. Reid classified and listed all families of K3 weighted projective
hypersurfaces with Gorenstein singularities (unpublished). It turned out that
there are 95 such families. The cones over these surfaces are called simple K3
hypersurface singularities. These singularities were classified and thus Reid’s list
was rediscovered by T. Yonemura [Yo]. These surfaces include compactifica-
tions of the 14 exceptional unimodal hypersurface singularities of V. I. Arnold.
It is well-known that the mirror symmetry between the corresponding families of
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K3 weighted projective hypersurfaces corresponds to Arnold’s strange duality (see
e.g. [D3]). S.-M. Belcastro [Be] determined for which of the 95 families the
mirror symmetric family is again in Reid’s list.

V. V. Batyrev [Ba] showed that the mirror symmetry of Calabi-Yau
hypersurfaces in toric varieties is related to the polar duality between their
Newton polytopes. M. Kobayashi [Ko] discovered that Arnold’s strange duality
corresponds to a duality of weight systems and this is related to Batyrev’s
result. K. Saito [S1, S2] observed that Arnold’s strange duality corresponds to a
duality between the characteristic polynomials of the monodromy operators of
the corresponding dual singularities. In [Yu, Lect. 3, Problem 8.5] it is asked
whether there are any possible relations among all these dualities and mirror
symmetry. Here we give a partial answer to this question extending [E3] where
it was shown that Saito’s duality can be derived from polar duality.

We consider weight systems (ay,...,a,;h) with

0<ay:=h-— Za,-, aolh.
i=0

Let f(x1,...,x,) be polynomial of weighted degree 4. Then the hypersurface X
in the weighted projective space given by

X f(x, X)) = 0

is a Calabi-Yau hypersurface (if it is quasismooth). We introduce a notion of
coupling of such weight systems which tones down Kobayashi’s notion of duality.
We relate this to polar duality in the same way as in [E3]. The basic notion is
the notion of a weighted magic square C. The partner weight system corre-
sponds to the transpose of this matrix. The natural C*-action on C” induces a
monodromy transformation on the homology of the fibre

F={(x1,...,x0) €C"| f(x1,...,%,) = 1}.

We consider the reduced zeta function {c(7) of this monodromy operator. We
indicate how this rational function can be computed from the matrix C. We
show that the function {¢.(¢) associated to the transpose matrix C’ is in a sense
dual to {c(¢) which generalizes Saito’s duality and coincides with it in the case
when n=3 and ay=by = 1.

Then we investigate the coupling of weight systems for the weight systems of
Belcastro’s list of mirror symmetric pairs inside Yonemura’s list of 95 weight
systems. It turns out that for any mirror symmetric pair the corresponding
weight systems are (strongly) coupled. The cases of Arnold’s strange duality are
exactly those with @y = by = 1 where the Saito duality holds in its strong form.
Here the corresponding weight systems are strongly dual in Kobayashi’s original
sense. The 31 cases with ap =1 and f(x;,x2,x3) =0 having an isolated sin-
gularity at the origin are compactifications of the 31 Fuchsian singularities
classified by I. Dolgachev [D1], I. G. Sherbak [Sh], and Ph. Wagreich [Wag].
Many, but not all, of them have mirror symmetric partners inside Yonemura’s
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list. In [E4] we asked whether the mirror symmetric families to the Fuchsian
singularities not involved in Arnold’s strange duality and its extension by the
author and C. T. C. Wall are realized by singularities. Here we find for 7 of
these Fuchsian singularities singularities which are related to these singularities in
a way explained in Section 3.

Finally we consider the extension of Arnold’s strange duality found by the
author and C. T. C. Wall. This again corresponds to mirror symmetry. Here
also weighted complete intersections in weighted projective 4-spaces are involved.
We associate weight systems to these varieties and we show that the mirror
symmetric pairs have (strongly) dual weight systems.

The author is grateful to N. Yui for drawing his attention to Belcastro’s
paper. He would like to thank Ch. Okonek for useful discussions and the referce
for helpful suggestions.

1. Duality of weight systems

An (n+ 1)-tuple of positive integers W, = (ai,...,ay;h) is called a weight
system. The integers a; are called the weights of W, and /4 is called the degree of
W,.

