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ON CONFORMAL DIFFEOMORPHISMS OF
4-DIMENSIONAL RIEMANNIAN MANIFOLDS

BY YOSHIHIRO TASHIRO

Introduction. Let M and M* be n-dimensional connected Riemannian mani-
folds with metric tensor fields g and g* respectively, and consider a conformal
diffeomorphism f of M into M*. Then the metric tensor fields are related by

1
*— =
g pz gy
where p is a positive-valued scalar field on M and said to be associated with f.
In his previous paper [3], the present author proved the following theorems,
the first of which is of local character and the second of global character:

THEOREM A. Assume that M and M* are Riemannian manifolds of dimen-
sion n=4, M is the Pythagorean product of two Riemanman manifolds M, and
M, of dimension n, and n, respectively, and the Ricci tensor of M* is parallel.
If there is a non-homothetic conformal diffeomorphism of M into M* such that
the associated scalar field p depends on both M, and M, in an open subset in M,
then both the parts M, and M, of M are Einstein manifolds, except the case
n,=n,=2, and the scalar curvatures &, and &, of the parts possess one of the fol-
lowing properties:

1) k,=—k,=Fk, k baang a non-zero constant,

2) k,=Fk and M, 1s one-dimensional, k,=0,

3) k;=k,=0 so that M is an Einstein manifold of zero scalar curvature.

THEOREM B. In addition to the assumptions of the theorem above, we assume
that M and M* are complete and M is reducible in place of being the Pytha-
gorean product. Then there exists no non-homothetic conformal diffeomorphism
of M onto M* such that the associated scalar field p depends on both M, and M,
in an open subset in M.

The purpose of this paper is to discuss conformal diffeomorphisms in the
exceptional case n,=n,=2 of Theorem A and to prove the following theorem
of local character:

THEOREM. Assume that M is the Pythagorean product M, X M, of two-
dimensional manifolds M, and M, with metric tensor g, and g, respectively and
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the scalar curvature & of M 1s not constant and that M* 1s a 4-dimensional mani-
fold with parallel Ricci tensor. If there is a conformal diffeomorphism f of M
into M* and the associated scalar field p depends on both the parts M, and M,
in an open subset of M, then so does the field p in the whole manifold M, and

(1) the scalar curvature £ of M is proportional to p with constant coefficient,
say k=Cp (C+0),

(2) the associated scalar field p is written as p=p,+p,, where p, and p, are
scalar fields on M, and M, respectwely and satisfy the equations

VVp,=(—3Cp}+B)g;, FVp,=(—3Cp3+B)g,
and hence the lengths of their gradient vectors are given by
IVP1|2:—2CP§+ZB!71_A1 , IV‘O2]2=—2C‘0§—|—23‘02—A2 ,

V denoting covariant differentiation and A,, A, and B being constants, that 1s, p,
and p, are concircular scalar fields of elliptic type on M, and M, respectwely, and
(3) M* 1s a 4-dimensional Einstein manifold with scalar curvature £* equal to

IC*:A1+A2 .

The arguments up to the equation (2.9) of the previous paper [3] are valid
in the envisaged case of n=4 and n,=n,=2. Hence in §1 we shall briefly
repeat the arguments in the general case of dimension n and state formulas
needed later. Confining ourselves to the case n,=n,=2 in § 2, we shall prove
the theorem stated above.

§1. Formulas in the general case of dimension n>4. With respect to a
local coordinate system, we shall denote the metric tensor g of M by components

&1, the Christoffel symbols by { : 2}, the curvature tensor by K,,.;*, the Ricci

tensor by K,; and the scalar curvature by &, where £ is defined by
(L1) b=y K

for n=2 and £=0 for n=1, and put

(12) Luy=Ku— 558 -

Denoting quantities of M* corresponding to those of M under a conformal dif-
feomorphism f by asterisking and putting p;=F 0, we have the transformation
formulas

