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ON QUATERNION KAHLERIAN MANIFOLES
ADMITTING THE AXIOM OF PLANES

By SHOICHI FUNABASHI AND YOSHIYA TAKEMURA

§0. Introduction.

A Riemannian manifold satisfies, as is well known, the axiom of planes if
and only if it is of constant curvature (See Cartan [3]). In 1953, Yano and
Mogi [8] proved that a Kihlerian manifold is of constant holomorphic sectional
curvature if and only if it admits the axiom of holomorphic planes. Thereafter
Ogiue [7] proved in 1964 that a Sasakian manifold is of constant C-holomorphic
sectional curvature if and only if it admits the axiom of C-holomorphic planes or
C-holomorphic free mobility.

Recently, quaternion Kéhlerian manifolds have been studied by several authors
[1], [2], [4], [5], [6] and interesting results have been obtained. In a recent
paper [5], Ishihara have determined the form of the curvature tensor of a qua-
ternion Kdhlerian manifold with constant Q-sectional curvature (See the formula
(1.8)). The purpose of the present paper is to prove

THEOREM. A quaternion Kdhlerian manifold M adwits the axiom of Q-
planes 1f and only 1f 1t 1s of constant Q-sectional curvature, provided that
dim M=38.

COROLLARY. A quaternion Kdhlerian manifold M of dimension 4m admats
the axiom of Q-planes of order p (1=p=m) 1f and only 1f it 1s of constant Q-
sectional curvature, provided dim M=8.

The authors wish to express their sincere gratitude to Professor S. Ishihara
who gave them valuable suggestions.

§1. Preriminaries.

We now recall definitions and some formulas in quaternion Ké&hlerian mani-
folds (See [5]). Consider a Riemannian manifold (M, g) which admits 3-dimen-
sional vector bundle V consisting of tensors of type (1,1) over M. The triple
(M, g, V) is called a quaternion Kdhlerian manifold if M, g and V satisfy the
following conditions (a) and (b):
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(a) In any coordinate neighborhood U of M, there is a local base {F, G, H}
of the bundle V, such that F, G and H are tensor fields of type (1,1) in U
satisfying

(L1) F=G'=H*=—1,
GH=—HG=F, HF=—FH=G, FG=—GF=H,

I being the identity tensor fields of type (1,1) in M, and each of F, G and H
forms an almost Hermitian structure together with g. Such a local base {F, G, H}
of V is called a canonical local base of the bundle V in U.

(b) If ¢ is a cross section of the bundle V, then V x¢ is also a cross section
of V for any vector field X in M, where V denotes the Riemannian connection
of M.

We call (g, V) a quaternion Kdhlerian structure. From now on, we denote
a quaternion Kéhlerian manifold (M, g, V) simply by (M, g) or more simply by
M, for the sake of simplicity.

Any quaternion Kidhlerian manifold (M, g) is of dimension 4m (m=1) and is
an Einstein space, that is, the Ricci tensor has the components Kj; of the form

(1.2) K,;=4(m+2)ag;;,

&;: being components of g (See [5]), where the indicies A, i, j, k and [ run over
the range {1, 2, ---, 4m} and the summation convention will be used with respect
to these indices.

We assume that M is of dimension 4m=8. We denote by F.*, G,* and H,
respectively components of F, G and H, and by K,;" components of the curva-
ture tensor of (M, g). In terms of these notations, the following formulas were
established in [5]:

(13) KyaFt=——lo KuFy', KuaG'=—— 15 KuGy',
KyaH"=——"0 Ko Hy?

