ON THE FAMILY OF ANALYTIC MAPPINGS BETWEEN TWO ULTRAHYPERELLIPTIC SURFACES

By Kiyoshi Niino

§ 1. Let R and S be two ultrahyperelliptic surfaces defined by two equations $y^{2}=G(z)$ and $u^{2}=g(w)$, respectively, where G and g are two entire functions each of which has no zero other than an infinite number of simple zeros. We denote by $\mathfrak{U}(R, S)$ the family of non-trivial analytic mappings φ of R into S. It follows from Ozawa's theorem [5] that for every $\varphi \in \mathfrak{H}(R, S)$ there exists a non-constant entire function $h(z)$ satisfying the equation

$$
f(z)^{2} G(z)=g \circ h(z)
$$

with a suitable entire function $f(z)$. Then we shall call $h(z)$ the projection of the analytic mapping φ (cf. Ozawa [6]). We denote by $\mathfrak{g}(R, S)$ the family of projections of analytic mappings belonging to $\mathfrak{U}(R, S)$. Let ρ_{f} be the order of the referred function f.

From now on we may suppose that G (or g) is always expressed as the canonical product having the same zeros of the original function G (or g) when the order $\rho_{N(r, 0, G)}\left(\right.$ or $\left.\rho_{N(r, 0, g)}\right)$ is finite.
§ 2. Theorem 1 in Hiromi-Mutō [2] may be stated as in the following form:
Theorem A. If $\rho_{G}<+\infty, 0<\rho_{g}<+\infty$ and $\mathfrak{A}(R, S)$ is not empty, then every element $h(z)$ belonging to $\mathfrak{g}(R, S)$ is a polynomial of same degree p.

In this paper we shall prove the following theorems:
Theorem 1. Assume that $\rho_{g}<+\infty$ and there exists a polynomial $h_{p}(z)$ of degree p belonging to $\mathfrak{K}(R, S)$. Then every element $h(z)$ belonging to $\mathfrak{\xi}(R, S)$ is a polynomial of the same degree p.

And further if $\rho_{g}>0$, or if p is odd, then we have $\left|a_{p}\right|=\left|b_{p}\right|$, where $h_{p}(z)=a_{p} z^{p}+a_{p-1} z^{p-1}+\cdots+a_{0}\left(a_{p} \neq 0\right)$ and $h(z)=b_{p} z^{p}+b_{p-1} z^{p-1}+\cdots+b_{0}\left(b_{p} \neq 0\right)$.

The last assertion of this Theorem 1 is best possible. This fact will be shown by an example in $\S 6$.

Theorem 2. Let R and S be two ultrahyperelliptic surfaces with $P(R)=4$ and $P(S)=4$, respectively. If there exists a polynomial $h_{p}(z)$ of degree p belonging to $\mathfrak{J}(R, S)$, then every element $h(z)$ belonging to $\mathfrak{g}(R, S)$ is a polynomial of the same

[^0]degree p. And further, we have $\left|a_{p}\right|=\left|b_{p}\right|$, where $h_{p}(z)=a_{p} z^{p}+a_{p-1} z^{p-1}+\cdots+a_{0}$ $\left(a_{p} \neq 0\right)$ and $h(z)=b_{p} z^{p}+b_{p-1} z^{p-1}+\cdots+b_{0}\left(b_{p} \neq 0\right)$.

In general, a study of these theorems suggests the following problem which we have been unable to solve:

For every pair $h_{1}(z)$ and $h_{2}(z)$ belonging to $\mathfrak{g}_{(}(R, S)$, is there a polynomial $F_{h_{1}, h_{2}}(x, y)$ of x and y such that $F_{h_{1}, h_{2}}\left(h_{1}(z), h_{2}(z)\right) \equiv 0$?
§ 3. In the first place we shall prove the following lemmas:
Lemma 1. If $g(z)$ and $h(z)$ are transcendental entire functions and $h_{p}(z)$ is a polynomial of degree $p \geqq 1$, then we have

$$
\lim _{r \rightarrow \infty} \frac{T\left(r, g \circ h_{p}\right)}{T(r, g \circ h)}=0 .
$$

Proof. Since $h(z)$ is a transcendental entire function, by Hayman [1, p. 51], we have for any fixed $N>p$ and sufficiently large r,

$$
T(r, g \circ h) \geqq \frac{1}{3} T\left(r^{N+1}, g\right) .
$$

On the other hand, we set $h_{p}(z)=a_{p} z^{p}+a_{p-1} z^{p-1}+\cdots+a_{1} z+a_{0}\left(a_{p} \neq 0\right)$. Since $\left|h_{p}(z)\right| \leqq\left|a_{p}\right| r^{p}(1+\varepsilon)$ for sufficiently large $|z|=r$, we have

$$
\begin{aligned}
T\left(r, g \circ h_{p}\right) & \leqq \log M_{g \circ h_{p}}(r) \leqq \log M_{g}\left(M_{h_{p}}(r)\right) \leqq \log M_{g}\left(\left|a_{p}\right| r^{p}(1+\varepsilon)\right) \\
& \leqq 3 T\left(2\left|a_{p}\right| r^{p}(1+\varepsilon), g\right) .
\end{aligned}
$$

