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NOTES ON SOME 3- AND 4-DIMENSIONAL
RIEMANNIAN MANIFOLDS

By KOUEI SEKIGAWA

1. Introduction. The Riemannian curvature tensor R of a locally symmetric
Riemannian manifold (4, g) satisfies

(*) R(X, Y)-R=0 for all tangent vectors X and Y,

where R(X, Y) operates on R as a derivation operator of the tensor algebra at
each point of M. Conversely, does this algebraic condition (*) on the curvature
tensor field R imply that FR=0? Let R; be the Ricci tensor of (4, g). Then (*)
implies in particular

(%) R(X, Y)-R,=0 for all tangent vectors X and Y.

In the present paper, we shall show that if the covariant derivative of the
curvature tensor satisfies some algebraic conditions at each point, then the Rieman-
nian manifold is locally symmetric.

In general, according to [4], we have

ProposiTION A. Let (M, g) be an m(=3)-dimensional real analytic Riemannian
manifold. Assume that

(1.1) the restricted holonomy group is irveducible,
1.2 R(X, Y)-R=0, that is (%),
1.3) R(X, Y) P*R=0, for k=12,
Then (M, g) is locally symmetric.

In this note, we shall prove

THEOREM B. Let (M, g) be a 3-dimensional real analytic Riemannian manifold.
Assume (1.1), (1. 2) and

.4 R(X, Y)-PR=0 (or R(X, Y)-VzR=0).

Then (M, g) is a space of constant curvature.
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TrEOREM C. Let (M, g) be a 4-dimensional veal analytic Riemannian manifold.
Assume (1. 1), (1.2) and (1. 4). Then (M, g) is locally symmetric.

2. 3-dimensional cases. Let (M, g) be a 3-dimensional real analytic Riemannian
manifold. R (resp. R;) denotes the curvature tensor (resp. the Ricci tensor) of
(M, g). R' denotes a field of symmetric endomorphism satisfying Ry(X, Y)
=g(R'X, Y). It is known that the curvature tensor R of (4, g) is given by

trace R!

5 XNY

2.1 RX, Y)=R'XANY+XAR'Y—
for all tangent vectors X and Y.

At each point peM, we may choose an orthonormal basis {e¢;} such that
Rle;=2e;, 1=i,7, k, --- =3. Then, from (*) (or equivalently (**)) and (2. 1), we see
that essentially only the following cases are possible:

(1) h=l=2=2, %0,
(II) 21222=2, 23=O, zf‘FO,
(III) 21212=13=0-

For (I), according to [3], we have

ProrosiTION 2. 1. If the rank of the Ricci tensor R, is 3 at least at one point
of M, then (M, g) is a space of constant curvature.

Next, we assume that the rank of R; is at most 2 on M. Then (II) or (III)
is valid on M. If the rank of R, is 2 at some point of JZ, then the rank of R, is
also 2 near the point. Thus, let W={peM; the rank of R, is 2 at p}, which is an
open set of M. For any poe W, let W, be the connected component of p, in W.
Then non-zero eigenvalue of R*, say, 2, is a real analytic function on W, and
furthermore, we may take two real analytic distributions 77 and 7T, corresponding
to 2 and O respectively on W,. Thus, for any pe W,, we may choose a real analytic
field of orthonormal basis {E;} near p in such a way that {£,} and {E;} are bases
for Ty and T, respectively. Here a, b, ¢, ---=1, 2. From (2.1) and (II), we have

LEMMA 2. 2. With respect to the above basis {E;},
(2. 2) R(Ey, E3)=2E\N\E,
all the others being zero.

In general, for a local real analytic field of orthonormal basis {£;} on an open
set U in a real analytic Riemannian manifold (3, ¢g), we may put

(2' 3) VELEJZ l;:Zl B’l:jkEk;
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where m=dim M and B (5,7, 8, =1, 2, -, m) are real analytic functions on U
satisfying Bjjx= — Bix;-
From (2.2) and (2. 3), we have

(P, R)(Ey, Es)=(E\)EYNEy+ 2By 25 Ey A\ Es+2B1 51 E2 A E,
(P2, R)(Ey, Ey)=(E)ExNEy— B2 13E2: ANEs— B2 52 EY A\ Es,
(Ve R)(Ey, En)=(Es)E\N\E2+Bs 51 By \NEs+2Bs 25 E1 N\ E,
(Vg,R)(Es, Es)=AB1s:1E1 A\ Ey,
(Pg,R)(Es, E1)=2Bs3:E1 N\ Es.
From above equations, we have the following:
2.4 E324+2(Bysi+ Bz sz) =0,
2.95) Bj15=Bs 53 =0.
Furthermore, we have
(R(E:, Ey)- Vi, R)(E1 E)
(2.6) =[R(E), Ev), Ve, R)Ey, E2)]— Ve, RYR(Ey, E2)Ey, Eo)— Ve, R)Ey R(E,, E)E)
=2B1 1 E\\Es+ 2B sy N Es,
and similarly
(R(Ey Ey) Ve, R)(EY, E))=2By52Es ANE3+ 2By 51 E1 N\ Es.
Thus, from (1.4) and (2. 6), we have
2.7 Bisi=B13:=B3351=B;3,=0.

