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ON CONFORMAL DIFFEOMORPHISMS OF

4-DIMENSIONAL RIEMANNIAN MANIFOLDS

BY YOSHIHIRO TASHIRO

Introduction. Let M and M* be n-dimensional connected Riemannian mani-
folds with metric tensor fields g and g* respectively, and consider a conformal
diffeomorphism / of M into M*. Then the metric tensor fields are related by

σ* — — — σg - p2 g,

where p is a positive-valued scalar field on M and said to be associated with /.
In his previous paper [3], the present author proved the following theorems,

the first of which is of local character and the second of global character:

THEOREM A. Assume that M and M* are Riemannian manifolds of dimen-
sion n^4, M is the Pythagorean product of two Riemannian manifolds Mλ and
M2 of dimension n1 and n2 respectively, and the Ricci tensor of M* is parallel.
If there is a non-homothetic conformal diffeomorphism of M into M* such that
the associated scalar field p depends on both M1 and M2 in an open subset in M,
then both the parts M1 and M2 of M are Einstein manifolds, except the case
n1=n2=2, and the scalar curvatures tcλ and κ2 of the parts possess one of the fol-
lowing properties:

1) /c1= — tc2=k, k being a non-zero constant,

2) κx—k and M2 is one-dimensional, κ2=0,

3) /c1=κ2=0 so that M is an Einstein manifold of zero scalar curvature.
THEOREM B. In addition to the assumptions of the theorem above, we assume

that M and M* are complete and M is reducible in place of being the Pytha-
gorean product. Then there exists no non-homothetic conformal diffeomorphism
of M onto M* such that the associated scalar field p depends on both Mx and M2

in an open subset in M.

The purpose of this paper is to discuss conformal diffeomorphisms in the
exceptional case nι—n2—2 of Theorem A and to prove the following theorem
of local character:

THEOREM. Assume that M is the Pythagorean product Mλ x M2 of two-
dimensional manifolds Mλ and M2 with metric tensor gλ and g2 respectively and
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the scalar curvature tz of M is not constant and that M* is a 4-dimensional mani-
fold with parallel Ricci tensor. If there is a conformal diffeomorphism f of M
into M* and the associated scalar field p depends on both the parts Mx and M2

in an open subset of M, then so does the field p in the whole manifold M, and
(1) the scalar curvature K of M is proportional to p with constant coefficient,

say κ=Cp (CφO),
(2) the associated scalar field p is written as p=ρ1

Jrp2, where ρx and p2 are
scalar fields on Mλ and M2 respectively and satisfy the equations

PFPl=(-3Cpl+B)gl, PFp2=(-3Cpί+B)g2

and hence the lengths of their gradient vectors are given by

IVpλ1
2= -2C(A+2Bp1"A1, \FpΛ\

2=-2Cpl+2Bp2-A2,

V denoting covanant differentiation and Al9 A2 and B being constants, that is, pλ

and p2 are concircular scalar fields of elliptic type on M2 and M2 respectively, and
(3) M* is a ^-dimensional Einstein manifold with scalar curvature Λ:* equal to

The arguments up to the equation (2.9) of the previous paper [3] are valid
in the envisaged case of n=i and nλ=n2=2. Hence in § 1 we shall briefly
repeat the arguments in the general case of dimension n and state formulas
needed later. Confining ourselves to the case n1—n2=2 in §2, we shall prove
the theorem stated above.

§ 1. Formulas in the general case of dimension n ^ 4 . With respect to a
local coordinate system, we shall denote the metric tensor g of M by components

gμλ, the Christoffel symbols by { ^Λ, the curvature tensor by Kvμλ

κ, the Ricci

tensor by Kμλ, and the scalar curvature by K, where fc is defined by

(l l) *=Ίd=WK^μλ

for n ^ 2 and κ=0 for w=l, and put

•A/ ^uΛ— Ivμλ

Denoting quantities of M* corresponding to those of M under a conformal dif-
feomorphism / by asterisking and putting pχ=P\p, we have the transformation
formulas

P
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(1.4) K*μλ

κ=Kvμ/+^(

(1.5)

(1.6)

(1.7) L*λ=Lμλ+-±-

and

(1.8) F*L*λ=FvLμλ+

+LvμFλp
2+LvλFμP

2--(gvλLμκ+gvμLλκ)F«p2-],

where we have denoted covariant differentiation in M and M* by F and F*
respectively.

If the Ricci tensor of M* is parallel, that is, FϊK*λ=0, then the scalar cur-
vature Λ;* is constant, the tensor L*λ is also parallel, and the tensor Lμλ of M
satisfies the equation

2pΨvLμλHn-2)FvFμFλP*

(1.9) = ( n F F

μ μ p μ p μ μ p

Applying Ricci's formula to FvFμFλp
2 in this equation, we obtain the equation

(1.10) p(FυLμλ-FμLvλ)-(n-2)Kvμλ«pκ

=Lvλpμ—Lμλρυ+(gvλLμκ—gμλLvκ)ρκ.

