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ON INTRINSIC STRUCTURES SIMILAR TO THOSE
INDUCED ON S*

By Davip E. BLAIR AND GERALD D. LUDDEN

1. In [1] Yano and the authors studied submanifolds of codimension 2 of
almost complex manifolds and hypersurfaces of almost contact manifolds. In both
cases the structure on the ambient space induced the same structure on the sub-
manifold. The induced structure consists of a tensor field f of type (1,1), vector
fields E, A, 1-forms 3, « and a function 2 satisfying

fi=—I+@E+a®A,
of =2a, aof=—2y,
(1) fE=—1A, FA=IE,
AE)=1—2,  a(E)=0,
7(A)=0, a(A)=1—2.

Moreover the metric ¢ induced from a metric compatible with the structure on the
ambient space satisfies

9(X, E)=9(X),  9X, A=a(X),

(2)
9(f X fY)=9(X, Y)—n(X)(Y)—a(X)a(Y).

It is well known that on an almost complex manifold or an almost contact
manifold there exists a metric compatible with the given structure, i.e. we have an
almost Hermitian structure or an almost contact metric structure. However given
a 2n-dimensional manifold M?" with tensors (f,FE, A, «,2) satisfying equations
(1), we show in section 2 that there does not in general exist a Riemannian metric
on M?" satisfying equations (2). Thus to study manifolds with an intrinsically
defined (f, E, A, 5, a, A)-structure from the standpoint of Riemannian geometry it is
necessary to assume the existence of a Riemannian metric satisfying equations (2).

The even-dimensional spheres are clearly examples of manifolds with an
(f, E, A, g, «, A)-structure and a compatible metric ¢, the structure being induced
from the natural structure on the ambient Euclidean space. If F denotes the
Riemannian connexion of ¢, then for the sphere example the structure tensors
satisfy
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VxE=—frX, VxA=—21X,
(3)
e NY=—9(Y)X+9(X, Y)E

for any vector fields X, Y on the sphere [1]. Note also that from equations (1)
and (2), ¢(A, A)=¢(E, E)=1—2.

In [3] Yano and Okumura obtained some characterizations of even-dimensional
spheres by imposing some conditions on the tensors f, E, A, n, a, . Here in section
3 we study the role that the equations (3) play in characterizing spheres.

THEOREM 3. 2. Let M" be a compact Riemannian manifold (of any dimension
n=2) admitting a vector field A and a non-constant function A satisfying

FxA=—2X, g(4, A)=1—2
for every vector field X. Then M™ is globally isometric to the unit spheve in R™.

THEOREM 3. 3. Let M*®* be an even-dimensional manifold with an (f, E, A, 5, a, 2)-
structure and compatible metric g satisfying

A non-constant, VyIE=—fX,
(Fxf)Y =—9o(V)X+9(X, YV)E.

Then VxA=—2X; in particular if M*" is compact it is globally isomelric to the unit
sphere in R*"*1.

2. Let M be an almost complex manifold with almost complex structure J and
let Z be a vector field on M that is not the zero vector field. Let M =MX R?,
where R is the real line. Define a tensor f of type (1,1), vector fields £ and A,
and 1-forms » and « on M in the following way:

f(-X; t’ s)=(_jX_SZ’ S, _t)>

E=(Z,0,0),
(4) A=(Z,0,0),
nX, ¢ )=t
a(X, t,s)=s

where X is any vector field on M and #,seR. Then we have that
FAX b, 8)=f(—JX—sZ,s, —t)
=(/*X+s]Z+1Z, —t, —s)
=—(X,t,5)+s(JZ,0,0)+4Z,0,0)
=—(X,4,9)+9(X, 1, )E+a(X, t,5)A
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and hence f*=—I+7Q@FE+a@A. Also, we see that p(E)=yA)=a(E)=a(A)=0,
f(E)=1(Z,0,0)=(—JZ,0,0)=—A4, f(A)=(UZ0,0)=(~]*Z,0,0)=E, 7°f(X,¢5)
=py(—X—sZ,s, —t)=s=a(X, t,s) and aof(X,t, s)=a(—X—sZ,s, —t)=—t=—n(X,1,5).
Thus, (4) gives an (f, E, A, 70 A)—structure on M with A=1. If there exists a
Riemannian metric § on M satisfying (2), then we have that §(E, E)=x(E)=0,
contradicting the fact that Z is not the zero vector and hence E is not the zero
vector.