From (2.7), we see that T and 7T, are parallel on W, and hence the open subspace
(W, glw,) is reducible. Since (}, g) is real analytic, we can conclude that (14, g)
is reducible. Therefore, we have theorem B.

3. 4-dimensional cases. Let (4, ) be a 4-dimensional real analytic Riemannian
manifold satisfying the condition (*). At each point peM, we may choose an
orthonormal basis {e;} such that Rle;=2e;, 1=i,7, k, - =4. From (**), by the
similar arguments as in §2, we see that essentially only the following cases are

possible:
(1) Mh=k==21=42, 2x0,
(1I) h=k=1 A=k=p,  Apx0, 2A¥p

(III) /21 =22=13=2, 24 =0, 2:?0,
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av) A=A=2, A3=2,=0, Ax0,
(V) L =2A=2=2,=0.

First, for (I), according to [2], we have

ProrosiTioN 3.1. If (M, 9) is a 4-dimensional Einstein space satisfying the
condition (*), then it is locally symmetric.

Secondly, we assume that (II) is valid at some point of M. Then, (II) is also
valid near the point. Thus, let W={peM; (II) is valid at p}, which is an open set
of M. For any p,e W, let W, be the connected component of p, in W. Then non-
zero eigenvalues of R!, say, 2 and p, are real analytic functions on W, and we
may take two real analytic distributions 77 and 73 corresponding to 2 and g
respectively on W;. Thus, for any pe W,, we may choose a real analytic field of
orthonormal basis {£;} near p in such a way that {£,} and {E,} are bases for 7T}
and T, respectively. Here @, b,c, -+ =1,2 and %, », w, --- =3,4. From (*) and (II),
we have

LemMA 3. 2. With vespect to the above basis {E},
3.1 R(E, E5)=2E\N\E,, R(Es, E)=pEsN\E,,
all the other components being zero.

From (2. 3) and (3. 1), we have

4 4
(Ve RNEy Ep)=(E)EINE;+2 Z}s BuwEy ANEz+2 3, BunwEs N\ E,

v=3

4
(VEIR)(Ez, Eu) =—U Zs Blszv/\Eu+ ;(Bl'ulEl /\EZ’

4
Ve, R)(Ey, Ey)=—p Z;«xBZ 1wEu AEy+2Bs w2 EyN\Es.

Thus, by the second Bianchi identity, we have

(3.2) Buaw=0, a=1,2, u, v=3, 4.
Similarly we have

3.3 Bauw=0, a,b=1,2, u=3, 4.

From (3.2) and (3.3), we see that 7: and T; are parallel on W, and hence the
open subspace (W,, glw,) is reducible. Since (44, g) is real analytic, we can concludee
that (M, ¢) is reducible. Thus we have

ProrosiTioN 3.3. If (Il) is valid at some point of M, then (M, g) is a local
product space of two 2-dimensional Riemannian manifolds.
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Thirdly, we assume that the rank of R; is at most 3 on M and 3 at some
point of M. Then (III) is valid at the point and furthermore (III) is also wvalid
near the point. Thus, let W={pelM; (III) is valid at p}, which is an open set of M.
For any p.eW, let W, be the connected component of p, in W. Then non-zero
eigenvalue of R, say, A, is a real analytic function on W, and we may take two
real analytic distributions 73 and 7, corresponding to 2 and 0 respectively on W,.
Thus, for any peW,, we may choose a real analytic field of orthonormal basis
{E;} near p in such a way that {E,} and {E,} are bases for T; and T, respectively.
Here a, b, c, --- =1,2,3. From (*), (2.1) and (III), we have

LemMA 3.4. With respect to the above basis {E;},

3. 4)

R(Ea; Eb) = KEG/\ Eb:

all the others being zero, where K=2/2.

