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COMPLEX SUBMANIFOLDS WITH CERTAIN CONDITIONS
By KUNIO SAKAMOTO

§0. Introduction.

Complex Einstein hypersurfaces in a complex space form were classified by
Smyth [8]. He showed that they are locally symmetric and used Cartan’s list
of irreducible Hermitian symmetric spaces. Nomizu and Smyth [3] continued
their study of complex hypersurfaces in a complex space form.

On the other hand, Ogiue [4], applying a formula of Simons’ type and results
obtained by O’Neill [6], studied complex submanifolds of constant holomorphic
sectional curvature in a complex space form.

In this paper, we shall study complex submanifolds, especially complex
Einstein submanifolds, in a complex space form which satisfy certain conditions
for the normal bundle. In §1, we give basic formulas concerning complex sub-
manifolds. In §2, we study complex submanifolds with certain holonomy groups
with respect to the induced connection in the normal bundle. In §3, applying
a formula of Simons’ type, we study, in a complex projective space with Fubini-
Study metric, complex Einstein submanifolds with certain curvature condition
concerning the normal bundle.

§1. Preliminaries.

Let M™P? be a complex (n+p)-dimensional Kaehler manifold with complex
structure J and Kaehler metric g and M™ be a complex submanifold in M™*? of
complex dimension n. Then M™"is a Kaehler manifold with the induced complex
structure and the induced metric, which will be also denoted by J and g re-
spectively. Let V (resp. V) be the connection with respect to the metric of
M™? (resp. the induced metric of M™). We can easily see that the connection
V in M™ is a Kaehler connection. If we denote by H the second fundamental
form of M™", then the equation of Gauss can be written as

(L1 ViV=F ,Y+HZX,Y)

for any local vector fields X and Y of M*. We note that the second fundamental
form H satisfies

(1.2) H(JX, Y)=H(X, JY)=JH(X, Y)
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for any vectors X and Y tangent to M™

Throughout this paper, X,Y and Z will be either local vector fields of M™
or vectors tangent to M™ at a point and the inner product g(X,Y) of X and
Y will be denoted by <X, Y).

Let N(M™ be the normal bundle of M™ in M"*?. Then N(M™ is a
Hermitian vector bundle with the induced complex structure J* and the induced
metric g*. The induced connection p* in N(M™) is a Hermitian connection.
Choosing local fields of orthonormal vectors Cy, -+, Cp, JCy, -++, JCp normal to M",
equations of Weingarten may be written as

(1.3) VyCi=—AX+V%C,, TxJC;=—AX+V%]C;

for each i where the index : runs over the range {1,--,p} and A,, -, A4,
Aj, -, Ap are local symmetric tensor fields of type (1,1) on M™ satisfying
(14) CHX,Y),Cop=<AX,Y>, <(HXY)JCO=CAX,Y)

for each i. We have from (1.2) and (1.4)

(1.5) Ai=JA,,

(1.6) JAA+A,J=0

for each i and hence we see that M™ is a minimal submanifold in M"*?. _

Next, we consider the structure equations of the submanifold M™ in M™*?.
Let TM be the tangent bundle of M". If we denote by V'’ the induced con-
nection in the bundle TM+N(M™) and denote by Projry (resp. Projyarn) the
projection map of vectors of the ambient manifold M™*? to the tangent space
of M™ (resp. normal space), then structure equations of Gauss, Codazzi and Ricci
may be written as, for any X,Y and Z,

(L7)  ProjruR(X, Y)Z=R(X, V) 2+ Z (AKX, Z) A Y —(A.Y, Z) A.X}
+IKJAX, Z)JAY—JAY, Z)JAX},
(18)  ProjwanR(X, V)Z=WLH)XY, Z)~VyH)X, Z),
(19)  ProjyanR(X, Y)C;=R*(X, V)C—SKAAX, V) —(A,AX G,
—SCAJAX, Y)—(JA, AKX, YOLC,

respectively, where R, R and R* are the Riemann curvature tensors of Mre,
M™ and N(M™) respectively.

By a complex space form M"*?(c), we shall mean a complex (n+p)-dimen-
sional connected complete Kaehler manifold of constant holomorphic sectional
curvature c. We assume that the ambient manifold M™*? is a complex space
form M™?(c). Then the curvature tensor R satisfies
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(1100 R(X, 7)Z
=P XX DY+, Z5]X~JX, DJT—2X, 7)]Z)

for any vectors X, ¥ and Z tangent to M™*?(c). Thus we have, from (1.7), (1.8)
and (1.9),

(111) RX, V)Z=-KY, DX X, )Y
Y, Z5JX—JX, Z)JY =2{JX, Y} ]Z}
+S{AY, Z)AX—CAX, Z)AY}
+EZKJAY, Z5JAX—{JAX, Z)JA.YY,
(L12) PxH)Y, 2)=WVyH)X, Z),
(113) RY(X, Y)Ci=3<[ 4, 4,1X, V)CrAZ(MA, JA,IX, Y JC

——5-(X, Y JC;

for any X,Y and Z. We can easily show from (1.11) that the Ricci tensor S
and the scalar curvature p satisfy

(L14) S(X, Y)=-4-(n+De<X, Yy—25KAIX, ¥,

(1.15) p=—%—(n+1)6—%2 tr A2

respectively, where tr A} is the trace of A%

§2. Submanifolds with certain holonomy groups in the normal bundle.