And we know that $T(r, g)$ is an increasing convex function of $\log r$, so that $T(r, g) / \log r$ is finally increasing and hence

$$
\frac{T\left(2\left|a_{p}\right| r^{p}(1+\varepsilon), g\right)}{\log 2\left|a_{p}\right| r^{p}(1+\varepsilon)} \leqq \frac{T\left(r^{N+1}, g\right)}{\log r^{N+1}}
$$

that is,

$$
\frac{T\left(2\left|a_{p}\right| r^{p}(1+\varepsilon), g\right)}{T\left(r^{N+1}, g\right)} \leqq \frac{p \log r+\log 2\left|a_{p}\right|(1+\varepsilon)}{(N+1) \log r} \rightarrow \frac{p}{N+1} \quad \text { as } \quad r \rightarrow+\infty .
$$

Thus we obtain

$$
\varlimsup_{r \rightarrow \infty} \frac{T\left(r, g \circ h_{p}\right)}{T(r, g \circ h)} \leqq \varlimsup_{r \rightarrow \infty} \frac{3 T\left(2\left|a_{p}\right| r^{p}(1+\varepsilon), g\right)}{(1 / 3) T\left(r^{N+1}, g\right)} \leqq \frac{9 p}{N+1},
$$

and this proves Lemma 1 . q.e.d.
Lemma 2. Let $g(z)$ be an entire function and $h_{1}(z)$ and $h_{2}(z)$ be two polynomials of the form $a_{p} z^{p}+a_{p-1} z^{p-1}+\cdots+a_{0}\left(a_{p} \neq 0\right)$ and $b_{p} z^{p}+b_{p-1} z^{p-1}+\cdots+b_{0} \quad\left(b_{p} \neq 0\right)$, respectively. Then we have

$$
\lim _{r \rightarrow \infty} \frac{M_{g \cdot h_{1}}(r)}{M_{g \cdot o_{2}}(r)}= \begin{cases}\left(\left|a_{p}\right| /\left|b_{p}\right|\right)^{q}, & \text { if } g(z) \text { is a polynomial of degree } q \\ 0 & \text { if } g(z) \text { is transcendental and }\left|a_{p}\right|<\left|b_{p}\right|, \\ +\infty & \text { if } g(z) \text { is transcendental and }\left|a_{p}\right|>\left|b_{p}\right| .\end{cases}
$$

Proof of Lemma 2. The result is clearly true in the case where $g(z)$ is a polynomial of degree q.

Suppose that $g(z)$ is transcendental and $\left|a_{p}\right|<\left|b_{p}\right|$. Then for $\varepsilon>0$ satisfying $\left|b_{p}\right|(1-\varepsilon)>\left|a_{p}\right|(1+\varepsilon)$, there exists $r_{1}>0$ such that $\left|h_{1}(z)\right| \leqq\left|a_{p}\right| r^{p}(1+\varepsilon)$ and $\left|h_{2}(z)\right|$ $\geqq\left|b_{p}\right| r^{p}(1-\varepsilon)$ are valid for all $r>r_{1}, r=|z|$. Putting $m_{h_{2}}(r)=\min _{|z|=r}\left|h_{2}(z)\right|$, we have for $r>r_{1}$,

$$
M_{g \circ_{1}}(r) \leqq M_{g}\left(M_{h_{1}}(r)\right) \leqq M_{g}\left(\left|\alpha_{p}\right| r^{p}(1+\varepsilon)\right)
$$

and

$$
M_{g \circ h_{2}}(r) \geqq M_{g}\left(m_{h_{2}}(r)\right) \geqq M_{g}\left(\left|b_{p}\right| r^{p}(1-\varepsilon)\right) .
$$

It is well known from Hadamard's three circle theorem that $\log M_{g}(r)$ is an increasing convex function of $\log r$, so that $\log M_{g}(r) / \log r$ is finally increasing and tends to infinite as $r \rightarrow+\infty$. Hence we have for $r>r_{2}>r_{1}$,

$$
\frac{\log M_{g}\left(\left|a_{q}\right| r^{p}(1+\varepsilon)\right)}{\log \left|a_{p}\right| r^{p}(1+\varepsilon)} \leqq \frac{\log M_{g}\left(\left|b_{p}\right| r^{p}(1-\varepsilon)\right)}{\log \left|b_{p}\right| r^{p}(1-\varepsilon)},
$$

and for any fixed N and $r>r_{3}>r_{1}$,

$$
M_{g}\left(\left|b_{p}\right| r^{p}(1-\varepsilon)\right) \geqq\left(\left|b_{p}\right| r^{p}(1-\varepsilon)\right)^{N}
$$

