NOTES ON SOME 3- AND 4-DIMENSIONAL RIEMANNIAN MANIFOLDS

By Kouei Sekigawa

1. Introduction. The Riemannian curvature tensor R of a locally symmetric Riemannian manifold (M, g) satisfies

$$
\begin{equation*}
R(X, Y) \cdot R=0 \quad \text { for all tangent vectors } X \text { and } Y, \tag{*}
\end{equation*}
$$

where $R(X, Y)$ operates on R as a derivation operator of the tensor algebra at each point of M. Conversely, does this algebraic condition $\left(^{*}\right)$ on the curvature tensor field R imply that $\nabla R=0$? Let R_{1} be the Ricci tensor of (M, g). Then (*) implies in particular

$$
\begin{equation*}
R(X, Y) \cdot R_{1}=0 \quad \text { for all tangent vectors } X \text { and } Y . \tag{**}
\end{equation*}
$$

In the present paper, we shall show that if the covariant derivative of the curvature tensor satisfies some algebraic conditions at each point, then the Riemannian manifold is locally symmetric.

In general, according to [4], we have
Proposition A. Let (M, g) be an $m(\geqq 3)$-dimensional real analytic Riemannian manifold. Assume that
(1.1) the restricted holonomy group is irreducible,

$$
\begin{array}{ll}
R(X, Y) \cdot R=0, & \text { that is }(*) \\
R(X, Y) \cdot \nabla^{k} R=0, & \text { for } \quad k=1,2, \ldots \tag{1.3}
\end{array}
$$

Then (M, g) is locally symmetric.
In this note, we shall prove
Theorem B. Let (M, g) be a 3-dimensional real analytic Riemannian manifold. Assume (1.1), (1.2) and

$$
\begin{equation*}
R(X, Y) \cdot \nabla R=0 \quad\left(\text { or } \quad R(X, Y) \cdot \nabla_{Z} R=0\right) \tag{1.4}
\end{equation*}
$$

Then (M, g) is a space of constant curvature.
Received July 29, 1971.

Theorem C. Let (M, g) be a 4-dimensional real analytic Riemannian manifold. Assume (1.1), (1.2) and (1.4). Then (M, g) is locally symmetric.
2. 3-dimensional cases. Let (M, g) be a 3 -dimensional real analytic Riemannian manifold. R (resp. R_{1}) denotes the curvature tensor (resp. the Ricci tensor) of $(M, g) . \quad R^{1}$ denotes a field of symmetric endomorphism satisfying $R_{1}(X, Y)$ $=g\left(R^{1} X, Y\right)$. It is known that the curvature tensor R of (M, g) is given by

$$
\begin{equation*}
R(X, Y)=R^{1} X \wedge Y+X \wedge R^{1} Y-\frac{\operatorname{trace} R^{1}}{2} X \wedge Y \tag{2.1}
\end{equation*}
$$

for all tangent vectors X and Y.
At each point $p \in M$, we may choose an orthonormal basis $\left\{e_{i}\right\}$ such that $R^{1} e_{i}=\lambda_{i} e_{i}, 1 \leqq i, j, k, \cdots \leqq 3$. Then, from (*) (or equivalently (**)) and (2.1), we see that essentially only the following cases are possible:

$$
\begin{align*}
& \lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda, \quad \lambda \neq 0, \tag{I}\\
& \lambda_{1}=\lambda_{2}=\lambda, \quad \lambda_{3}=0, \quad \lambda \neq 0, \tag{II}\\
& \lambda_{1}=\lambda_{2}=\lambda_{3}=0 . \tag{III}
\end{align*}
$$

For (I), according to [3], we have
Proposition 2.1. If the rank of the Ricci tensor R_{1} is 3 at least at one point of M, then (M, g) is a space of constant curvature.

Next, we assume that the rank of R_{1} is at most 2 on M. Then (II) or (III) is valid on M. If the rank of R_{1} is 2 at some point of M, then the rank of R_{1} is also 2 near the point. Thus, let $W=\left\{p \in M\right.$; the rank of R_{1} is 2 at $\left.p\right\}$, which is an open set of M. For any $p_{0} \in W$, let W_{0} be the connected component of p_{0} in W. Then non-zero eigenvalue of R^{1}, say, λ, is a real analytic function on W_{0} and furthermore, we may take two real analytic distributions T_{1} and T_{0} corresponding to λ and 0 respectively on W_{0}. Thus, for any $p \in W_{0}$, we may choose a real analytic field of orthonormal basis $\left\{E_{i}\right\}$ near p in such a way that $\left\{E_{a}\right\}$ and $\left\{E_{3}\right\}$ are bases for T_{1} and T_{0} respectively. Here $a, b, c, \cdots=1,2$. From (2.1) and (II), we have