(1.3) {;x}* ={at % (00307 0u—8ua0") »
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(1.4) Kfﬂlszulﬂx+%(‘i;prpl'—B#KVHPZ—*_g#qupK_gUXV/IPE)
1 K, 5 K 5 K
- 0 0:0(0,5812—0,"8,2)
* 1 1, p oL .
(1.5) K/M-—K/x]-l__p_(n_z)yy‘ol—'_ 0 g/tl 174 p2 (n—1>{0/cp g/-llv
(1.6) x*:pzlc—i-—fl— oV p"—pep®,
* 1 1 .
(17) L,u/I—L[z,l+7(n_2)7#p2__2_‘07(n—2)gﬂ1px‘0 ’
and
(18) V:‘LZA:Vprl‘F—z%Ez_ (n_2)[VvV;thp2_’g/qu(PfrPE)

—gquy(PxPx)—gnyz(PxP”)]+’2_;z— [2L,.7 p*

+Lp/472,02+LuZV,upz—(gulL,ux_f'gu‘ule)V’cpz]r

where we have denoted covariant differentiation in M and M* by V and F'*
respectively.

If the Ricci tensor of M* is parallel, that is, V¥K %;=0, then the scalar cur-
vature £* is constant, the tensor L}; is also parallel, and the tensor L,; of M
satisfies the equation

20V L+ (n—2)V .V J ,0°
(1.9) =(n—2)L 8uV ")+ 8.V pcp")+ 8.V {0s0")]
—L2L,F .0°+ LoV up*+ LoV 20°—(8urLl et 8.uLac)V 0] .
Applying Ricci’s formula to V.,V ,J,0* in this equation, we obtain the equation
(1.10) oW L=V uL.p)—(n—2)K, i ps
=L.20p— L0 +(8ualpe—8paLl i) 0° -

Now we suppose that the manifold M is the Pythagorean product M, XM,
of two Riemannian manifolds M; and M,, and the dimensions are n, and 7,
respectively, n=n;+n,. The manifolds M, and M, are called parts of M. Let
(x™ x?) be a separate coordinate system of M, such that (x") and (x?) are local
coordinate systems of the parts M,; and M, respectively (4,1, J, k=1, 2, -+, n,; b,
g=n;+1, -+, n). In such a system, the metric tensor g=(g,;) is represented as
the direct sum of the metrices g,=(g;;) of M, and g,=(g,,) of M,. The Chri-
stoffel symbols, the curvature tensor and the Ricci tensor have pure components
only. The parts V/, and /, of the covariant differentiation / in M coincide with
the covariant differentiations in the parts M, and M,, and commute with each
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other.
The scalar curvatures &, of M, and &, of M, satisfy the relation
(1.11) ny(ny— 1k +ny(n,—De,=n(n—1)x ,

r being the scalar curvature of M, even if n,=1 or n,=1. Since the scalar
curvature £ depends in general on M, and M,, the covariant derivative V,L,,
has hybrid components

1.12) Vqui=_%gjdix ) Vqup="‘g‘ 8aV &

besides pure components.
Putting the indices A=i, p=j, v=¢ and A=p, p=q, v=j in the equation
(1.10) referred to a separate coordinate system, we obtain

Ljipq=<%97q"_Lqup)g;i )
(1.13)
qupjz(_g'PVJ‘”"LjiPt)gqp .

If the associated scalar field p depends on both M, and M,, p;#0 and p,+0, in
an open subset U of M, then we may put

(114) Lji=21gji ’ Lqp:'zzgqp

in U, where 4, and 4, are proportional factors. The definition (1.2) of L,,
implies

(1.15) Ku=(5r+4)g:,  Kop=(5r+%)gm,

and, by contraction of these equations, we see that the scalar curvatures £, and
£, satisfy the relations

(1.16) (m—Dr=—r+d, (—De=—r+d.
Substituting (1.14) into (1.13), we have
(L17) AA2)p,=—5 pV 5, (Wt2)py=—5 oF &

or the tensor equation

(1.18) AiA2)pu= 5 07 ur .

§2. Proof of the theorem. Now we suppose that n=4 and n,=n,=2.
Let U be an open subset of M in which p;#0 and p,#0. We shall first show
that the theorem is valid in the subset U.