(14) Ky F\F=K,GyG, =K,H'H =K,

(15) — Koo P P+ Ky jin=—40(Gy, Gan+ Hy H)

(16) Koy Fi Pt — K, F Pyt =—A40(GyyGant HiyHin)

a being a real constant appearing in (1.2), where we have put F,,=F,'g,,, F*
=g’ F," and so on.
Using the first Bianchi identity, (1.5) and (1.6), we get easily

(17) KtjsthtFts—'KnsthtF;s
= jikh+4a(Gjinh+GkiGjh+ijGih+Hjinh+szHjh‘l'ijHih)~

Taking a point x of a quaternion Kdhlerian manifold M, and a tangent vector
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X at x, we put
QX)={Y|Y=aX+bFX+cGX+dHX},

where a, b, ¢ and d are arbitary real numbers, and we call Q(X) the Q-section
determined by X, which is a 4-dimensional subspace in the tangent space T,(M)
of M at x. If the sectional curvature for any two vectors belonging to Q(X) is
a constant ¢(X) depending only upon the vector X at x, then the constant ¢(X)
is called the Q-sectional curvature with respect to X at x. If the @-sectional
curvature ¢(X) is a constant ¢ independent of the choice of X and x, then the
manifold M is a quaternion Ké&hlerian manifold of constant Q-sectional curvature
¢. This definition leads us to the following result ([5]). That is, a quaternion
Kéhlerian manifold of dimension 4m=8 is of constant Q-sectional curvature ¢ if
and only if its curvature tensor has the components of the form

(1.8) Kkjih: —Z—(gkhgji_gjhgki+FkhFji_thFki—sz]Fih
+GinGji— GG ri—2G;Gint HywHj— HjpHy—2H, jHy) .

We now introduce the notion of the axiom of @-planes and that of Q-planes
of order p. Let M be a 4m-dimensional quaternion Kdhlerian manifold with a
quaternion Kédhlerian structure V. A quaternion Kdihlerian manifold is said to
admit the axiom of Q-planes if there exists a 4-dimensional totally geodesic sub-
manifold tangent to any Q-section at each point. Next we take a point x in M,
and linearly independent vectors X, (¢=1, -+, p, 1=g=<m) at x such that X,
FX ., GXpy HX (g (g=1, -++, p) are also linearly independent. The 4p-dimensional
vector subspace

D
Q(X(Dv Tty X(p)): {Yl Y= qzz‘»‘(aqX<q)+quX<q)+CqGX(q)+quX(q))} ’

a, by, ¢g and d, being arbitary real numbers, in the tangent space T,(M) is
called a Q-planes of order p determined by X, -+, X5. If a quaternion Kihle-
rian manifold admits a 4p-dimensional totally geodesic submanifold tangent to
any @-planes of order p at each point, we say that the manifold admits the
axiom of Q-planes of order p. Thus a Q-plane of order 1 is nothing but a Q-
section. The axiom of Q-planes of order 1 coincides with the axiom of Q-planes.
As a consequence of (1.8), a quaternian Kdihlerian manifold of dimension 4m
admits the axiom of Q-planes of order p (1=<p=<m) if it is of constant Q-sectional
curvature. Therefore, the theorem stated in § 0 implies immediately the corollary
stated in §0.

§2. Proof of the theorem.

We are now going to prove our theorem stated in §0. Assume that a qua-
ternion Kaéahlerian manifold (M, g) of dimension 4m=8 admits the axiom of Q-
planes. We take an arbitrary point x in M and Q-section Q(X) determined by
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an arbitrary unit tangent vector X at x. Denote by N the totally geodesic
submanifold of dimension 4 passing through x and being tangent to Q(X) at x.
If the submanifold N is assumed to be expressed by parametric equations x"=
x™(v?), where x" and v* are local coordinates in M and N respectively. Then,
since N is totally geodesic, the equations

ox?  ox*
av”avf‘ { } e azjf—/‘_ ot {u ‘u} 0

are established, { Jh z} and {” #} being Christoffel symbols formed respectively

with g;; and the induced metric g,, of N, where the indices #, 4, # and v run
over the range {1, 2, 3, 4} and the summation convention will be used with respect
to these indices. Since the integrability conditions of these differential equations
above are given by the equation of Gauss, we have

(2.1) Ky/.ek'EBmh:KkjithkB,uJBll ’

where B,'=0x"/0v”, and K,,.;" are components of the curvature tensor of N. If
{F, G, H} is a canonical local base of V around the point x of M, then each of
B,", for a fixed index p, is at x linear combination of X" F,*X*, G/*X* and
H"X" where X" are components of X, because the submanifold N is tangent to
the Q-section Q(X). Conversely, each of X* F,*X* G,*X" and H,*X"* is a linear
combination of B,*, B,", B, and B,". Thus, taking account of (2.1), we have