Now we suppose that the manifold M is the Pythagorean product MxxM2

of two Riemannian manifolds Mx and M2, and the dimensions are n± and n2

respectively, n=n1+n2. The manifolds Mλ and M2 are called parts of M. Let
(xh, xp) be a separate coordinate system of M, such that (xh) and (xp) are local
coordinate systems of the parts Mx and M2 respectively (h, i, j , k=l, 2, •••, nx £,
^ = ^ + 1 , •••, n). In such a system, the metric tensor g={gμλ) is represented as
the direct sum of the metrices gι—{gjt) of Mx and g2=

:(gqP) of M2. The Chri-
stoffel symbols, the curvature tensor and the Ricci tensor have pure components
only. The parts F3 and Fq of the covariant differentiation F in M coincide with
the covariant differentiations in the parts Mx and M2, and commute with each
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other.
The scalar curvatures ιcλ of M1 and κ2 of M2 satisfy the relation

(1.11) Hifai—I)^i+w2(na—l)/c2=n(n—1)Λ: ,

/r being the scalar curvature of M, even if nι~l or n 2 = l . Since the scalar
curvature K depends in general on Mx and M2, the covariant derivative VvLμλ

has hybrid components

(l.lώ) VqLji= 2~gjiY q£ y y jLqp= n~ gqp' j ^

besides pure components.
Putting the indices λ=i, μ=j, v=q and λ=p, μ=q, v—j in the equation

(1.10) referred to a separate coordinate system, we obtain

(1.13)

If the associated scalar field p depends on both Mi and M2, pjΦQ and ρqΦθ, in
an open subset U of M, then we may put

(1.14) Lji=λ1gji, Lqp=λ2gqp

in U, where λλ and λ2 are proportional factors. The definition (1.2) of Lμλ

implies

(1.15) Ksi

and, by contraction of these equations, we see that the scalar curvatures κx and
rc2 satisfy the relations

(1.16) (nί-ΐ)κ1=^γκ+λ1, (n8-l)jc2= -

Substituting (1.14) into (1.13), we have

(1.17) (λi+*t)Pj=-τ pVjK, (λ1+λ2)Pq

or the tensor equation

(1.18) Ul + λ2)pμP

§2. Proof of the theorem. Now we suppose that n—i and n 1 = n 2 = 2 .
Let U be an open subset of M in which PJΦO and ^^^0. We shall first show
that the theorem is valid in the subset U.

The relations (1.11) and (1.16) reduce to
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(2.1)

and

(2.2)

respectively. Hence

(2.3)

and the equation (1.

(2.4)

from which we may

(2.5)

/C 1 +« 2 =6A:

„. Q*. |_ J f. Q ~. | J

we have

iι+λt=2κ,

18) turns out to be

κPμ=PVμκ,

put

κ=Cp,

C being a constant. This is the part (1) of the theorem.
If the scalar curvature ιc of M is constant, then so are the curvatures κx

and rc2, and /c=0 by virture of (2.4). Therefore the parts Mx and M2 are two-
dimensional manifolds of constant curvature with reversed sign. This is the
case 1) or 3) treated in Theorem A, and will be excluded from our present
consideration, and we shall suppose CφQ from now on.

Now, by virtue of the equation (2.5), we may put

(2.6) P=Pi+p2,

where ρx and p2 are scalar fields depending only on Mx and M2 respectively. It
follows then from (2.1) and (2.5) that

(2.7)

and from (2.2) that

(2.8) ^

The equation (1.9) for n=4 is rewritten in the form

2 F / / ^ 2 + 2 F y ( / > 2 L ^ ) = 2 [ ^ ; ^
(2.9)

-ZL*fμpt+LvtFΛp
t-(gaLfllt+gκμLλt)Γ'ptl.

Referring this equation to a separate coordinate system, putting λ—i, μ=j, v—p
and λ—p, μ=q, v=ι and substituting (1.14), we have the equations

Applying Fq to the first equation and V} to the second and comparing the results,
we have
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Therefore we may put

Substituting these into the covariant derivatives of the equations (2.10), we have

(2.12) PqP/fiP2=ψgqPgit •

On the other hand, the successive derivatives of p1 are given by

Fip*=2pΓiPl,

PjPίp
2=2(pPjFip1+Pjp1Fip1),

(2.13)
PPF/ip

2=2(Fpp2)FjFiPlf

P\P\PrjPriP2=2(F\Pr

pPt)PrjP'iPl.

Comparing the fourth of (2.13) with (2.12), we may put

(2.14) PfiPi=Φigji, FqFpp2=φ2gqp,

where φx and φ2 are functions on Mx and M2 respectively and satisfy the rela-
tion 2φ1ψ2=ψ. Substituting (2.14) into the second and the third equations of
(2.13), we have

(2.15) PjPiP2=2(pψ1gji+Pjp1FiP1),

(2.16)

Since

(2.17) pκp
κ

we have

(2.18) Fi{pκpη=^2φ1Fipι, Fp(pκp
κ)=2ψ2Fpp2.