Lemma 2.2. With respect to the above basis $\left\{E_{i}\right\}$,

$$
\begin{equation*}
R\left(E_{1}, E_{2}\right)=\lambda E_{1} \wedge E_{2}, \tag{2.2}
\end{equation*}
$$

all the others being zero.
In general, for a local real analytic field of orthonormal basis $\left\{E_{i}\right\}$ on an open set U in a real analytic Riemannian manifold (M, g), we may put

$$
\begin{equation*}
\nabla_{E_{i}} E_{j}=\sum_{k=1}^{m} B_{i j k} E_{k}, \tag{2.3}
\end{equation*}
$$

where $m=\operatorname{dim} M$ and $B_{i j k}(i, j, k,=1,2, \cdots, m)$ are real analytic functions on U satisfying $B_{i j k}=-B_{i k j}$.

From (2.2) and (2.3), we have

$$
\begin{aligned}
& \left(\nabla_{E_{1}} R\right)\left(E_{1}, E_{2}\right)=\left(E_{1} \lambda\right) E_{1} \wedge E_{2}+\lambda B_{123} E_{1} \wedge E_{3}+\lambda B_{131} E_{2} \wedge E_{3}, \\
& \left(\nabla_{E_{2}} R\right)\left(E_{1}, E_{2}\right)=\left(E_{2} \lambda\right) E_{1} \wedge E_{2}-\lambda B_{213} E_{2} \wedge E_{3}-\lambda B_{232} E_{1} \wedge E_{3}, \\
& \left(\nabla_{E_{3}} R\right)\left(E_{1}, E_{2}\right)=\left(E_{3} \lambda\right) E_{1} \wedge E_{2}+\lambda B_{331} E_{2} \wedge E_{3}+\lambda B_{323} E_{1} \wedge E_{3}, \\
& \left(\nabla_{E_{1}} R\right)\left(E_{2}, E_{3}\right)=\lambda B_{131} E_{1} \wedge E_{2}, \\
& \left(\nabla_{E_{2}} R\right)\left(E_{3}, E_{1}\right)=\lambda B_{232} E_{1} \wedge E_{2} .
\end{aligned}
$$

From above equations, we have the following:

$$
\begin{gather*}
E_{3} \lambda+\lambda\left(B_{131}+B_{232}\right)=0, \tag{2.4}\\
B_{313}=B_{323}=0 .
\end{gather*}
$$

Furthermore, we have

$$
\begin{aligned}
& \left(R\left(E_{1}, E_{2}\right) \cdot \nabla_{E_{1}} R\right)\left(E_{1}, E_{2}\right) \\
(2.6)= & {\left[R\left(E_{1}, E_{2}\right),\left(\nabla_{E_{1}} R\right)\left(E_{1}, E_{2}\right)\right]-\left(\nabla_{E_{1}} R\right)\left(R\left(E_{1}, E_{2}\right) E_{1}, E_{2}\right)-\left(\nabla_{E_{1}} R\right)\left(E_{1}, R\left(E_{1}, E_{2}\right) E_{2}\right) } \\
= & \lambda^{2} B_{131} E_{1} \wedge E_{3}+\lambda^{2} B_{132} E_{2} \wedge E_{3},
\end{aligned}
$$

and similarly

$$
\left(R\left(E_{1}, E_{2}\right) \cdot \nabla_{E_{2}} R\right)\left(E_{1}, E_{2}\right)=\lambda^{2} B_{232} E_{2} \wedge E_{3}+\lambda^{2} B_{231} E_{1} \wedge E_{3} .
$$

Thus, from (1.4) and (2.6), we have

$$
\begin{equation*}
B_{1 s 1}=B_{132}=B_{231}=B_{232}=0 . \tag{2.7}
\end{equation*}
$$

From (2.7), we see that T_{1} and T_{0} are parallel on W_{0} and hence the open subspace ($W_{0},\left.g\right|_{W_{0}}$) is reducible. Since (M, g) is real analytic, we can conclude that (M, g) is reducible. Therefore, we have theorem B .
3. 4-dimensional cases. Let (M, g) be a 4 -dimensional real analytic Riemannian manifold satisfying the condition $\left(^{*}\right)$. At each point $p \in M$, we may choose an orthonormal basis $\left\{e_{i}\right\}$ such that $R^{1} e_{i}=\lambda_{i} e_{i}, 1 \leqq i, j, k, \cdots \leqq 4$. From (**), by the similar arguments as in $\S 2$, we see that essentially only the following cases are possible:

$$
\begin{equation*}
\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{3}=\lambda, \quad \lambda \neq 0, \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{1}=\lambda_{2}=\lambda, \quad \lambda_{3}=\lambda_{4}=\mu, \quad \lambda, \mu \neq 0, \quad \lambda \neq \mu, \tag{II}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda, \quad \lambda_{4}=0, \quad \lambda \neq 0, \tag{III}
\end{equation*}
$$

$$
\begin{aligned}
& \lambda_{1}=\lambda_{2}=\lambda, \quad \lambda_{3}=\lambda_{4}=0, \quad \lambda \neq 0, \\
& \lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=0 .
\end{aligned}
$$