Let Mf be a complex submanifold of complex dimension n in a Kaehler
manifold M™*? of complex dimension n+p. Using (1.7) and (1.9), we obtain

LEMMA 1. If S and S are the Ricci tensors of M™P and M™ respectively,
then we have

CAY S(X, JY)=S(X, JY)+A(X, Y)

for any vectors X and Y tangent to M™ where 2 is a globally defined two form
on M™ such that

(2.2) A(X, Y):ZJ(R*(X, Y)C,, ]C¢>=——% tr J*R¥(X, Y).

Proof. We note that S(X,JY) is equal to ——%tr JR(X,Y). Therefore,
taking orthonormal basis Xj, -, X,, JX,, -, JX, of the tangent space of M"
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at each point, we shall compute tr JR(X,Y), i.e.,
zf)(]ﬁ(X, Y)X., Xt>+Zt‘,<JI7(X, V)X, JXo
+§)<J17(X, )G, Ci>+§)<]17(X, Y)JC, JC»
where the index ¢ runs over the range {1,---,n}. From (1.7), we easily find
ZJ(]I?(X, X, X
:;(]R(X, )X, X

+21§ KA X, Xp<{JAY, Xp—<A.Y, X)<{JA X, XD},
%K]E(X, Y)JX., JXo
=R, V)X, X
-I-ZZE) KAX, JXiy<{JA.Y, JXi>—<A.Y, JX)<{JA.X, JXp)}.
Thus, noting that S(X, JY) is equal to —— tr JR(X, ¥), we have
ZtKﬂ?(X, Y)X, Xt>+2t7<ﬂ7(X, )X, J X0
=—2S(X, J))HATAX, JAYY .
On the other hand, from (19), we find
SR, Y)C, €
=Zz)<]R*(X, Y)C,, Ci>+;{<]A1,X; AYY—<JAIX, Y},
?UE(X, Y)JCs, JC>
=;<]R*(X, Y)Jc,, JCi>+tE{<fA1X, AY)—<JAIX, Y)}.
Since AKX, AYY—CJAIX, )} is equal to —231CAX, JAY), we have
§<JE(X, )G, Ci>+§<]E(X, )JC;, JC»
=tr JARH(X, V)45 (AKX, JAY) .
Therefore we obtain

S(X, JY)=S(X, ]Y)——%— tr J*R¥(X, Y). Q.E.D.
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Let G* be the restricted holonomy group with respect to the induced con-
nection in the normal bundle N(M™). Then G* is a Lie subgroup of U(p).
Applying Lemma 1, we have

THEOREM 1. Let M™ be a complex submanifold in a Kaehler manifold M™?,
The restricted holonomy group G* in the normal bundle N(M™) 1s contained in
SU(p) if and only if S=S on TM.

Proof. G* is contained in the real representation of SU(p) if and only if
tr J*R*(X, Y)=0 for every tangent vectors X and Y of M" (see [2], p. 151).
Therefore we see from Lemma 1 that G* is contained in SU(p) if and only if
S=S on TM. Q.E.D.

In particular, if the ambient manifold M"™*? is a complex space from M**?(c),
we have

_ COROLLARY. Let M™ be a complex submamifold in a complex space form
M™2(c), If the restricted holonomy group G* in N(M™) is contained in SU(D),
then ¢ must be non-positive and M™ is an Einstein manifold, and moreover if
¢=0, then M™ is a totally geodesic submanifold.

Proof. Since M™?(c) is a complex space form, S is given by S=
—%—(n—!—ﬁ-!—l)cg. From Theorem 1, we obtain S=—%—(n+p+1)cg, and hence M™

is an Einstein manifold. We have from (1.14)
SICAX, Y>=—~%c—<X, Y> for any X and Y.

Thus we see that ¢ must be non-positive and that M™ is totally geodesic if
c=0. Q.E.D.

Let M™ be a complex submanifold in a complex space form M**?(c). If G*
is trivial, then R*=0. We have

THEOREM 2. Let M™ be a complex submanifold in a complex space from
M™+2(c). The restricted holonomy group G* in N(M™) is trivial if and only if
¢=0 and M™ is a totally geodesic submanifold.

