R, ICHIDA
KODAI MATH. SEM. REP.
26 (1974), 100—102

ON AN ISOMETRY OF RIEMANNIAN MANIFOLDS
OF NEGATIVE CURVATURE

BY RYOUSUKE ICHIDA

Let M be an n(=2)-dimensional connected complete Riemannian manifold.
We say that a continuous function f: M—R is convex if its restriction to any
geodesic of M is convex and a nonempty subset A of M is totally convex if
it contains every geodesic segment of M whose endpoints are in A. The fol-
lowing facts were proved by Bishop and O’Neill [1].

Fact 1. Let f be a convex function on M. Then, for each number ¢, the
set M={meM; f(m)=c} is totally convex.

Fact 2. Supposing that M is simply connected and of nonpositive sectional
curvature, let ¢ be a fixed-point-free isometry of M. Then d(p, ¢(p)), PEM, is
a convex function on M and it has no minimum if and only if no geodesic of
M is translated by ¢, where d is the distance function of M.

In this note we will obtain another condition that d(p, ¢(p)), p€M, has no
minimum when dim M=2. In the following, let M be an n(=2)-dimensional
simply connected complete Riemannian manifold of nonpositwe sectional curvature.

As is well known, for any two points p, ¢ of M there exists a unique
geodesic segment from p to ¢. Let ¢:[0, 1J—>M be the geodesic segment such
that ¢(0)=p and ¢(1)=¢, which we denote by p, q. First of all, we shall show
the following

PROPOSITION 1. Let ¢ be a fixed-point-free isometry of M. Then, for any

positive integer k, p*=gpo - 0@ is also fixed-point-free.
\——\k,‘/

Proof. Suppose that ¢® has a fixed point p=M. Then ¢ must fix the
middle point of the geodesic segment p, ¢(p) but this contradicts the agsumption
for ¢. Hence ¢?® is fixed-point-free. Now, suppose that =3 and ¢*, 1=1=<k—1,
is fixed-point-free and ¢* has a fixed point pcM. We consider a closed ball
B=B(p, n={qeM; d(p, q)=<r} such that B contains the set {p, p(p), -+, *(p)}.
Then d(p, q), g M, is a convex function on M [1]. By virtue of Fact 1 the
closed ball B is totally convex, so that geodesic segments ¢'(p), ¢ (p),
1=<i<k—1, are contained in B. Now we consider the subset K:={geB; ¢/(¢)€ B,
J=1,2,---} of B. Then we see that K is nonempty and compact and for
each point ¢€K, g, p(¢)CK. Restricting f(g)=d(q, ¢(@)), g=M, to K, it attains
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its minimum at a point ¢, K. Since ¢® is a fixed-point-free, ¢, ¢(g,) and
©(40), 9*(g,) do not overlap each other. Now we shall show that the angle be-
tween ¢(qo), ¢ and ¢(q,), ©*(¢,) is #. In fact, suppose that it is less than =,
Let g, is an interior point of ¢,, ¢(g,), then ¢;=K and we have

d(q,, (1)) <d(q, ©(q0))+d(e(q0), ©(q1))
=d(q1, ©(q0))+d(qo, 9:)=0d(q0, ©(q,),

which contradicts the supposition that f|K takes its minimum at ¢,. Thus
three points g,, ¢(g,), ¢*(¢o), in this order, are on the geodesic ¢ passing through
g, and ¢(q,), so that ¢ translates ¢. Since any geodesic ray of M diverges,
©(¢))e M—B for a sufficiently large positive integer j. This is a contradiction
since g, K. Therefore, by the induction, ¢* must be fixed-point-free.

Using the same way as Proposition 1, we can prove the following.

COROLLARY. In Proposition 1, for each point p& M, the sequence {d(p, *(p))},
ke N, is unbounded.

For any geodesic segment ¢ of M, we denote by ¢* the geodesic extention
of ¢ in the both sides.

LeMMA 1. Under the same assumption as Proposition 1, 1f ¢ does not trans-
late any geodesic of M, then we have the following: For each pownt p of M,

peEpT*, peEQia*, p(p)eE*, o(p)e& o™,
o(peo*, (pEet*, (P, (P,

where o, T are the geodesic segments p, o(p) and p, ¢*(p), respectiely.
Proof. We shall show pepr*. Suppose that pegpr*. Then we easly see
that o=p, ¢(p) is contained in ¢z*. Hence exactly one of the following holds:

D) epep, *(p)  (2) pee(p), ¢(p) (3) @ (p)ee(p), b.
In the case (1), considering the geodesic triangle 4(p, *(p), ¢*(p)), we have

d(p, 9*(p))=d(p, p(p))+d(p(), 9*())
=d(p*(p), P (D) +d(p, p*(1)),

which implies ¢*(p)Ep, ¢*(p). Then either @*(p)ep, ¢(p) or *(p)=e(D), *(p)
holds. In the former case, it is clear that ¢*(p)=p must hold. This contradicts
Proposition 1. In the latter case, ¢ translates ¢r* which contradicts the as-
sumption for ¢. Hence the case (1) never arise. We can also prove the cases
(2), (3) never arise by the same way. Thus we have peEgpr*. We can also
prove the other facts similarly.
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PROPOSITION 2. In Proposition 1, if dim M=2 and ¢ 1s orientation preserving,
then the following conditions (a), (b) are equivalent:

(a) any geodesic of M is not translated by ¢.

(b) for each point p of M, p, ¢*(p) and @(p), ¢°(p) or p, (p) and ¢*(p), ¢*(H)

intersect at an interior point of these geodesic segments.

Proof. We shall deduce (b) from (a). Suppose that there exists a point p
of M such that (b) does not hold for p. By Proposition 1, four points p, ¢(p),
¢©*(P), and ¢*(p) are all distinct and by Lemma 1, above any three points are
not on a same geodesic. Note that M is homeomorphic to R% Since ¢ is
orientation preserving, the following two cases are possible:

(1) ¢*p) is in the geodesic triangle 4(p, ¢(p), ¢*(P)).

(2) p is in the geodesic triangle 4(o(p), ¢*(P), *(P)).

Then ¢(4(p, o(p), *(p))=4(p(D), *(P), ¢*(p)). In the case (1) since 4(p(p), p*(),
O (PHTA(D, o(P), P*()), it contradicts that ¢ is an isometry. In the case (2),
we get also a contradiction. The converse is clear.

REMARK. In Proposition 2, the curvature of M is not zero identically.

Finally, the author would like to express his thanks to Professor T. Otsuki
for his kind guidance.
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