First, for (I), according to [2], we have
Proposition 3.1. If (M, g) is a 4-dimensional Einstein space satisfying the condition $\left(^{*}\right)$, then it is locally symmetric.

Secondly, we assume that (II) is valid at some point of M. Then, (II) is also valid near the point. Thus, let $W=\{p \in M$; (II) is valid at $p\}$, which is an open set of M. For any $p_{0} \in W$, let W_{0} be the connected component of p_{0} in W. Then nonzero eigenvalues of R^{1}, say, λ and μ, are real analytic functions on W_{0} and we may take two real analytic distributions T_{1} and T_{2} corresponding to λ and μ respectively on W_{0}. Thus, for any $p \in W_{0}$, we may choose a real analytic field of orthonormal basis $\left\{E_{i}\right\}$ near p in such a way that $\left\{E_{a}\right\}$ and $\left\{E_{u}\right\}$ are bases for T_{1} and T_{2} respectively. Here $a, b, c, \cdots=1,2$ and $u, v, w, \cdots=3,4$. From (*) and (II), we have

Lemma 3.2. With respect to the above basis $\left\{E_{i}\right\}$,

$$
\begin{equation*}
R\left(E_{1}, E_{2}\right)=\lambda E_{1} \wedge E_{2}, \quad R\left(E_{3}, E_{4}\right)=\mu E_{3} \wedge E_{4}, \tag{3.1}
\end{equation*}
$$

all the other components being zero.
From (2.3) and (3.1), we have

$$
\begin{aligned}
& \left(\nabla_{E_{u}} R\right)\left(E_{1}, E_{2}\right)=\left(E_{u} \lambda\right) E_{1} \wedge E_{2}+\lambda \sum_{v=3}^{4} B_{u 1 v} E_{v} \wedge E_{2}+\lambda \sum_{v=3}^{4} B_{u v v} E_{1} \wedge E_{v}, \\
& \left(\nabla_{E_{1}} R\right)\left(E_{2}, E_{u}\right)=-\mu \sum_{v=3}^{4} B_{12 v} E_{v} \wedge E_{u}+\lambda B_{i u 1} E_{1} \wedge E_{2}, \\
& \left(\nabla_{E_{2}} R\right)\left(E_{u}, E_{1}\right)=-\mu \sum_{v=3}^{4} B_{21 v} E_{u} \wedge E_{v}+\lambda B_{2 u 2} E_{1} \wedge E_{2} .
\end{aligned}
$$

Thus, by the second Bianchi identity, we have

$$
\begin{equation*}
B_{u a v}=0, \quad a=1,2, \quad u, v=3,4 . \tag{3.2}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
B_{a u b}=0, \quad a, b=1,2, \quad u=3,4 . \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3), we see that T_{1} and T_{2} are parallel on W_{0} and hence the open subspace ($W_{0},\left.g\right|_{W_{0}}$) is reducible. Since (M, g) is real analytic, we can concludee that (M, g) is reducible. Thus we have

Proposition 3.3. If (II) is valid at some point of M, then (M, g) is a local product space of two 2-dimensional Riemannian manifolds.

Thirdly, we assume that the rank of R_{1} is at most 3 on M and 3 at some point of M. Then (III) is valid at the point and furthermore (III) is also valid near the point. Thus, let $W=\{p \in M$; (III) is valid at $p\}$, which is an open set of M. For any $p_{0} \in W$, let W_{0} be the connected component of p_{0} in W. Then non-zero eigenvalue of R^{1}, say, λ, is a real analytic function on W_{0} and we may take two real analytic distributions T_{1} and T_{0} corresponding to λ and 0 respectively on W_{0}. Thus, for any $p \in W_{0}$, we may choose a real analytic field of orthonormal basis $\left\{E_{i}\right\}$ near p in such a way that $\left\{E_{a}\right\}$ and $\left\{E_{4}\right\}$ are bases for T_{1} and T_{0} respectively. Here $a, b, c, \cdots=1,2,3$. From (*), (2.1) and (III), we have