From (2. 3) and (3. 4), we have

3.9

(3.6)

(Vi RN(Ey, E)=(EoK)Ey ANEe+ KBasEs NEe+KBa e Ey AEs,
(Ve,R)(Ee, Ea)=(E3K)Ec NEa+ KBy s Es \Ea+ KBy asEe \E,
(V8 R)Ea, Ey)=(EK)Es \NEs+ KBe s Es NEy+ KBy Eo \NEs,
(V8,R)(Ea, Es)=(EK)Es NEy+ KBy saEy NEs+ KBypEs \NE.,

3
(Ve R)(Es, E)=K ZIBG“Ec/\Eb,

3
(Pe,R)(Esy Eo)=K 3, ByscEuN\E..
c=1

From (3.5) and (3. 6), we have the following:

G.7)
3.8)
3.9)

E.K=0, a=1, 2, 3,
Bow=0, axb, and  Bs,=0, a=1,2, 3,
E\K+K(Bu s+ By 2)=0, a=xb.

And furthermore, we have

(3.10)

(R(Ea, Eb)- Ve R)(Ea, Ev)=K*BeaEa NEs+ K*Be wEy AE.

Thus, from (1.4) and (3. 10), we have

(3.11)

Bays=0, a,b=1,2,3.

From (3.7), (3.8), (3.9) and (3. 11), we have

ProrosiTioN 3.5. Assume that the rank of the Ricci tensor Ry of (M, g) is at
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most 3 on M and actually 3 at least at one point of M. If (M,q) satisfies (¥)
and (1. 4), then (M, g) is a local product space of a 3-dimensional space of constant
curvature and a 1-dimensional space.

Forthly, we assume that the rank of R, is at most 2 on M. Then (IV) or (V)
is valid on M. If the rank of R, is 2 at some point of M, then the rank of R,
is also 2 near the point. Thus, let W={peM; the rank of R, is 2 at p}, which is
an open set of M. For any p,e W, let W, be the connected component of p, in W.
Then non-zero eigenvalue of R!, say, 2, is a real analytic function on W, and we
may take two real analytic distributions 73 and T, corresponding to 2 and 0 res-
pectively on W,. Thus, for any peW,, we may choose a real analytic field of
orthonormal basis {£;} near p in such a way that {E,} and {£,} are bases for T
and T, respectively. Here @, b, ¢, --- =1,2 and «, v, w, --- =3, 4. Then, we have

LEMMA 3. 6. With respect to the above basis {E;},
(3' 12) R(Eli E2)=1E1/\E2’
all the others being zero.

From (2. 3) and (3. 12), we have

4 4
(3.13) (VEMR)(ED E)=(ELENE2+2) BuniEsAEy+2), ByusEi1AEy,
v=3

v=3
Ve, R)(Esy Eu)=2B1uwEy NEy,
(Ve R)(Eu, E1)=2Bs usE1 \Es,

4 4
(3. 14) (VEIR)(Eh E)=(EAQENE: 423 BipiEsANEy+2Y, BiswEiAEy,
v=3

=3
4 4
(Pg,R)Ey, Es)=(E)E\NE:+2 Z_:sBszz/\Ev'l'ﬂ Z_'ng wEIAEy.

From (3. 13), we have
(8. 15) Buna=0, u, v=3, 4,
(3. 16) Eul'l'z(Bl ul +BZ uZ) =0; u =3s 4.

From (3. 15), we see that 7, is involutive and from lemma 3.6, each maximal
integral submanifold of 7, in W, is locally flat with respect to the induced metric.
And, from (1.4), (3.14) and (3. 15), considering (R(E\, E3)-Vg,R)(E:, E:) =0 and
(R(Ey, E»)-VE,R)E, E;)=0, we have

ProposITION 3.7. Assume that the rank of the Ricci tensor R, of (M, g) is at
most 2 on M and actually 2 at least at one point of M. If (M, g) satisfies (*) and
(1. 4), then (M, g) is a local product space of 2-dimensional Riemannian manifold
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and a 2-dimensional locally flat space.

Thus, from Propositions 3.1, 3.3, 3.5, 3.7, we have theorem C. Furthermore,
from (3.7), (3.8) and (3.9), by the similar arguments as in [3], we have

ProrosiTION 3. 8. Assume that the vank of the Ricci tensor R, of (M, g) is
at most 3 on M and actually 3 at least at ome point of M. If (M, g) satisfies (¥)
and is complete, then (M, g) is a local product space of a 3-dimensional space of
of comstant curvature and a 1-dimensional space.

Thus, from Propositions 3.1, 3. 3, 3.8, we have

THEOREM 3.9. Let (M, g) be a 4-dimensional complete and irreducible real
analytic Riemannian manifold and the rank of the Ricci tensor R, of (M, g) is 3
or 4 on M. If (M, q) satisfies (*), then (M, g) is locally symmetric.

ReMARK. In 3-dimensional cases, we see that the condition (*) is equivalent
to (**) and the condition (1.4) is equivalent to

1. 4y R(X, Y)-VzR,=0.
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