Two weight systems W = (ai,...,a,;h) and W' = (ai,...,a,;h') are
equivalent if there exists a permutation ¢ € S, and a rational number 4 such that
Jigy =aj for i=1,...,n and Jh =h'. The weight system is called reduced if

ged(ay,...,a,) = 1.
Each equivalence class contains a unique reduced weight system satisfying
ap << ay,.

Let

n
ay:=h— g a;.
i=1

In the sequel we shall assume that our weight system is reduced, satisfies
a; <--- <a, and that ay # 0.

If ap > 0 and ao|h then we shall call the weight system a Calabi-Yau weight
system. The reason for this is the following: Let P(ap,a) = P(ao,...,a,) be

the weighted complex projective space of weight (ay,...,a,), i.e. the projective
variety Proj Clxo, ..., x,] where the degree of x; is a;. Denote by (xp:---: xy)
the natural homogeneous coordinates of P(ap,a). Let f(xj,...,x,) be an

equation of weighted degree s and define
f(xo,xl,...,xn) = xé’/"o + (X155 Xn)-

Consider the hypersurface X := £ '(0) in P(ap,a). Let C"*! be the affine
(n+ 1)-space with coordinates (xy,...,x,). Assume that the hypersurface X is
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quasismooth, i.e. the cone Cy = {f = 0} over X in C"*! is smooth outside of the
origin. By [D2, Theorem 3.3.4] the dualizing sheaf wj satisfies wy = O5.
Therefore X is a (possibly singular) Calabi-Yau variety.

We recall some definitions of [Ko]. Let W, = (ai,...,a,;h) and
Wy = (b1,...,bs; k) be two weight systems.

DrerNiTION. Let C be an n x n matrix with entries in the non-negative
integers. The matrix C is called a weighted magic square of weight (W,, Wy) if

Clay,...,a,) = (h,...,h)" and
(bryen o b)C = (K, k).

Let C = (c;7) be a weighted magic square of weight (W,, Wy). Let B be the
nxn matrix (¢; —1). Let 4 be the inverse matrix of B. By [Ko, Lemma
2.3.5(1)], (det C)/h = (det B)/ap and (det C)/k = (det B)/by and both numbers
are integers.

LemMa 1. We have

Proof. By definition, BA(1,...,1)" = (1,...,1)". We have

a cn—1 - c—1 ai
B =
a cn—1 - em—1 an
h=32 ai ao
h=32 ai 40
This implies the first claim. The second claim follows in the same way. O

It follows from Lemma 1 that the weight systems W, and W)} can be
retrieved from the matrix C.

DeriNITION. A weighted magic square C of weight (W,, W,) is called
primitive if |det C| =h =k.

The weight systems W, and W, are called dual if there exists a primitive
weighted magic square of weight (W,, ).
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Two dual weight systems are called strongly dual if any row and any column
of C contains at least one zero.

If two weight systems W, and W, are dual, then it follows that k = 4 and
by = ap. We tone down this definition to include the case when ag # by.

DeriNITION. A weighted magic square C of weight (W,, W)) is called
almost primitive if |det C| = hby = kay.

The weight systems W, and W} are called coupled if there exists an almost
primitive weighted magic square of weight (W,, ).

Two coupled weight systems are called strongly coupled if any row and any
column of C contains at least one zero.

Let C = (c;) be a weighted magic square of weight (W,, W}). We now
assume that ap > 0. We show that the coupling of weight systems is related to
the polar duality of associated Newton polytopes (cf. [Ko, E3]).

DErFINITION.  The (n — 1)-simplex I'(a) which is the convex hull of the row
vectors of the matrix C in R” is called a Newton diagram of the weight system
Wa.

The (n—1)-simplex A(a) which is the convex hull of the vectors
(h/ay,0,...,0),...,(0,...,0,/h/a,) in R” is called the full Newton diagram of the
weight system W7,.

Let A(a) be the n-simplex which is obtained from A(a) by taking the

convex hull with the origin in R” and translating it by the vector (—1,...,—-1),
ie. A(a) is the convex hull of the vectors (—1+h/a;,—1,...,—1),...,
(—1,...,—1, =1+ h/a,),(—1,...,—1).

DreriNITION. Let M = R”. Let {, ) denote the Euclidean scalar product of
R". The polar dual of M is the following subset of R”:

M*:={yeR"|{x,y>>—1 for all xe M}.

LeMMA 2. The polar dual A(a)* is the n-simplex with vertices
vy :=(1,0,...,0),...,0, :=(0,...,0,1), vo := (—ai/ag,...,—an/aop).