Kyt FEX XX =a X"+ BF X 4GP X +0H X

where «, B, 7y and 0 are local functions in M. Since X is a vector, the equation
above is equivalent to the following equation :

(2.2) K,y "F XX X = (ad? 8,4 BF, g, +7G,"G,+0H, g, ) X ' X X* .
Since X can be arbitrarily taken, we have from (2.2)
(2.3) K" FE Ky " F - Ky M F P K" F - K P4 K F
=2a(0}g,s+ 078,40} 8:)+2B(F." g+ Fi" &)+ F,"g)
+27(G. g+ G g, + G, g0 )+20(H, g )5+ Hy g+ H gy .

Transvecting the equation above with F,® and taking the skew-symmetric parts
of the both sides with respect to the indicies ¢ and j, we have

(2.4) — K ;"= K K+ K,
+ Ky FFF S — K M F L F 4 K MFEF S — Ky MFLF
+ Ky "FEF S — Ky MFEF S K PR — K MFFF
=2a(20}F;,+F,g,;— F," g+ 0% F,;— 0} F ;)



214 SHOICHI FUNABASHI AND YOSHIYA TAKEMURA
+2B(2F "F,;—0tg,,+ 0% g+ F,"Fry—F,"F ;)
+27(2G"F,;— H,"g,,+ H,"gu+G,"F,;— G F ;)
+26Q2HF,,+G,"g,,—G," g+ H"F,;—HF ;).

We are now going to determine the coefficients «, y and d0. First of all, «
vanishes identically. In fact, contracting (2.4) with respect to ¢ and # and taking
account of (1.3) and (1.4), we obtain

(8m+4)aF,;=0,
which implies a=0.
Next, both of y and 0 are also vanishing identically. In fact, by transvect-
ing (2.3) with F;*, we get

KjinFFF 4 Ky F ¥ F 4 Ko o F P+ Ky F A F
+ Ky jnF*Fy'+ Ky FF
=2B(— 8 &5t FnFoj+ FjuF o) +27(— Hin&ps+GonFoy+GnFrs)
+20(Gun 85+ HanFoy+HinFy) .

If we take skew-symmetric parts of the both side in the equation above with
respect to the indices ¢ and A, then we have, using (1.5) and (1.6),

2r(2Hp: 8,5+ GonFrj+GinFoo— G Fry—G i Fs)
+20(2G,ng,s+ Han Fry - Hip Fos— Hy Frj— Hj Fr) =0,
from which, transvecting with g’°,
27(8m+-4) Hy,+23(8m~+4)G,,=0.
Therefore we obtain y=06=0. Thus (2.4) reduces to the following equation :
(2.5) —3K,,int Kpsn F,)*F i — Ky o F*F
+ K jinFFF — Koo FEF S K ysn o F — Ko FF
+ KysinF FF — Kpoin FFF
=2B(2FinF 1)~ 8in&,+ & n8ut FinFu—FunF i) .
On the other hand, using the first Bianchi identity and (1.5), we have
Ko FJ*F =Ko F*F ' =—K, jin—40(G, jG i+ H, jHin) .
By similar divices, we have also
KysinF* P — KpnFFF°
=—K,jin+4a(G G+ HinHy)—4a(Gin G+ HinH,,) .
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Substituting these two equations into (2.5) and using (1.5) and (1.7), we have
(2.6) Ktjih,z—?:i (gth.gji—gjhgti+FthFji_th.Fti—'2thFih)

+a(GenGji— G pGi—2G ;G + chHji_H]thi_ZHthih) .

Next, transvecting (2.6) with g**, we have 8=4a as a consequence of (1.2). Thus
the Riemannian manifold (M, g) has the curvature tensor of the form (1.8) with
a function ¢. However, in such a case, the function ¢ is necessarily a constant
(See [5]). Therefore, (M, g, V) is a quaternion Ké&hlerian manifold of constant
Q-sectional curvature. Thus our theorem has been completely proved.
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