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ON IOI* SUMM ABILITY FACTORS OF FOURIER SERIES

BY RAJENDRA K. JAIN

1. Let Σ a n be a given infinite series with its n-th partial sum Sn, and let
tn=t0

n=nan. By {σ%} and {t%} we denote the n-ih Cesaro means of order a (a>— 1)
of the sequences {Sn} and {tn} respectively. The series Σ βn is said to be absolutely
summable (C, a) with index k, or simply summable |C, α|* (&i^l), if

(1.1) Z»*-1K-*S-i

Summability |C, α|ι is the same as summability |C, a\. Since

«=»(<£— σ£-ι),

condition (1. 1) can also be written as
\+«\1c

(1.2) Σ - - < ° °

A sequence {λn} is said to be convex [7], if J%^0, n=l, 2, -••, where
=^n-^n+ι and J2;W

2. Let f(t) be a periodic function with period 2π and integrable (L) over
(— π, π). We assume without loss of generality that the constant term in Fourier
series is zero such that

oo foo]

Σ (an cos nt+bn sin »ί)= Σ

and

Γ
J-

We write

3. Cheng [2] established:

THEOREM A. If

(3. 1) ^\φ(u}\du=0\t(\vg\\\
Jo I \ £ / J
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Δ ff\
ε>0,
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at the point t=x is summable |C, α|, 0^α<l.

Extending the above theorem, Dikshit [4] proved:

THEOREM B. // {λn} is a convex sequence such that the series Σ An/n is con-
vergent, then the series

λnAn(f)

ri)β

at t—x is summable |C, α|, 0^α<l, whenever condition (3.1) is satisfied.

The object of this paper is to generalise theorem B for summability |C, a\k.
We prove:

THEOREM. // {λn} is a convex sequence such that Σ An/n is convergent, then the
series

at t=x is summable |C, α| fc where 0^α<l and k^l, provided that

(3.2)

4. We require the following lemmas for the proof of our theorem.

LEMMA 1. [3]. // 0<α<l, 0<t<2π and

then

Γ
for all

\O(nt-°) fort>-

LEMMA 2. [1]. // O^α^ l and Q^m^n, then

m

2 Aan-vav ^ max

LEMMA 3. L ί̂ 0<α<l α^J 0<^2ττ. TF^ w^Yβ

1 n λv

U v=2 (log*)"*
^ pα COS yί,

Then



(4.1)
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1) for 0<^ —.
n

. nx . , , 1
(4. 2) O (ntγa Σ »β(log v)~βlkΔλv \ +O{;wrα(log nYm}+O(n~1} for t> —.

I [ v=2 J n

Proof. By Abel's transformation, we have

I An~^μμ COS μt \

- An~I\ COS t,
__

^ 21-(log2)"*

where Γή(ί) is the sequence defined in Lemma 1. So by Lemmas 1 and 2, for

i (log ,)ws (log

But

Hence, for Q<t^l/n, this gives (4.1).
Also, for t>l/n,

v'Δλ,

V

This establishes (4. 2).

LEMMA 4. // (3. 2) Λ0/ds, £/ ,̂ for k^l,

ί (-l/n ] ft

(i) Ί \ 10(01 dt \ = O{n~k(log n)β}

~] ]

+l J [

But

1
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and, for k^Λ. and

(ϋ)
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Proof of (i). By Holder's inequality, we have

l/n l/n

=0

0/ (ii). Again, Holder's inequality gives that

But

=0(l)+0{««-1(lognX}+0 (log
1/n

=0{(log«y}, since 0<α<l.

Thus (ii) is evident.

LEMMA 5 [6]. // {λn} is a convex sequence such that Σ Λn/w<oo, then

log (n+l)J^»=O(l), oo.

5. Pr<90/ c/ the theorem. Since the case k=l of the theorem is due to Dikshit
[4], we prove the theorem for k>l only.

The case α=0 being trivial, we take 0<<χ<l. We denote the ^-th Cesaro
mean of order a of the sequence {naλnAn(ϊ)(\og n)~β/k} by Cn(t\ Then we have to
show that

(5.1)

Now,

2 f p i/w pff
= - \ +\K I Jo Jl/n

say.
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By Minkowski's inequality, it is therefore sufficient to prove that

(5.2) ^^T

and

I Γ2 I

(5.3) Σ^

Proof of (5. 2). Using (4. 1), we have

m I Γ l l f c m 1 r 9 f l/n ( / n υl+« Λ->

-— -- ,. w*^2 n , r i w L π J o I V v=2 (log vy*
k *

i/ft

= {M}/*+Λf1/*+M}/*}*, say.

Now, applying lemmas 4 (i) and 5, we get

pl/n

[ m Πoe «V ί " / υ1+°(dJί V /k \ ] *Ίy I10grc; y, / _ v _ ι///w _ V / f j y - i / f c l
ά.»1+*cl+-MίAV (log^r* /^x"; | J

Π

J
(log»y i .

^> qogny ι
B4ί, »»+*<»+-> J

= O(1), as m-^oo.

Next, using lemma 4 (i) again, we write
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[ m t fc-i fc

sid

_ (log ny Ί
n* J

), as m— »oo,

and

as

This proves (5. 2).

<?/ (5. 3). Applying (4. 2), we have

-—
n n" . Γ i (log

n V n r
*- | l/A;ΊΛ[ m 1 /fπ \*- | l/A;Ί

Σ-ITF \ mm)n=2 n \Jl/n / J J

= {7Vί/*+^/*+^vr}*, say.

Using lemmas 4 (ii) and 5, we get

_ (log ny\±
~

γ-\
/ J

sw«\ } η
dog ,)̂  )(Δλ"} ί J

[ m /1Op

s
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rff vkaAλv ff (iogn)n
= oι L ..... V L, nn.fcg J

=O(1), as ra—>oo.

Lastly, applying lemma 4 (ii) again, we have

[ m >k
S J-

[ m fc

£τ

as

And obviously

Om 1 \
S—ϊ+Γ)=θα)» as
= 2 W /

This proves (5. 3).
Thus the proof of the theorem is complete.

The author is much indebted to Dr. P. L. Sharma for his kind help and
valuable suggestions during the preparation of this paper and is also thankful to
the referee for his kind suggestions.
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