Proof [Ko, Lemma 3.2]. O

ProPOSITION 1. Let V be the convex hull of the vectors vy — vy, ..., v, — vy in
R".  Then, in the coordinate system given by taking the rows of A as basis vectors,
V is the convex hull of the columns of C, hence a Newton diagram of the partner

weight system W,

Proof. By Lemma 2, the claim is equivalent to the following statement:
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a ai a

14+ — — c. —

do do do

@ . @

AC = ao ao ao
@ dn 149
do ao ao

If E denotes the n x n identity matrix and 1 the matrix with all entries equal to 1,
then we have

AC=A(B+1)=AB+ A1 = E + A1.

Hence the claim follows from Lemma 1. O

2. Saito’s duality

Let C = (c¢;) be a weighted magic square of weight (W,, W},). We shall
associate a rational function {-(f) to the matrix C.

We consider the hypersurface X in C" defined by the equation
f(x1,...,x,) =0, where

f(x1,.0,x) :Xf’“x;‘z.

Cnl -Cn2

XXX
Let
Fi={(xt ) € €| f(xr, o) = 1)

be the Milnor fibre of f: (C",0) — (C,0).
If W, is a Calabi-Yau weight system, then there is the following relation
with the hypersurface X in P(ag,a) defined by the equation

XU f(xr, . x) = 0.

Let V' be the hypersurface in P(a):=P(ay,...,a,) given by the equation
f(x1,...,x,) =0. The mapping

nao:X_)P(a)a (X(),Xl,...,xn>’—>(Xl,...,xn>,

is a covering of degree /i/ay which is branched along the hypersurface V' and
possibly along the singularities of P(a). Let Xy:= X \n‘jol(V). Let Y be the
hypersurface in P(1,a) given by the equation X0+ f(x1,...,x,) =0. Then the
mapping 7 : ¥ — P(a) is a covering of degree /2 branched along the hypersurface
V and possibly along the singularities of P(a). Then Y := Y\n;!(V) can be
identified with the Milnor fibre F* (cf. [DD]). Therefore the induced mapping
F=7Yy)— X, is a (possibly branched) covering of degree ay.
We have a C*-action on C" defined by

Ak (X1, xn) = (A", .., A%xy,), AeC.
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Then the C*-action induces a monodromy transformation 6 : F — F defined by
x— ey x (xeF).

Let 0, : H,(F) — H.(F) be the induced operator on the reduced homology of
F. Tt is the classical monodromy operator of the singularity f(xi,...,x,) =0.
Let

) = [[{detld — - 0] )}

p=0

be the reduced zeta function of . If X has an isolated singularity at the origin,
the reduced zeta function is related to the characteristic polynomial ¢-(¢) of the
monodromy as follows:

de(t) = (Ee(n)"™

The reduced zeta function {(f) can be computed as follows (cf. [EG2]).

For J = Iy ={l1,...,n} we denote by |J| the number of elements of J. For
J#0, let Ty:={xeC"|x;=0 for i¢J,x; #0 for ie J} be the (“coordinate”)
complex torus of dimension |J|, and let a; := ged(a;, j € J). The integer ay is the
order of the isotropy group of the C*-action on the torus 7;. Let X, := XNTy,
F;:=FNT;. The operator 8 maps F; to itself; let 8, be the restriction of 6 to
F;. We have

Le()=(1—1)" H 0

Jl[=1

where é;c, 7(¢) is the reduced zeta function of 6;.

Let Z; :=T;/C", Y;:=X;/C". Note that if a; does not divide /2 then
Z;\Y; is empty. In this case, {c ,(f) =1. Suppose ay|h. If we restrict the
natural projection T,\X; — Z;\Y; to F; then we get an (//ay)-fold covering
F; — Z;\Y;. The transformation 6; is a covering transformation of it and acts
as a cyclic permutation of the /i/a; points of a fibre. Therefore

el = (1 = oy @)

where (V) denotes the Euler characteristic of the topological space V.