Proof. Using (1.13) we have
LA, A,]=[A,, JA,J=0  for all i,j (i#)),

[A., JAJ=—5).

From the former equations we obtain A4,A4,;=0 for all 7,7 (i+j). Taking suitable
orthonormal basis X, ---, X,, JXi, -, JX, of M™, we can represent A, (i=1,---,p)
by diagonal matrices of the form
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s

An
™

_al
7

._an

such that a;”s satisfy a,'a,’=0 (=1, ,n, i#j, 1,---,p). Noting [4,, JA, 1=

—2JA} from latter equation, we find (ati)2=—% for all z and ¢. Therefore
we can see that ¢=0 and «,;*=0 for all 7 and ¢ if p=2. When p=1, the theorem
is proved by Nomizu and Smyth [3]. Q.E.D.

Remark. Let M™ be a complex Einstein submanifold with non-zero scalar
curvature in a complex space form M"*?(c) with ¢#0. When G* is abelian, by
taking suitable local field of orthonormal vectors normal to M™, we can repre-
sent every element of the Lie algebra of G* by matrices of the form

44

—2,
Since R*(X, Y) is contained in the Lie algebra of G* for every X and Y, we
see from (1.13) that A,’s with respect to the above local normal frame field
satisfy A;A4;=0 (i#J). Hence we see that A;’s can be represented by diagonal
matrices of the form (*) with respect to suitable orthonormal basis of M™. Using
the method in [3] and formula of Simons’ type which will be given in §3, we
can show that the restricted homogeneous holonomy group of the submanifold
M™ is either U(n) or SO(n)XSO(2).

§3. Formula of Simons’ type and it’s application (cf. [4], [5)).

Let M™ be a complex submanifold in a complex space form M**?(c). First
we compute the Laplacian of the square of the length of the second fundamental
form by taking a local cordinate system of M". The components of the metric
tensor, the complex structure etc. will be denoted as follows;

8=(ga), J=(hY, R=(Rin®), S=(Sw), H=(hyw"),
g*=(8gys), J*=("), R*=(Ru,"),
where the indices a, b, --- run over the range {1,---,2n} and the indices x,, -
over the range {1,---,p, 1, , 5}
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LEMMA 2. We obtain the formula of Simons’ type;
3.0 5 AIH|*=—5(n+ DI H|*—8 tr (T ALY

—23%(tr AA,)* =23 (tr JAA)+IWW'H|®,
M Y

where |H|*=23tr Al=h,,*h*",.

Proof. We first note that h,%%, hyez, -+ are defined by 7% =hy"g%, hyer=
hsa¥8yz -+ Since the Laplacian 4||H|* of the square of the length of the second
fundamental form is defined by

Ad|H|*=gV Vi IlH|?,
we have
%A [H|*=g VeV i hoa® )" +IIV ' H|*.

We shall compute the first tirm of the right hand side. The structure equations
(1.11), (1.12) and (1.13) are given in tirms of local coordinates by

(Lry Racra=—4(8a8or—8eaBartJaaJer—JeaJr—2ac Jna)
Hhaahers—heahane

(L12)y Vihya™=Vihea?,

(L.13y Raey*=hahety—hehey——-Jac )"

where Ricpo=Racs’Cea and Joe=7J8s.. From (1.12)" and Ricci equality, we have
gV i hoa®)R =gV oV 5haa®)R*%,
:ged(Vl;Véhda.z_Rebdchcaz'—Rebachdcz+Rebyxhday)hbaz .
Substituting (1.11) and (1.13)/, we obtain from minimality of M™
e VA ) R
:{"‘g—(n"l_1)5§—hceyhbey}hcazhbaz
_{"fi“(gecgba"—gbcgea+]ec.]ba—.[bc]ea—zjeb]ac)+hecyhbay _hbcyheay}heczhba:c
+(heahaty—hoahty——g=Jon S, )HE R

= (M D) H [P —hoe haay i RO 4-2h o Rty RV R —2hy T & BV R
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Since we can easily show
hec?hpgyh®h* =23 (tr A, A, +23(tr JA,A,)?,
2% 2%

hedmhbdthyhbazzo ’ hbdzhedyheayhbaz:éttr(z A12)2 ’

we obtain (3.1). Q.E.D.
Next, using (3.1), we study complex Einstein submanifold M" satisfying the
condition ;}R*(X,, JX.)=pJ* in a complex projective space CP"*? of constant

holomorphic sectional curvature c¢ (>0), where X,, -+, X,,, JX,, -+, JX, are ortho-
normal basis of the tangent space M™ and p is a globally difined function on
M?". We note that the condition tER*(X,, JX)=pJ* is always satisfied when

p=1. We need the following Lemma.

