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ON QUATERNION KAHLERIAN MANIFOLES
ADMITTING THE AXIOM OF PLANES

BY SHOICHI FUNABASHI AND YOSHIYA TAKEMURA

§ 0. Introduction.

A Riemannian manifold satisfies, as is well known, the axiom of planes if
and only if it is of constant curvature (See Cartan [3]). In 1953, Yano and
Mogi [8] proved that a Kahlerian manifold is of constant holomorphic sectional
curvature if and only if it admits the axiom of holomorphic planes. Thereafter
Ogiue [7] proved in 1964 that a Sasakian manifold is of constant C-holomorphic
sectional curvature if and only if it admits the axiom of C-holomorphic planes or
C-holomorphic free mobility.

Recently, quaternion Kahlerian manifolds have been studied by several authors
[1], [2], [4], [5], [6] and interesting results have been obtained. In a recent
paper [5], Ishihara have determined the form of the curvature tensor of a qua-
ternion Kahlerian manifold with constant (J-sectional curvature (See the formula
(1.8)). The purpose of the present paper is to prove

THEOREM. A quaternion Kahlerian manifold M admits the axiom of Q-
planes if and only if it is of constant Q-sectional curvature, provided that
d i M ^ 8

COROLLARY. A quaternion Kahlerian manifold M of dimension 4m admits
the axiom of Q-planes of order p ( l ^ ί ^ r a ) if and only if it is of constant Q-
sectional curvature, provided
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§ 1. Preriminaries.

We now recall definitions and some formulas in quaternion Kahlerian mani-
folds (See [5]). Consider a Riemannian manifold (M, g) which admits 3-dimen-
sional vector bundle V consisting of tensors of type (1, 1) over M. The triple
(M, g, V) is called a quaternion Kahlerian manifold if M, g and V satisfy the
following conditions (a) and (b):
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(a) In any coordinate neighborhood U of M, there is a local base {F, G, H)
of the bundle V, such that F, G and H are tensor fields of type (1, 1) in U
satisfying

(1.1) F2=G2=H2=-I,

GH=-HG=F, HF=-FH=G, FG=-GF=H,

/ being the identity tensor fields of type (1, 1) in M, and each of F, G and H
forms an almost Hermitian structure together with g. Such a local base {F, G, H}
of V is called a canonical local base of the bundle V in U.

(b) If φ is a cross section of the bundle V, then Fxψ is also a cross section
of V for any vector field X in M, where ί7 denotes the Riemannian connection
of M.

We call (g, V) a quaternion Kdhlenan structure. From now on, we denote
a quaternion Kahlerian manifold (M, g, V) simply by (M, g) or more simply by
M, for the sake of simplicity.

Any quaternion Kahlerian manifold (M, g) is of dimension im (ra^l) and is
an Einstein space, that is, the Ricci tensor has the components Kμ of the form

(1.2) KJi=A(m+2)agjί,

gji being components of g (See [5]), where the indicies h, i, j , k and / run over
the range {1, 2, •••, Am) and the summation convention will be used with respect
to these indices.

We assume that M is of dimension 4m ̂ 8 . We denote by F%

h, G%

h and H%

h

respectively components of F, G and H, and by Kkji

h components of the curva-
ture tensor of (M, g). In terms of these notations, the following formulas were
established in [5] :

K F t s = K F s K G t s = K &(1.3)
m i 2

(1.4) Kt,Fk

tF,'=Kt,Gk

tG,'=Kt.Hh

tH,'=Kl,,,

(1.5) -K^F^F

(1.6) K^FSFS-

a being a real constant appearing in (1.2), where we have put FkJ=Fk

tgtJ, Fn

=gμFt

ι and so on.
Using the first Bianchi identity, (1.5) and (1.6), we get easily

(1.7) K^FW-K^FSF,'

=Kjίkh+£a(GjiGkh+GkiGjh+GkjGih+HjiHkh+HkιHjh+HkjHih).

Taking a point x of a quaternion Kahlerian manifold M, and a tangent vector
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X at x, we put

Q(X)={Y\ Y=aX+bFX+cGX+dHX} ,

where α, b, c and d are arbitary real numbers, and we call Q{X) the Q-section
determined by X, which is a 4-dimensional subspace in the tangent space TX(M)
of M at x. If the sectional curvature for any two vectors belonging to Q(X) is
a constant c(X) depending only upon the vector X at x, then the constant c(X)
is called the Q-sectional curvature with respect to X at x. If the Q-sectional
curvature c(X) is a constant c independent of the choice of X and x, then the
manifold M is a quaternion Kahlerian manifold of constant Q-sectional curvature
c. This definition leads us to the following result ([5]). That is, a quaternion
Kahlerian manifold of dimension 4m ̂ 8 is of constant Q-sectional curvature c if
and only if its curvature tensor has the components of the form

(1.8) K t j ^ ^

+ GkhGji~GjhGki—2GkjGih

JrHkhHji--HjhHH—2HkjHih).