The Euler characteristic y(Z;\Y;) can be computed as follows. A subset
J < Iy is called special if there exists a subset I < Iy with |I| =|J| such that
c¢;j=0foriel and j¢J. Note that in particular J =@ and J = I are special.
For a special subset J # @ denote by Cj; the matrix (Cy),e 7. Define Cy := (1).
First assume that |J| = 1. Then Z; = pt. The set Y, is empty if and only

if J is special. In this case,
Lou(t) = (1= "),

Now suppose that |J| >2. Then yx(Z;)=0 and x(Z,\Y;) =—x(Y,).
Then Y; # 0 if and only if J is special or J = Ip. In this case, by [BKKh, Kou]
(see also [Va, (7.1) Theorem]) we have



326 WOLFGANG EBELING

ay|det C
A1) = (-1 e ol

In particular, if J = I, then J is special, a; = 1 (since W, is reduced), C;; = C,
and

2y = (-1l

For a subset J < [ denote by J' the complementary set J' := I)\J. Note
that if J is special for C then J’ is special for C’. For J #0 let by :=
ged(bj, jeJ). Define ay:=h and by := k.

Summarizing we have proved the following theorem.

THEOREM 1. The reduced zeta functions {c(1) and Cci(f) can be computed
from the matrix C as follows:

Fetg =TT (1 - oy s

J special

Ceilt)= T (1= ko) bkt
J special

Remark 1. Let X have an isolated singularity at the origin. Then its
Milnor number yx = rank H,_;(F) is equal to

p=(=1"" 3" (=) det Cy.

J special
The dimension g, of the radical of H,_;(F) is equal to

po= (-1t 3 (e @Gl

J special

In addition, let » =3 and let (a1, az,a3;/h) be a Calabi-Yau weight system. By
[D2, Theorem 3.3.4] the hypersurface X in P(ap,a) is a simply-connected
projective surface with dualizing sheaf wy; = 03. Resolving its singularities
(which are rational double points) we get a non-singular K3 surface with Picard
number

p=22— (1= o)
If 4y =0, then by [E2, Proposition 1] the discriminant of the Picard lattice, i.e.

the determinant of a matrix of the intersection form on the Picard group, is equal
to

17 1 D agldet Col/
d=(-1)""(c(l) = (-1 H (_) .
J special

aj
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Following K. Saito [S1, S2], for a rational function
v =Tl -0 wez,
/I
we define the Saito dual (rational) function *(¢) by
p(0) = [T —emyom.
m|h
In particular, if 3, =0, then one has

v =T1(3) = I = v

/I /h

COROLLARY 1. Let C be primitive, ay =by =1, and n=3. Then
Coilt) = Ee(0).

Proof. By the assumptions, we have h =k, ap = by =1, and I = {1,2,3}.
We show that for any special subset J < [y we have
_h
B |det C[J| ’
This is clear if [J|=1, J=0 or J = I.

Therefore let |J| =2. For simplicity we assume that J = {l,2}. By
Cramer’s rule we have

aj

h h
ap = (e — clz)m, a = (c11 — CZl)m-
This shows that /1/|det Cj;| divides a; and a, and hence a;. Let
h
dr=¢ |det C]J|

for some integer ¢ > 1. Then e divides ¢y — ¢pp and ¢j; — ¢p;1. If we subtract
the second row of the matrix B from the first row then we obtain the matrix
1] —C1 €12 — (2 0
C1 — 1 Cyy — 1 -1
C3171 C3271 C3371
Expanding the determinant of this matrix with respect to the first row we see that
e divides the determinant of this matrix which is equal to det B=1. This

implies that e =1 and hence the claim.
Analogously, one can show that for J special

k

by =——F7——.
! |d€t C]’j'|
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Hence it follows that for any special subset J < [

k h
b_J/_ |det C[IJ/| —m—@].
Moreover,
(—DVI# by|det Cry| _ (CI)H = () ay|det Cy|
k h
Hence the claim follows from Theorem 1. O

3. Simple K3 hypersurface singularities

First consider the case n=2. Then the (Calabi-Yau) weight systems
corresponding to quasismooth plane curves are indicated in Table 1. They are
self-dual. The corresponding weighted magic squares are given in that table.
They are indicated as follows:

C114,€12 €21 1,€22

XY, XTY

The corresponding functions f(x, y) = x“y“ 4+ x?y2 have isolated singu-
larities at the origin. The characteristic polynomial ¢(¢) of the monodromy
operator satisfies ¢ (1) = (¢e())7" (cf. [EGI]).