Lemma 3.4. With respect to the above basis $\left\{E_{i}\right\}$,

$$
\begin{equation*}
R\left(E_{a}, E_{b}\right)=K E_{a} \wedge E_{b} \tag{3.4}
\end{equation*}
$$

all the others being zero, where $K=\lambda / 2$.
From (2.3) and (3.4), we have

$$
\begin{align*}
& \left(\nabla_{E_{a}} R\right)\left(E_{b}, E_{c}\right)=\left(E_{a} K\right) E_{b} \wedge E_{c}+K B_{a b 4} E_{4} \wedge E_{c}+K B_{a c 4} E_{b} \wedge E_{4}, \tag{3.5}\\
& \left(\nabla_{E_{b}} R\right)\left(E_{c}, E_{a}\right)=\left(E_{b} K\right) E_{c} \wedge E_{a}+K B_{b c 4} E_{4} \wedge E_{a}+K B_{b a 4} E_{c} \wedge E_{4}, \\
& \left(\nabla_{E_{c}} R\right)\left(E_{a}, E_{b}\right)=\left(E_{c} K\right) E_{a} \wedge E_{b}+K B_{c a 4} E_{4} \wedge E_{b}+K B_{c b 4} E_{a} \wedge E_{4}, \\
& \left(\nabla_{E_{4}} R\right)\left(E_{a}, E_{b}\right)=\left(E_{4} K\right) E_{a} \wedge E_{b}+K B_{44 a} E_{b} \wedge E_{4}+K B_{4 b 4} E_{a} \wedge E_{4}, \tag{3.6}\\
& \left(\nabla_{E_{a}} R\right)\left(E_{b}, E_{4}\right)=K \sum_{c=1}^{3} B_{a 4 c} E_{c} \wedge E_{b}, \\
& \left(\nabla_{E_{b}} R\right)\left(E_{4}, E_{a}\right)=K \sum_{c=1}^{3} B_{b 4 c} E_{a} \wedge E_{c} .
\end{align*}
$$

From (3.5) and (3.6), we have the following:

$$
\begin{align*}
& E_{a} K=0, \quad a=1,2,3, \tag{3.7}\\
& B_{a 4 b}=0, \quad a \neq b, \quad \text { and } \quad B_{44 a}=0, \quad a=1,2,3, \tag{3.8}\\
& E_{4} K+K\left(B_{a 4 a}+B_{b 4 b}\right)=0, \quad a \neq b . \tag{3.9}
\end{align*}
$$

And furthermore, we have

$$
\begin{equation*}
\left(R\left(E_{a}, E_{b}\right) \cdot \nabla_{E_{c}} R\right)\left(E_{a}, E_{b}\right)=K^{2} B_{c 4 a} E_{a} \wedge E_{4}+K^{2} B_{c 4 b} E_{b} \wedge E_{4} . \tag{3.10}
\end{equation*}
$$

Thus, from (1.4) and (3.10), we have

$$
\begin{equation*}
B_{a b 4}=0, \quad a, b=1,2,3 . \tag{3.11}
\end{equation*}
$$

From (3. 7), (3. 8), (3.9) and (3.11), we have
Proposition 3.5. Assume that the rank of the Ricci tensor R_{1} of (M, g) is at
most 3 on M and actually 3 at least at one point of M. If (M, g) satisfies (*) and (1.4), then (M, g) is a local product space of a 3-dimensional space of constant curvature and a 1-dimensional space.

Forthly, we assume that the rank of R_{1} is at most 2 on M. Then (IV) or (V) is valid on M. If the rank of R_{1} is 2 at some point of M, then the rank of R_{1} is also 2 near the point. Thus, let $W=\left\{p \in M\right.$; the rank of R_{1} is 2 at $\left.p\right\}$, which is an open set of M. For any $p_{0} \in W$, let W_{0} be the connected component of p_{0} in W. Then non-zero eigenvalue of R^{1}, say, λ, is a real analytic function on W_{0} and we may take two real analytic distributions T_{1} and T_{0} corresponding to λ and 0 respectively on W_{0}. Thus, for any $p \in W_{0}$, we may choose a real analytic field of orthonormal basis $\left\{E_{i}\right\}$ near p in such a way that $\left\{E_{a}\right\}$ and $\left\{E_{u}\right\}$ are bases for T_{1} and T_{0} respectively. Here $a, b, c, \cdots=1,2$ and $u, v, w, \cdots=3,4$. Then, we have