We now introduce the notion of the axiom of Q-planes and that of Q-planes
of order p. Let M be a 4m-dimensional quaternion Kahlerian manifold with a
quaternion Kahlerian structure V. A quaternion Kahlerian manifold is said to
admit the axiom of Q-planes if there exists a 4-dimensional totally geodesic sub-
manifold tangent to any Q-section at each point. Next we take a point x in M,
and linearly independent vectors Z ( f l ) (q=l, •••, p, l^kq^m) at x such that X^,
FX(Q), GXC0, HXC0 {q—\, •••, p) are also linearly independent. The 4j)-dimensional
vector subspace

Q(Xia, - , XW)={Y\ Y= Σ (aqXw+bqFXw+cqGXw+dqHXίφ)} ,

aq, bq, cq and dq being arbitary real numbers, in the tangent space TX(M) is
called a Q-planes of order p determined by Xω, •••, XCp> If a quaternion Kahle-
rian manifold admits a 4^-dimensional totally geodesic submanifold tangent to
any Q-planes of order p at each point, we say that the manifold admits the
axiom of Q-planes of order p. Thus a Q-plane of order 1 is nothing but a Q-
section. The axiom of Q-planes of order 1 coincides with the axiom of Q-planes.
As a consequence of (1.8), a quaternian Kahlerian manifold of dimension 4m
admits the axiom of Q-planes of order p (l^p^m) if it is of constant Q-sectional
curvature. Therefore, the theorem stated in § 0 implies immediately the corollary
stated in §0.

§2. Proof of the theorem.

We are now going to prove our theorem stated in §0. Assume that a qua-
ternion Kahlerian manifold (M, g) of dimension 4m^8 admits the axiom of Q-
planes. We take an arbitrary point x in M and Q-section Q(X) determined by
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an arbitrary unit tangent vector X at x. Denote by N the totally geodesic
submanifold of dimension 4 passing through x and being tangent to Q(X) at x.
If the submanifold N is assumed to be expressed by parametric equations xh~
xh(vλ), where xh and vλ are local coordinates in M and N respectively. Then,
since N is totally geodesic, the equations

are established, { } and j | being Christoffel symbols formed respectively

with gji and the induced metric gvμ of N, where the indices K, λ, μ and v run
over the range {1, 2, 3, 4} and the summation convention will be used with respect
to these indices. Since the integrability conditions of these differential equations
above are given by the equation of Gauss, we have

(2.1) Kvμ/Bκ

h=Kkji

hBv

kBμW,\

where Bv

ι—dxι/dvv, and Kvμλ

κ are components of the curvature tensor of N. If
{F, G, H} is a canonical local base of V around the point x of M, then each of
Bμ

h, for a fixed index μ, is at x linear combination of Xh, Fι

hX\ GfX1 and
Ht

hXι where Xh are components of X, because the submanifold N is tangent to
the O-section Q(X). Conversely, each of Xh, Fx

hX\ Gτ

hXι and Hτ

hXι is a linear
combination of Bx

h, B2

h, Bs

h and B4

h. Thus, taking account of (2.1), we have

where a, β, γ and δ are local functions in M. Since X is a vector, the equation
above is equivalent to the following equation:

(2.2) Kkjt*F,kX'X>X*

Since X can be arbitrarily taken, we have from (2.2)

(2.3) K^Ff+K^FS+K^FS+K^FS+K

=2a(δfgls+δίgιJ+δ'}gsι)+2β(Fι%s+Fs'
ιgl}+FJ

hgn)

Transvecting the equation above with Ft* and taking the skew-symmetric parts
of the both sides with respect to the indicies t and j, we have

(2.4) -Ktit

h-Ktjt*+Kitι

h+K,a

=2a(2δϊFtl+Ft

hgιj-F3

hgit+δ'}Fti-δϊFji)
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+2β(2Fι

hFtJ-δtgtJ+δ}git+FJ

hFti-Ft

hFJi)

+2γ(2Gi

hFtj-Ht

hgl3+H3

hgit+GJ

hFti-Gt

hFjί)

+2δ(2Hτ

hFt3+Gt

hgl3-G3

hgit+H3

hFti-Ht

hF3i).

We are now going to determine the coefficients a, γ and δ. First of all, a
vanishes identically. In fact, contracting (2.4) with respect to ί and h and taking
account of (1.3) and (1.4), we obtain

(8m+4)αF t ,=0,
which implies α=0.

Next, both of γ and δ are also vanishing identically. In fact, by transvect-
ing (2.3) with Ft

%, we get

+2δ(Gthg3S+HshFt3+HjhFts).

If we take skew-symmetric parts of the both side in the equation above with
respect to the indices t and h, then we have, using (1.5) and (1.6),

2γ{2Hhtg3S+GshFt3+GjhFts-GstFh3-GjtFhs)

+2δ(2Gthg3S+HshFt3+H3hFts-HstFh3-HjtFhs)=0,

from which, transvecting with gJS,

Therefore we obtain f=d=O. Thus (2.4) reduces to the following equation:

(2.5) -3Kt3ih+KkuhF3

kFt

s-KkιshFt

kF3

s

+KksihF3

kFt

s-KksihFt

kF3

s

=2β(2FίhFt3-gthgl3+g3hgit+FjhFti-FthFJi).

On the other hand, using the first Bianchi identity and (1.5), we have

KkιshF3

kFt

s-KktshFt

kF3

s=-Ktjίh-Aa(Gt3Όih+HtjHih).

By similar divices, we have also
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Substituting these two equations into (2.5) and using (1.5) and (1.7), we have

(2.6) Ktjih=-^{gthgji-gjhgHΛ-FthFji-FjhFti~2FtjFih)

+ a(GthGji-GjhGti-2GtjGih+HthHJi-HJhHti-2HtjHih).

Next, transvecting (2.6) with gth, we have β=ia as a consequence of (1.2). Thus
the Riemannian manifold (M, g) has the curvature tensor of the form (1.8) with
a function c. However, in such a case, the function c is necessarily a constant
(See [5]). Therefore, (M, g, V) is a quaternion Kahlerian manifold of constant
£?-sectional curvature. Thus our theorem has been completely proved.
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