Table 1. Weighted elliptic plane curves

Name | ag,ay,az;h C Dual
Ex 1,2,3;6 X3, p? Ey
E; 1,1,2;4 yixly E;
Eg L1, 1;3 x2y, xp? Eg

Now consider the case n=3. Then the (Calabi-Yau) weight systems
corresponding to quasismooth surfaces have been classified by Reid (unpublished)
and Yonemura [Yo]. The cones over these surfaces are called simple K3
hypersurface singularities. Belcastro [Be] determined the mirror symmetric pairs
inside that list.

THEOREM 2. Let W, and Wy be the weight systems of a mirror symmetric
pair of simple K3 hypersurface singularities. Then W, and W), are strongly
coupled weight systems.

For the proof of Theorem 2 we indicate in each case an almost primitive
weighted magic square C such that each row and each column of C contains at
least one zero. This is done in Table 2 for the weight systems with a; = b; =1
for some i,je{0,1} and in Table 3 for the remaining cases. We use the
indexing of [Yo] for the weight systems. We list all the weight systems such that
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the mirror family is again in Yonemura’s list. In the first column we indicate the
index of the weight system. Let

€11 ,€12 € €21, € €31 ..C3 _C
f(x,y,2) = xMy 2z 4 xRz 4 xO1y2763,

If f(x,y,z) =0 defines an isolated hypersurface singularity in Arnold’s [Ar] or
Wall’s [Wal] list of singularities, we give the name of the singularity in the second
column. In the case when ap =1, f(x,y,z) =0 defines a Fuchsian singularity
(for the definition see [E4]). In the cases where there is a name missing we
indicate the signature {g;oy,...,o} of these singularities (here ‘nh’ means that
the central curve is non-hyperelliptic). In the third column we list the weight
system. In the 4th column we indicate the weighted magic square C in the
following way:

¢
X 11

yclzz(flz x£‘2|y<fzzz€23 x¢’31y0322033_
In the last column we indicate the index of the partner weight system.

There are examples of strongly dual weight systems where the corresponding
families of K3 surfaces are not mirror symmetric, e.g. (cf. [Ko])

8

,6;12 2z, x3y% 2% | 24
24 512 2

)
, XY, Xz 8

The weight systems correspond to the singularities W ¢ and O, o respectively, but
the equations f(x, y,z) =0 are not equations of these singularities, they even
have non-isolated singularities at the origin.

By inspection of the Tables 2 and 3, we see that the cases ay = by =1 are
exactly the cases of Arnold’s strange duality. In these cases the matrices C are
primitive and hence the corresponding weight systems are strongly dual. In all
other cases the weight systems are not strongly dual but only strongly coupled.

The remaining singularities with @y = 1 are Fuchsian singularities of sig-
nature {g;o,...,0} with g > 0. They are coupled to weight systems which
again correspond to isolated singularities. We list these singularities together
with their partners in Table 4. Here p denotes the Picard number of the K3
surface corresponding to the weight system on the left-hand side as it can be
found in the table of [Be] and d denotes the discriminant of the Picard lattice.
The numbers p*, 5, and d* are the Milnor number, the dimension of the radical,
and the discriminant of the Milnor lattice respectively of the singularity on the
right-hand side. For the definition of v* see below. The singularities Q;7 and
S17 are bimodal singularities belonging to the list of Arnold [Ar| of the 14
bimodal exceptional singularities. The weight system of the singularity V#*NClg
appears in the list of [S1, Appendix 1] of regular weight systems with x = 24 (see
also [E4, Table 3]). The singularity VNCJ; is a (minimally) elliptic hypersurface
singularity and appears in [E1, Table 2] (there we used the name V#*NC(;)). The
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singularities Zs and W,s also appear in the lists of Arnold [Ar]. They have
modality 4. The singularities ¥, and N33 do not occur in the lists of [Ar] and
[Wal]. Here we use as names the name of the series (according to [Ar]) to which
they belong indexed by the Milnor number.