3. The proof of Theorem 3.2 is by means of a well known result of Obata
[2] which states that a compact Riemannian manifold M™ admits a non-trivial solu-
tion 2 of (DdA) (X, Y)=—kAg(X,Y) for some real number £>0 if and only if M™
is globally isometric to a Euclidean sphere of radius 1/+/2. Here D, denotes the
symmetric covariant derivative, for example for a 1-form 4,

(DX, Y= (TxtXY )+ Te)X)).

LEmMMA 3.1. Let M™ be a Riemannian manifold admitting a vector field A
and a mon-constant function 2 satisfying VyA=—iX, g(A4, A)=1—-2%. Let a(X)
=g(X, A), then a(X)=XA

Proof. VyaA=(XA)A—i*X, therefore

g(VxiA, A)=(X)(1—2%)— 2a(X).
On the other hand
9(Px2A, A)=—g(2A, FxA)+ Xg(2A, A)
=22a(X) + (XA —23)+ A(—22X2).
Comparing we have 22a(X)=242X2 and hence a(X)=X2 for 1x0. Let ¢(m)
=(a(X)—X2)(m), me M™ and suppose ¢(m)=0. Then there exists a neighborhood
of m on which ¢ is non-zero. Therefore 2=0 on this neighborhood contradicting

the non-constancy of 2.

THEOREM 3. 2. Let M"™ be a compact Riemannian manifold admitting a vector
field A and a non-constant function A satisfying

PxA=—2X, (4, A)=1—2%
Then M™ is globally isometric to the unit sphere in R™*1,

Proof. Using the Lemma and the result of Obata the proof is a short compu-
tation, the first equality holding since dA is an exact form.
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Dd)X, Y)=X(YAH—FxY )2
=Xa(Y)—a(lxY)
=Xg(Y,A)—g(PxY, A)
=9(Y, F'xA)
=—29(X, Y).
THEOREM 3.3. Let M*® be a manifold with an (f, E, A, 1, a, 2)-structure and
compatible metric g satisfying
2 non-constant, VyE=—fX,
Pxf)Y =—Y)X+9(X, Y)E.

Then VyxA=—2X; in particular if M is compact it is globally isometric to the unit
sphere in R,

Proof. We first show that a(X)=XA. Since ¢(F, £)=1—24? we have 29(VxE, E)
=—22X2 and hence 5p(—fX)=—2X2 so that by equations (1) —2a(X)=—1X2. Now
proceeding as in the proof of Lemma 3.1 we have a(X)=X2 Thus, Fz1A
=a(X)A+VxA, while on the other hand

PxiA=—TyfE=—fVxE—(Fxf)E
=X+ 7(E)X—9(X, E)E
=— X+a(X)A+(1—B)X.

Therefore AVxA=—22X and VxA=—2X for 0. Now set V=FyA+21X and suppose
V(m)==0 for some meM?>". Then there exists a neighborhood of # on which V=0
and hence 1=0, contradicting the non-constancy of i Thus FyA=—2X and the
second statement follows from Theorem 3. 2.

REMARK. The normality of an (f, E, A4, 5, a, A)-structure has been defined and
studied in [1] and [3]. In particular, Yano and Okumura [3] have shown that if
M is a complete manifold with a normal (f, £, 4, 5, a, 2) metric structure such that
A(1—2%) is almost everywhere non-zero and PxE=fX then M is isometric to a
sphere. It can easily be seen that Theorem 3. 3 implies this theorem.
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