The relations (1.11) and (1.16) reduce to
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2.1) £1+E,=6k

and

(2.2) k,=2k+12,, k,=26+2,.
respectively. Hence we have

(2.3) A+2,=2k,

and the equation (1.18) turns out to be

(24) £pu=0V 4t ,

from which we may put

(2.5) £=Cp,

C being a constant. This is the part (1) of the theorem.

If the scalar curvature £ of M is constant, then so are the curvatures x,
and £,, and £=0 by virture of (2.4). Therefore the parts M, and M, are two-
dimensional manifolds of constant curvature with reversed sign. This is the
case 1) or 3) treated in Theorem A, and will be excluded from our present
consideration, and we shall suppose C+#0 from now on.

Now, by virtue of the equation (2.5), we may put

(2.6) P=p11+p:,

where p, and p, are scalar fields depending only on M, and M, respectively. It
follows then from (2.1) and (2.5) that

2.7 £,=6Cp, , £,=6Cp,
and from (2.2) that
(2.8) 4,=C4p,—2p,), 2,=C(4p,—2p,).
The equation (1.9) for n=4 is rewritten in the form
W 0> +20 (0* L) =20 iV (pcp)+8. L pef)+8u¥ £ p0™)]
—LL,V wo®+ Lo 10°—(8uaLl 8o Lac)V*0%] .

Referring this equation to a separate coordinate system, putting 2=i, u=j, y=p
and A=p, u=q, v=1 and substituting (1.14), we have the equations

Vol ¥ i0*=g; p(pep—p*41),
VWV 00" =8aV 0sp"—p"2s) -

Applying V, to the first equation and //, to the second and comparing the results,
we have

(2.9)

(2.10)

iV F (0:0°— 0*2) =80V ¥V (pc0"—0*4s) -
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Therefore we may put
VW ipep*—p"2:)=9g;:,

Vqu(Pxpx—Pzzl)ZSbgqp .
Substituting these into the covariant derivatives of the equations (2.10), we have
(2.12) VYV Vipo*=0g8;:-

On the other hand, the successive derivatives of p® are given by

(2.11)

Vip*=20V.p,,
ViVip*=200V Vo1V 0V ip1)
VoV Vi0*=20 »p.)V ¥ ip1,
VoV V¥io*=2F 0.0V ¥ ip,.
Comparing the fourth of (2.13) with (2.12), we may put
(2.14) Viio.=¢i850, Vi ope=¢eten,

where ¢, and ¢, are functions on M, and M, respectively and satisfy the rela-
tion 2¢,¢,=¢. Substituting (2.14) into the second and the third equations of
(2.13), we have

(2.13)

(2.15) ViV i0*=2p¢,g5+V ;07 ip1) s

(2.16) V7702 =247 oo* -

Since

(2.17) 0:0° =W ;0) 7 0,)+F »0.)F ?p0,),

we have

(2.18) Voo )=20F ip1,  Vp(0ep")=205V 105 .

Referring the equation (2.9) to a separate coordinate system, putting A=i,
p=p, v=7 and A=p, p=1, v=q and substituting (1.14), we have

VijVipzzgjin(PxP'c)—(xl—‘/Zz)gjtPVpPz ’
V¥ o00*=800V {0:0°)—(Ae—2,)84p0V i1 -

Substituting (2.16) and the similar equation of V.,V V,p* and (2.18) into one of
these equations, we can obtain

1= (= 2)p
and, substituting (2.6) and (2.8) into this relation,

O —,= —BC(Pl_Pz)(Pl‘l'Pz): _3C(P%—P§) .
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Since ¢, and ¢, are functions on M, and M, respectively, these functions may
be expressed as

(2.19) ¢ =—3Cp1+B, ¢y=—Cpi+B,

B being a constant.
Applying V, to the equation (2.15), we have

(2.20) VijVip2=2(pgjin¢l+¢'1gji7kp1+¢1gkj7ip1+¢1gkiVjpl) .
On the other hand, putting A=:, p=j, v==~ in (2.9), we have
Vi 0> +V (0°4))81:=83V 1(0:0%) 81V (0c0)+81iV (0s0") .
Substituting (2.18) and (2.20) into this equation, we have
V (0*2,) 420V wpr=p[24\F w01+ 0V 22, +2F 1, 1=0.