Table 2. Coupled weight systems with ¢; =b; =1 for i =0

or i=1
No. | Name | ag,a1,az,a3;h C Partner
14 En 1,6,14,21;42 X7, y3, 22 14
6,1,14,21;42 x2z, 3,22 28
6,1,14,21;42 xB8y, 3,22 45
14,1,6,21;42 X3y, y7 22 51
28 3,1,7,10;21 X213, xz? 14
3,1,7,10;21 xz 3 xz? 28
3,1,7,10;21 x4y, y3 xz2 45
7,1,3,10;21 xB8y. 7 xz? 51
45 4,1,9,14;28 x38 xy3, 22 14
4,1,9,14;28 x4z xy3, 22 28
4,1,9,14;28 | x"Yy xy3, 22 45
14,1,4,9;28 | x¥y,y7 xz3 51
51 12,1,5,18;36 X3 xy7, 22 14
12,1,5,18;36 | x'8z,xy7, 22 28
18,1,5,12;36 x¥z, xy7, 23 45
12,1,5,18;36 | x*'y, xy7,z2 51
50 Ej; 1,4,10,15;30 X3y, y3, 22 38
15,1,4,10;30 | x*0y, y3z, 23 77
38 Zn 1,6,8,15;30 X3, xp3, 22 50
15,1,6,8;30 x¥z, %, y23 82
77 13,1,5,7;26 X% xy3, yz3 50
13,1,5,7;26 | x"z,xp°, yz3 82
82 11,1,3,7;22 X%, y3z, x23 38
11,1,3,7;22 | xYy, poz,x23 77
13 Ey 1,3,8,12;24 x*z, y3, 22 20
8,1,3,12;24 X2y, y4z, 22 59
20 Qo 1,6,8,9;24 x4, 3, xz? 13
8,1,6,9;24 xBz, y4 yz? 72
59 7,1,5,8;21 X2 x4, yz? 13
7,1,5,8;21 xB3z, x4, yz? 72
72 5,1,2,7;15 x13 y4z, xz? 20
51,2,7;15 xBy, y4z, xz2 59
78 Z 1,4,6,11;22 x4y, xp3, 22 78
39 Z13 1,3,5,9;18 x3z,xy3, 22 60
60 on 1,4,6,7;18 X3y, y3, xz? 39
22 On 1,3,5,6;15 X3z, 3, x2? 22
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Table 2. (continued)

No. | Name | ag,ai,az,a3;h C Partner
9 Wi, 1,4,5,10;20 x,z2, y?z 9
4,1,5,10;20 xPy, 22 32z 71
71 3,1,4,7;15 xB xz2, y?z 9
3,1,4,7;15 xy xz2, y2z 71
37 Wis 1,3,4,8;16 x4y, 22, y2z 58
58 S 1,4,5,6;16 x* xz5, y°z 37
87 Si2 1,3,4,5;13 Xy, xz2, y*z 87
4 Un 1,3,4,4;12 x4, 3,23 4
Table 3. Coupled weight systems: remaining cases
No. Name ap,ay,ay,az; h C Partner
12 6,1,2,9;18 x%z,x2y8, 22 27
6,1,2,9;18 x10y, x2y8 22 49
27 8,2,3,11;24 x%y2, y8, xz? 12
49 14,2,5,21;42 x10p2 xy8 22 12
40 7,1,2,4;14 x10z x2y%, yz 81
81 13,2,3,8;26 x10p2 0z xz3 40
24 4,1,2,5;12 x12 x2y3 yz 11
11 10,2, 3,15; 30 x12y2 33z, 2 24
6 2,1,2,5;10 Xz, x2p* 22 26
2,1,2,5:10 X8y, x2y4, 22 34
5,1,2,2;10 x8z, x2p*, yz* 76
26 4,2,5,9:20 x*y2, y*, xz? 6
34 6,2,7,15;30 x8y2, xy4, 22 6
76 13,2,5,6;26 x8y?, y4z, xz* 6
10 4.1,1,6;12 Xy, ybz, 22 65
6,1,1,4;12 xMy 82, 23 80
4.1,1,6;12 x12 xyll 22 46
65 11,3,5,14;33 XM xy0, yz? 10
80 22,4,5,13;44 xM xy8, yz3 10
46 22,5,6,33;66 x12y, pll 22 10
42 Z5.0 1,1,3,510 X3z, xy3, 22 68
5,1,1,3;10 Xy, y7z,xz3 92
5,1,1,3;10 X%y, p10, xz3 83
68 017 3,4,10,13;30 Xy, 3, xz2 42
92 19, 3,57 11;38 X2z, xy7, yz3 42
83 27,4,5, 18 54 X2z, xpl0 23 42

331



332 WOLFGANG EBELING

Table 3. (continued)

