ON AN ISOMETRY OF RIEMANNIAN MANIFOLDS OF NEGATIVE CURVATURE

BY RYOUSUKE ICHIDA

Let M be an $n(\geq 2)$ -dimensional connected complete Riemannian manifold. We say that a continuous function $f: M \rightarrow R$ is convex if its restriction to any geodesic of M is convex and a nonempty subset A of M is totally convex if it contains every geodesic segment of M whose endpoints are in A. The following facts were proved by Bishop and O'Neill [1].

Fact 1. Let f be a convex function on M. Then, for each number c, the set $M^c = \{m \in M; f(m) \le c\}$ is totally convex.

Fact 2. Supposing that M is simply connected and of nonpositive sectional curvature, let φ be a fixed-point-free isometry of M. Then $d(p, \varphi(p))$, $p \in M$, is a convex function on M and it has no minimum if and only if no geodesic of M is translated by φ , where d is the distance function of M.

In this note we will obtain another condition that $d(p, \varphi(p))$, $p \in M$, has no minimum when dim M=2. In the following, let M be an $n(\geq 2)$ -dimensional simply connected complete Riemannian manifold of nonpositive sectional curvature.

As is well known, for any two points p,q of M there exists a unique geodesic segment from p to q. Let $\sigma: [0,1] \rightarrow M$ be the geodesic segment such that $\sigma(0)=p$ and $\sigma(1)=q$, which we denote by $\overline{p},\overline{q}$. First of all, we shall show the following

PROPOSITION 1. Let φ be a fixed-point-free isometry of M. Then, for any positive integer k, $\varphi^k = \underbrace{\varphi \circ \cdots \circ \varphi}_k$ is also fixed-point-free.

Proof. Suppose that φ^2 has a fixed point $p \in M$. Then φ must fix the middle point of the geodesic segment $\overline{p}, \overline{\varphi(p)}$ but this contradicts the assumption for φ . Hence φ^2 is fixed-point-free. Now, suppose that $k \geq 3$ and φ^i , $1 \leq i \leq k-1$, is fixed-point-free and φ^k has a fixed point $p \in M$. We consider a closed ball $B = B(p, r) = \{q \in M; d(p, q) \leq r\}$ such that B contains the set $\{p, \varphi(p), \cdots, \varphi^{k-1}(p)\}$. Then $d(p, q), q \in M$, is a convex function on M [1]. By virtue of Fact 1 the closed ball B is totally convex, so that geodesic segments $\overline{\varphi^i(p)}, \overline{\varphi^{i+1}(p)}, 1 \leq i \leq k-1$, are contained in B. Now we consider the subset $K := \{q \in B; \varphi^j(q) \in B, j=1,2,\cdots\}$ of B. Then we see that K is nonempty and compact and for each point $q \in K$, $\overline{q}, \overline{\varphi(q)} \subset K$. Restricting $f(q) = d(q, \varphi(q)), q \in M$, to K, it attains

Received May 10, 1973.

its minimum at a point $q_0 \in K$. Since φ^2 is a fixed-point-free, $\overline{q_0, \varphi(q_0)}$ and $\overline{\varphi(q_0), \varphi^2(q_0)}$ do not overlap each other. Now we shall show that the angle between $\overline{\varphi(q_0), q_0}$ and $\overline{\varphi(q_0), \varphi^2(q_0)}$ is π . In fact, suppose that it is less than π . Let q_1 is an interior point of $\overline{q_0, \varphi(q_0)}$, then $q_1 \in K$ and we have

$$d(q_1, \varphi(q_1)) < d(q_1, \varphi(q_0)) + d(\varphi(q_0), \varphi(q_1))$$

$$= d(q_1, \varphi(q_0)) + d(q_0, q_1) = d(q_0, \varphi(q_0)).$$

which contradicts the supposition that f|K takes its minimum at q_0 . Thus three points q_0 , $\varphi(q_0)$, $\varphi^2(q_0)$, in this order, are on the geodesic σ passing through q_0 and $\varphi(q_0)$, so that φ translates σ . Since any geodesic ray of M diverges, $\varphi^j(q_0) \in M - B$ for a sufficiently large positive integer j. This is a contradiction since $q_0 \in K$. Therefore, by the induction, φ^k must be fixed-point-free.

Using the same way as Proposition 1, we can prove the following.