However it is verified that this equation is satisfied by means of (2.8) and (2.19),
that is, the equation (2.9) referred to M, implies no further condition for p.
Thus we have seen that the scalar fields p, and p, satisfy the equations

VJV'LP1:(_3C‘0%+B)g” ’
P p0.=(—3Coi+ By

respectively, that is, they are concircular on M; and M, Transvecting the
equations (2.21) with F*p, and F?p, respectively, we have

VAW ip)P* )} =2(—3Cpi+ BV ;p.,
VoAV p02) 77 p2)} =2(—3Cp3+B)V o2,
and, integrating these equations, we find
Fip)V'p)=—2Cpi+2Bp,— A,
(7 107 ?p2)=—2Cp}-+2Bp,— A,

where A, and A, are constants. This is the part (2) of the theorem.
Substituting the expressions (2.22) into (2.17), we have

(2.21)

(2.22

pxp"=—2C(0}+03)+2B(p,+ ) — A1 — A,

(2.23)
=—2Cp(pi—p10:+p})+2Bp—(A;+ A4,)

and, from (2.21),
(2.24) V p*=—6C(pi+p3)+4B .

Substituting (2.5), (2.23) and (2.24) into the equation (1.6) for n=4, we can see
by direct computation that the scalar curvature £* of M* is equal to

(225) *=A,+A,.
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Moreover, since M, and M, are two-dimensional and consequently Einstein mani-
folds and the scalar curvatures &, and &, are given by (2.7), we have

(2.26) K, =6Cp:8;i, Kuip=6Cp:1Zp.

Then, referring the formula (1.5) to a separate coordinate system and using
(2.21), (2.23) and (2.24), we find that the components K% of the Ricci tensor K%,
of M* are equal to

1

K;“l =6CP1gji+%Vjpi"__p—gjiprm_%—g;ipxpx

=[6Cp’p,+20(—3Cpi+B)—6Cp(pi+pf)+4Bp,

+60p<p%—p,p2+p§>—63p+3<A1+A2>J—§2—gﬁ

or
K% =3(A,+Ay)g%,

and the components K3, are equal to similar expressions, and we have
K% =3r*g¥%, Kr=3r*g}.
Noting V ,0,=0, we see K3}=0 from (1.5) and hence obtain the tensor equation
K}=3r*g,

which means that M* is a 4-dimensional Einstein manifold of scalar curvature
£*=A,+ A, This is the part (3) of the theorem and the theorem is valid in the
subset U.

Denote the parts through a point P by M,(P) and M,(P). Let P be a point
of the subset U, Y(P) an arbitrary vector at P tangent to M,(P) and Y the
natural extension of Y(P) on M,(P). The intersection M,(P)NU is relatively
open in M,(P) and the equation (2.16) means that the derivative Yp*=Y 2/ ,p*
along the direction Y is a concircular scalar field in M,(P)N\U. If the comple-
ment M,(P)—U contained inner points, we would have Y p*=2pY p=0 in M,(P)-U
and Yp? itself would be a concircular scalar field on M,(P) by continuity. Since
the stationary point of a concircular scalar field is isolated [1], [2, p. 15], the
point where V(Y p?)=0 is isolated in M,(P) unless it vanishes identically. How-
ever we would have V;(Yp*)=0 in M,(P)—U ; this is a contradiction. There-
fore the closure of the subset M;(P)N\U coincides with the parts M,(P) and all
the equations in the above proof are valid in M,(P) and similarly in M,(P) for
points PeU.

It follows from the equations (2.7) that the scalar curvatures £, and «, are also
concircular in M,(P)NU and M,(P)NU respectively. On the other hand, it fol-
lows from (1.13) that « and %, are independent of points of M, in M—U or &
and x, are independent of points of M, in M—U. The above arguments on p
in the parts M,(P) and M,(P) through a point P€U are also applicable to the
scalar curvatures «x; and ., on the parts M, and M,. Therefore the closure of
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U coincides with the manifold M. Thus the proof of the theorem has been
completed.
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