LEMMA 3. Let M™ be a complex Einstein submanifold (i.e. S=pg) satisfying
the condition ;R*(Xt, JX)=pJ* in a complex space form M™P(c). If M™ is

not totally geodesic, then the codimension p is smaller than —%—n(n—l—l) and M™

is of constant holomorphic sectional curvature if and only if p= ”_iz_lc or
p:—%—n(n—l—l).
Proof. We first prove
32) tr ="
(3.3) trd,A;=0  (i#)),
(3.4) tr JA,A;=0

for any ¢ and j, where a=—21—{(n—|—1)c—2p}. From (1.14) and (2.1), we have

}AcX, vy=—LEx, vy—Lax, ),

(3.5)
AKX, Yy=5X, )

and hence we obtain
XX, JY)=—(Z+a)<x, ¥>.
Thus from (2.2) and the condition ;R*(Xt, JX)=pJ*,

SRAX,, JX)Co JCy=—5 LUK,y JX)=—"—Ta

t,1

|

ﬂ:

On the other hand, using (1.13), we find immediately that
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p=2ARXX,, JX)C, JCH=—tr A~ nzc ’

SARNX,, JX0 Gy, JCH=—tr A4, (i#]),

SCRHX,, JR)C, Cy=—trJAA

for all 7 and j. Therefore we see that the condition ZL)R*(Xt, JX)=pJ* implies

(38.2), (3.3) and (3.4).
The equation (1.11) may be written as

R(X, Y)Z:-Z—RO(X, Y)Z+D(X,Y)Z,
where
R(X, Y)Z=Y, ZyX—(X, Z)Y
+JY, 25JX—<JX, Z)JY-2{JX, Y>]Z,
D(X, Y)Z=SKAY, Z)AX~(AX, ZYAY)
+BUAY, ZJAX—JAX, Z)JAY}.
Next, we compute

[p+=Ro| =101 +5D, R+ 5 IR
4 0 2 ’ 0. 16 0 ’

where v is arbitrary number and <, ) means the extended inner product on the
tensor space of type (1.3). Using (3.2), (3.3) and (84), we can easily find

2
IDIP=t5a*, 5D, Ry=—8nav, LplRol*=2n(n+1)".

Thus it follows that

(3.6) IID—I——Z—R0 Z=2n{(n+1)u2-—4av+-zp£az} .

Since the left-hand side is non-negative for arbitary number v, we obtain
a*{p——3-n(n+D}=0.

The left-hand side is equal to zero for some v if and only if a=0 or p=

%n(n+1). This completes the proof. Q.E.D.

THEOREM 3. Let M™ be a connected complete complex Einstein submanifold
(i.e., S=pg) satisfying the condition EtR*(X,, JX)=pJ* in a complex projective

If p>Li@ﬁﬂc, then

n+p y
space CP of holomorphic sectional curvature c. = =
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V’H=0 and p is n—gl ¢ or % n(g;—f;il—l) c. If p:—n%l—c, then M™ is a totally

geodesic submanifold, i.e., CP™. If p % %ﬂlc then M™ is the complex

quadric Q™ when p=1 and M™ 1s the complex projective space of constant holo-

morphic sectional curvature % when p:é—n(n—l-l).
Proof. From (3.3) and (3.4), we see that (3.1) reduces to
3.7 ‘%—AIIHW:%(?%-FZ)IIH“Z—S tr (Z) Af)z—zg(tr AP+ H|?.

Using (3.5), we obtain
(3.8 |H|*=23tr A*=2na,

(3.9) tr(2 Aﬁ)z————g—az .
Substituting (3.2), (3.8) and (3.9) in (3.7), we have
n ’ _
ne{(n+2)c—da—2p-af+ |7 H|*=0.

Therefore if a<— b(n+2) (1 e, p= % ntptl) >, then V/H=0 and p=

2 2p+n 2p+n
n+1c or p= % W%T—_{jl)c. If p= n—é—l ¢, then H=0, i.e, M" is totally
geodesic. If p=—%—%—§7€—1——1—)c then M™ is the complex quadric Q® when p=1

(cf. [8]). If p=—5- % %c and p=%n(n+l), then we see that M™ is of

constant holomorphic sectional curvature by Lemma 3. Substituting a=

% pz(;j_-i) ¢ and p=—%-n(n+1) in (3.6), we have

|+ =2t 05",

Thus, if p=—%——"—%l—)c and p=%n(n+1), then we see that M™ is of

constant holomorphic sectional curvature % and hence from results obtained
by Ogiue [5] that M™ is rigid. For the imbedding of complex projective space
of holomorphic sectional curvature % into complex projective space of holo-

morphic sectional curvature ¢, see O’'Neill [6]. Q.E.D.
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