COROLLARY. In Proposition 1, for each point $p \in M$, the sequence $\{d(p, \varphi^k(p))\}$, $k \in N$, is unbounded.

For any geodesic segment σ of M, we denote by σ^* the geodesic extention of σ in the both sides.

LEMMA 1. Under the same assumption as Proposition 1, if φ does not translate any geodesic of M, then we have the following: For each point p of M,

$$p \in \varphi \tau^*$$
, $p \in \varphi^2 \sigma^*$, $\varphi(p) \in \tau^*$, $\varphi(p) \in \varphi^2 \sigma^*$, $\varphi^2(p) \in \sigma^*$, $\varphi^3(p) \in \sigma^*$, $\varphi^3(p) \in \tau^*$, $\varphi^3(p) \in \tau^*$,

where σ , τ are the geodesic segments \overline{p} , $\varphi(p)$ and \overline{p} , $\varphi^2(p)$, respectively.

Proof. We shall show $p \in \varphi \tau^*$. Suppose that $p \in \varphi \tau^*$. Then we easly see that $\sigma = \overline{p, \varphi(p)}$ is contained in $\varphi \tau^*$. Hence exactly one of the following holds:

(1)
$$\varphi(p) \in \overline{p, \varphi^3(p)}$$
 (2) $p \in \overline{\varphi(p), \varphi^3(p)}$ (3) $\varphi^3(p) \in \overline{\varphi(p), p}$.

In the case (1), considering the geodesic triangle $\Delta(p, \varphi^2(p), \varphi^3(p))$, we have

$$d(p, \varphi^{3}(p)) = d(p, \varphi(p)) + d(\varphi(p), \varphi^{3}(p))$$

= $d(\varphi^{2}(p), \varphi^{3}(p)) + d(p, \varphi^{2}(p)),$

which implies $\varphi^2(p) \in \overline{p}$, $\overline{\varphi^3(p)}$. Then either $\varphi^2(p) \in \overline{p}$, $\varphi(p)$ or $\varphi^2(p) \in \overline{\varphi(p)}$, $\varphi^3(p)$ holds. In the former case, it is clear that $\varphi^2(p) = p$ must hold. This contradicts Proposition 1. In the latter case, φ translates $\varphi\tau^*$, which contradicts the assumption for φ . Hence the case (1) never arise. We can also prove the cases (2), (3) never arise by the same way. Thus we have $p \notin \varphi\tau^*$. We can also prove the other facts similarly.

PROPOSITION 2. In Proposition 1, if dim M=2 and φ is orientation preserving, then the following conditions (a), (b) are equivalent:

- (a) any geodesic of M is not translated by φ .
- (b) for each point p of M, \overline{p} , $\varphi^2(\overline{p})$ and $\overline{\varphi(p)}$, $\varphi^3(\overline{p})$ or \overline{p} , $\varphi(\overline{p})$ and $\overline{\varphi^2(p)}$, $\varphi^3(\overline{p})$ intersect at an interior point of these geodesic segments.

Proof. We shall deduce (b) from (a). Suppose that there exists a point p of M such that (b) does not hold for p. By Proposition 1, four points p, $\varphi(p)$, $\varphi^2(p)$, and $\varphi^3(p)$ are all distinct and by Lemma 1, above any three points are not on a same geodesic. Note that M is homeomorphic to R^2 . Since φ is orientation preserving, the following two cases are possible:

- (1) $\varphi^3(p)$ is in the geodesic triangle $\Delta(p, \varphi(p), \varphi^2(p))$.
- (2) p is in the geodesic triangle $\Delta(\varphi(p), \varphi^2(p), \varphi^3(p))$. Then $\varphi(\Delta(p, \varphi(p), \varphi^2(p)) = \Delta(\varphi(p), \varphi^2(p), \varphi^3(p))$. In the case (1) since $\Delta(\varphi(p), \varphi^2(p), \varphi^3(p)) \subset \Delta(p, \varphi(p), \varphi^2(p))$, it contradicts that φ is an isometry. In the case (2), we get also a contradiction. The converse is clear.

Remark. In Proposition 2, the curvature of M is not zero identically.

Finally, the author would like to express his thanks to Professor T. Otsuki for his kind guidance.

REFERENCE

[1] R.L. BISHOP AND B.O' NEILL, Manifolds of negative curvature, Trans. Amer. Math. Soc. vol. 145 (1969), 1-49.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.