Referring the equation (2.9) to a separate coordinate system, putting λ=i,
μ=p, v=j and λ=p, μ=ι, v=q and substituting (1.14), we have

Substituting (2.16) and the similar equation of F\F'qFpp
2 and (2.18) into one of

these equations, we can obtain

Φi-ψ2=—2-(*i-*2)p

and, substituting (2.6) and (2.8) into this relation,
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Since φx and φ2 are functions on Mx and M2 respectively, these functions may
be expressed as

(2.19) φ^-ZCpl+B, ψ2=-Cpl+B,

B being a constant.
Applying F k to the equation (2.15), we have

(2.20) FkF/ip
2=2(pgjiFkφ1+φ1gJiFkp1+φ1gkjFip1+φίgkiFjp1).

On the other hand, putting λ=ι, μ=j, v=k in (2.9), we have

PΊP'/\P2+F'k(p*λi)gJt=gJtP'k(p«Pκ)+gkiP'j(pκp
κ)+gkfΊP«PK) .

Substituting (2.18) and (2.20) into this equation, we have

Pk(p2λ1)+2pPkφ1=pί2λ1Pkp1+pPkλi+2Pkφ1]=0.

However it is verified that this equation is satisfied by means of (2.8) and (2.19),
that is, the equation (2.9) referred to Mx implies no further condition for p.

Thus we have seen that the scalar fields ρx and ρ2 satisfy the equations

(2.21)
FqFpp2=(-3Cpl+B)gqp

respectively, that is, they are concircular on Mx and M2. Transvecting the
equations (2.21) with Vip1 and Fpp2 respectively, we have

F3 {<ViPx)TPl)} =2(-3Cpl+B)FjPl,

and, integrating these equations, we find

(FiPlW
ip1)=-2Cpl+2Bp1-A1,

(2.22
(Fpp2)(Fpp2)=-2Cpl+2Bp2-A2,

where Aλ and A2 are constants. This is the part (2) of the theorem.
Substituting the expressions (2.22) into (2.17), we have

(2.23)

and, from (2.21),

(2.24)

Substituting (2.5), (2.23) and (2.24) into the equation (1.6) for n=4, we can see
by direct computation that the scalar curvature Λ;* of M* is equal to

(2.25)
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Moreover, since Mx and M2 are two-dimensional and consequently Einstein mani-
folds and the scalar curvatures tcλ and /c2 are given by (2.7), we have

(2.26) Kj^βCp^ji, Kqp=6Cp2gqp.

Then, referring the formula (1.5) to a separate coordinate system and using
(2.21), (2.23) and (2.24), we find that the components K% of the Ricci tensor K*k

of M* are equal to

or

and the components K$q are equal to similar expressions, and we have

K% = 3κ*g%, K*=3κ*g*.

Noting PpPi^O, we see K%=0 from (1.5) and hence obtain the tensor equation

which means that M* is a 4-dimensional Einstein manifold of scalar curvature
/r*=^41+^42 This is the part (3) of the theorem and the theorem is valid in the
subset U.

Denote the parts through a point P by Mλ(P) and M2(P). Let P be a point
of the subset U, Y(P) an arbitrary vector at P tangent to M2(P) and Y the
natural extension of Y(P) on MX{P). The intersection M1(P)r\U is relatively
open in MX(P) and the equation (2.16) means that the derivative Yp2=YpFpp

2

along the direction Y is a concircular scalar field in M1(P)r\U. If the comple-
ment M1(P)—U contained inner points, we would have Yp2=2ρYp=0 in M1(P)—U
and Yp2 itself would be a concircular scalar field on MX(P) by continuity. Since
the stationary point of a concircular scalar field is isolated [1], [2, p. 15], the
point where Γ ί(F/o2)=0 is isolated in Mλ(P) unless it vanishes identically. How-
ever we would have Fi(Yρ2)=0 in M1(P)—U this is a contradiction. There-
fore the closure of the subset M1(P)r\U coincides with the parts MX(P) and all
the equations in the above proof are valid in Mλ(P) and similarly in M2(P) for
points P ε ί / .

It follows from the equations (2.7) that the scalar curvatures κλ and ΛΓ2 are also
concircular in M1(P)r\U and M2(P)r\U respectively. On the other hand, it fol-
lows from (1.13) that tc and κ2 are independent of points of M1 in M—U or re
and tc2 are independent of points of M2 in M—U. The above arguments on p
in the parts MX(P) and M2(P) through a point P(=U are also applicable to the
scalar curvatures ιcλ and κ2 on the parts Mλ and M2. Therefore the closure of
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U coincides with the manifold M. Thus the proof of the theorem has been
completed.
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