No. Name ap,ay,ax,as;h C Partner
25 030 1,1,3,4;9 X0y, 3, xz? 43
3,1,1,4;9 x8y, y3z,x22 88
3,1,1,4,9 x8y, 9%, xz? 48
43 Zss 4,3,11,18;36 Xz, xy3, 22 25
88 9,2,5,11;27 x8z,xy°, yz? 25
48 16,3,5,24;48 x8z,xy°, 22 25
7 X2.0 1,1,2,4;8 xSy, y2z, 22 64
64 S17 3,4,7,10;24 X0, y2z, xz? 7
66 S50 1,1,2,3;7 x7,xz%, y?z 35
35 Was 4,3,7,14;28 x7y, 2%, y%z 66
21 2; 2 1,1,1,2;5 x*y, y3z,xz2 86
1,1,1,2;5 x4y, 2, xz? 30
86 V#NCII8 5,4,7,9;25 x4z, xy3, yz? 21
30 Ns3 8,5,7,20;40 x4z, xp3, 22 21
5 2; 1,1,1,3;6 X3y, y3z,22 56
3,1,1,1;6 X, xp3, yz° 73
56 VNCII3 5,6,8,11;30 x>, xp3, yz? 5
73 25,7,8,10; 50 x%y, y3z,2° 5
1 3; (nh) 1,1,1,1;4 x4 xy3, y23 52
52 Vi 9,7,8,12;36 x*y, y3z,23 1
32 2,2,3,7;,14 xy4 x*y? 22 32

Table 4. Fuchsian singularities with g > 0 and their partners

No. | Name Wl |l p| d | bo d* | ug | wt| vt Name No.
42 Z50 21 213 2 3 —6 0 171 0 O17 68
7 X2.0 21 2 3 4 3 —-12 | 0 171 0 Si17 64
21 2;2 241 4 (2] -5|5 25 0 |24 | 0 | V*NC) | 86
8 —-10 | O 331 6 Ni3 30

5 2; 2504 |1 2|5 -10]0/|19]0]| ¥VNCL | 56
25 030 200 2 |4 -3 4 —6 0 25| 2 Z>s 43
66 S50 20 2 |4 -7 4 || -14]0|25] 2 Ws 35
1 3; (nh) | 27 | 6 1 4 9 —-12 | 0 29| 6 V3 52

There is the following relation between these singularities. The K3 surfaces
corresponding to the weight systems on the left-hand side are compactifications of
the corresponding Fuchsian singularities. Let g(x, y,z) = 0 be the equation of a
singularity on the right-hand side. Let Wy = (b1, b2,b3;k) be the weight system
of this singularity. Let X* be the hypersurface in P(bg, b1, b2, b3) given by the
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equation wkibo 1+ g(x, y,z) = 0. _ As in Section 2 we consider the natural mapping
Tyt X* — P(by, b2, b3). Let X := X*\n,jol(V*) where V* is the hypersurface
in P(by,by,b3) defined by g(x,y,z) =0 and let F* be the Milnor fibre of
g:(C?0) — (C,0). Then we have a mapping F* — X, which is a (possibly
branched) covering of degree by. Denote by v* the total branching order of this
covering. One can easily see that this covering is either unbranched or branched
along the singularity (0:0: 1) ¢ V* of P(by, by, b3) of branching order v*. Then
we obtain from the Riemann-Hurwitz formula in all cases

WAV 1 =bo(p+3).

4. Extension of Arnold’s strange duality

The author and C. T. C. Wall [EW] have found an extension of Arnold’s
strange duality embracing also isolated complete intersection singularities. Such
a singularity is defined by the germ of an analytic mapping (g, f) : (C* 0) —
(CZ,O). It is weighted homogeneous of weights g1, ¢», ¢3, ¢4 and degrees d,, d»
where we assume d; < d, and where we have 1+¢q 1+ ¢ +q3+q4 =d) + d>.
We consider the compactification of such a singularity in the weighted projective
space P(1,q1,q,43,q4) with coordinates w, x, y, z, ¢t given by the equations

g(x,y,z,1) =0,
f(x7y7zﬂt)+wd2 :0'

More precisely, this correspondence embraces the following singularities. We use
the notation of [E3].

(a) Arnold’s 14 exceptional unimodal hypersurface singularities.

(b) The six bimodal hypersurface singularities J3 o (12), Z; o (40), 02,0 (24),
Wio (8), Si0 (63), Ui (18). The compactifications of these singu-
larities occur in Yonemura’s list. The index is indicated in brackets.
The first three of these singularities already occurred in Table 3.