Lemma 3.6. With respect to the above basis $\left\{E_{i}\right\}$,

$$
\begin{equation*}
R\left(E_{1}, E_{2}\right)=\lambda E_{1} \wedge E_{2}, \tag{3.12}
\end{equation*}
$$

all the others being zero.
From (2.3) and (3.12), we have

$$
\begin{align*}
& \left(\nabla_{E_{u}} R\right)\left(E_{1}, E_{2}\right)=\left(E_{u} \lambda\right) E_{1} \wedge E_{2}+\lambda \sum_{v=3}^{4} B_{u v 1} E_{2} \wedge E_{v}+\lambda \sum_{v=3}^{4} B_{u 2 v} E_{1} \wedge E_{v}, \tag{3.13}\\
& \left(\nabla_{E_{1}} R\right)\left(E_{2}, E_{u}\right)=\lambda B_{1 u 1} E_{1} \wedge E_{2} \\
& \left(\nabla_{E_{2}} R\right)\left(E_{u}, E_{1}\right)=\lambda B_{2}{ }_{2} E_{1} \wedge E_{2}, \\
& \left(\nabla_{E_{1}} R\right)\left(E_{1}, E_{2}\right)=\left(E_{1} \lambda\right) E_{1} \wedge E_{2}+\lambda \sum_{v=3}^{4} B_{1 v 1} E_{2} \wedge E_{v}+\lambda \sum_{v=3}^{4} B_{12 v} E_{1} \wedge E_{v}, \tag{3.14}\\
& \left(\nabla_{E_{2}} R\right)\left(E_{1}, E_{2}\right)=\left(E_{2} \lambda\right) E_{1} \wedge E_{2}+\lambda \sum_{v=3}^{4} B_{2 v 1} E_{2} \wedge E_{v}+\lambda \sum_{v=3}^{4} B_{2 v} E_{1} \wedge E_{v}
\end{align*}
$$

From (3.13), we have

$$
\begin{equation*}
B_{u v a}=0, \quad u, v=3,4, \tag{3.15}
\end{equation*}
$$

From (3.15), we see that T_{0} is involutive and from lemma 3.6, each maximal integral submanifold of T_{0} in W_{0} is locally flat with respect to the induced metric. And, from (1. 4), (3.14) and (3.15), considering ($\left.R\left(E_{1}, E_{2}\right) \cdot \nabla_{E_{1}} R\right)\left(E_{1}, E_{2}\right)=0$ and $\left(R\left(E_{1}, E_{2}\right) \cdot \nabla_{E_{2}} R\right)\left(E_{1}, E_{2}\right)=0$, we have

Proposition 3.7. Assume that the rank of the Ricci tensor R_{1} of (M, g) is at most 2 on M and actually 2 at least at one point of M. If (M, g) satisfies (*) and (1.4), then (M, g) is a local product space of 2-dimensional Riemannian manifold
and a 2-dimensional locally flat space.
Thus, from Propositions 3.1, 3.3, 3.5, 3.7, we have theorem C. Furthermore, from (3.7), (3.8) and (3.9), by the similar arguments as in [3], we have

Proposition 3. 8. Assume that the rank of the Ricci tensor R_{1} of (M, g) is at most 3 on M and actually 3 at least at one point of M. If (M, g) satisfies (*) and is complete, then (M, g) is a local product space of a 3-dimensional space of of constant curvature and a 1-dimensional space.

Thus, from Propositions 3.1, 3.3,3.8, we have
Theorem 3.9. Let (M, g) be a 4-dimensional complete and irreducible real analytic Riemannian manifold and the rank of the Ricci tensor R_{1} of (M, g) is 3 or 4 on M. If (M, g) satisfies (${ }^{*}$), then (M, g) is locally symmetric.

Remark. In 3 -dimensional cases, we see that the condition (*) is equivalent to $\left({ }^{* *}\right)$ and the condition (1.4) is equivalent to
(1. 4) ${ }^{\prime}$

$$
R(X, Y) \cdot \nabla_{Z} R_{1}=0
$$

References

[1] Nomizu, K., On hypersurfaces satisfying a certain condition on the curvature tensor. Tôhoku Math. J. 20 (1968), 46-59.
[2] Sekigawa, K., On 4-dimensional connected Einstein spaces satisfying the condition $R(X, Y) \cdot R=0$. Sci. Rep. Niigata Univ. 7 (1969), 29-31.
[3] Sekigawa, K., and H. Takagi, On conformally flat spaces satisfying a certain condition on the Ricci tensor. Tôhoku Math. J. 23 (1971), 1-11.
[4] Sekigawa, K., and S. Tanno, Sufficient conditions for a Riemannian manifold to be locally symmetric. Pacific Journ. Math. 34 (1970), 157-162.

Faculty of Science, Niigata University.