The remaining singularities are ICIS defined by the germ of an analytic mapping
(9,f) : (C*,0) — (C%,0) as above. Here we distinguish between three types:

(c) The singularities Jg, Jiy, Ji1, Kjy, Ky, J50, K{, where g(x,y,z,1) =
xt—y2, f(x,y,z,0) = f'(x, ,1) + 22 for some f’:(C*0)— (C,0).

(d) The singularities Lo, L1, M1, Li,0, M1 where g(x, y,z,t) = xt — yz.

(e) The ICIS I; given by

g(x7y7zal) :X3 _yta
fx,y,z,t) =(a+ D)x*+ yz+22+zt, a#0,1.

The correspondence between these singularities is indicated in Table 5. The
compactifications of all these singularities are K3 surfaces and the dual families
are mirror symmetric.

We also relate this correspondence to a duality of weight systems. For this
purpose, we associate a Calabi-Yau weight system to an ICIS as follows. In the
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Table 5. Extension of Arnold’s strange duality

No. Name ag,ay,ay,as; h C Dual
12 J3.0 1,2,6,9;18 X323 22 Jy
40 Z 1,2,4,7;14 x3y? xy3, 22 Jio
24 QZ.O 1~27475712 x2y27y3,x22 Jlll
8 Wi 1,2,3,6;12 x3z,22, y?z K{y,Lio
63 Sl,O 1,2,3,4;10 x3z,x22,y22 K{17L11
13 Uto 1,2,3,3;9 X3y, yz, yz? My
J3 1,6,2,9;18 x3,x2y3, 22 12
Jlo 1,4,2,7;14 X3y, x2y3 22 40
Ji 1,3,2,6;12 x?z,x%y3, 22 24
Ky, Lo 1,4,1,6;12 x3, 2% xp?z 8
K\, L 1,3,1,5;10 X3y, 22 xy*z 63
My, 1,3,1,4;9 X3, xy?z, yz? 18
50 1,2,2,5;10 x3y?, x2y3, 22 J30
L1 o,K{_O 172, 1,4;8 X227227Xy22 L1107K1/'0
M o 1,2,1,3;7 X3y, xyz, yz? Mo
Lo 1,2,3,0;6 X3, 222, y2z Lo

cases (c) and (d) we associate the weight system (q1,9> — q1,¢3;d2) to the
singularity (X,0). Since d; = ¢; + ¢4, this is a Calabi-Yau weight system.

In case (¢) we associate the weight system (q1,¢2,q93 — g2;d>) to the
singularity ;9. Since dy =¢g»+qs, we have l14+q +q@+q¢—q =d>.
However, a3 :=q3 — ¢» = 0.

Then we have the following extension of Theorem 2:

THEOREM 3. Let W, and Wy be the weight systems of a mirror symmetric
pair of the above singularities. Then W, and Wy, are strongly dual

In each case, a primitive weighted magic square C is indicated in Table 5.
For a singularity of type (b), the matrix C corresponds to some points of the
Newton diagram. The corresponding function f(x,y,z) has a non-isolated
singularity at the origin and does not define the given one. These points differ
from the points given in [E3]. The points there correspond to non-primitive (and
even not almost primitive) matrices C.

For the ICIS of types (c) or (d), one obtains some points of a Newton
diagram of the Laurent polynomial associated to the singularity in [E3] by
subtracting the second column of C from the first one. In case (e), one has to
subtract the third column from the second one.

In all cases, the reduced zeta function {c(z) differs from the characteristic
polynomial A(z) of the monodromy of the corresponding singularity only in the
exponents: If
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then

Loy =T —em)™

ml|h

where ¢, = —1,0,1if x,, <0, x,, =0, x,, > 0 respectively. From Corollary 1 we
get Saito’s duality of the characteristic polynomials of the monodromy up to the
absolute value of the exponents.

For a generalization of the construction of the polar dual in §1 for this
extension of Arnold’s strange duality which precisely yields Saito’s duality we
refer to [E3].

By inspection of Table 5 we observe the strange fact that the weight systems
associated to the ICIS with the exception of /;( again occur in Yonemura’s
list. However, comparing [Be, Table 3] and [E2, Table 6], we see that the Picard
lattices of the corresponding K3 surfaces are different. If we omit the zero in the
weight system of [; o, we obtain the weight system of Es.
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