Therefore we deduce for all $r>\max \left(r_{2}, r_{3}\right)$,

$$
\begin{aligned}
\frac{M_{g \cdot h_{1}}(r)}{M_{g \circ h_{2}}(r)} & \leqq \frac{M_{g}\left(\left|a_{p}\right| r^{p}(1+\varepsilon)\right)}{M_{g}\left(\left|b_{p}\right| r^{p}(1-\varepsilon)\right)} \\
& \leqq M_{g}\left(\left|b_{p}\right| r^{p}(1-\varepsilon)\right)^{-\left(\log \left|b_{p}\right|(1-\epsilon)-\log \left|a_{p}\right|(1+\varepsilon)\right) / \log \left|b_{p}\right| r^{p}(1-\epsilon)} \\
& \leqq\left(\left|b_{p}\right| r^{p}(1-\varepsilon)\right)^{-N\left(\log \left|b_{p}\right|(1-\varepsilon)-\log \left|a_{p}\right|(1+\epsilon)\right) / \log \left|b_{p}\right| r^{p}(1-\epsilon)} \\
& =\exp \left(-N \log \frac{\left|b_{p}\right|(1-\varepsilon)}{\left|a_{p}\right|(1+\varepsilon)}\right)=\left(\frac{\left|b_{p}\right|(1-\varepsilon)}{\left|a_{p}\right|(1+\varepsilon)}\right)^{-N} .
\end{aligned}
$$

This implies

$$
\varlimsup_{r \rightarrow \infty} \frac{M_{g o h_{1}}(r)}{M_{g o h_{2}}(r)} \leqq\left(\frac{\left|b_{p}\right|(1-\varepsilon)}{\left|a_{p}\right|(1+\varepsilon)}\right)^{-\pi} .
$$

Since N can be chosen as large as we please, we obtain

$$
\lim _{r \rightarrow \infty} \frac{M_{g o h_{1}}(r)}{M_{g o h_{2}}(r)}=0
$$

The last assertion of the lemma is clearly deduced from the above argument. q.e.d.
§4. Proof of Theorem 1. Our assumption implies that with a suitable entire function $f_{p}(z)$, the equation

$$
\begin{equation*}
f_{p}(z)^{2} G(z)=g \circ h_{p}(z) \tag{4.1}
\end{equation*}
$$

is valid. And for $h(z)$ belonging to $\mathfrak{S}(R, S)$, there exists a suitable entire function $f(z)$ satisfying the equation

$$
\begin{equation*}
f(z)^{2} G(z)=g \circ h(z) . \tag{4.2}
\end{equation*}
$$

In the first place we shall prove that every element $h(z)$ of $\mathscr{g}(R, S)$ is a polynomial of degree p. To this end, we shall consider two cases according as $\rho_{g}>0$ or $\rho_{g}=0$.

CASE $0<\rho_{g}<+\infty$. If ρ_{g} is finite, so is $\rho_{g o h_{p}}$, for $h_{p}(z)$ is a polynomial. From the equation (4.1) we deduce that

$$
\begin{equation*}
N(r, 0, G) \leqq N\left(r, 0, g \circ h_{p}\right) \tag{4.3}
\end{equation*}
$$

Hence $\rho_{N(r, 0, G)}$, that is, ρ_{G} is finite. Therefore it follows from Theorem A that every element $h(z)$ of $\mathfrak{\xi}(R, S)$ is a polynomial of degree p.

CASE $\rho_{g}=0$. If ρ_{g} is zero, so is $\rho_{g o h_{p}}$. Then (4.3) yields that $\rho_{N(r, 0, G)}=0$, that is, $\rho_{G}=0$. Hence by (4.1) we have $\rho_{f_{p}}=0$. Since $f_{p}(z)$ has only at most $p-1$ zero points where $h_{p}^{\prime}(z)$ vanishes, $f_{p}(z)$ is a polynomial of degree at most $p-1$.

We contrarily assume that $h(z)$ is a transcendental entire function. Then using the reasoning of Hiromi-Muto [2, pp. 239-240], we deduce that $h(z)$ is of finite order and

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{T(r, h)}{N_{2}(r, 0, g \circ h)}=0, \quad \lim _{r \rightarrow \infty} \frac{N(r, 0, g \circ h)}{N_{2}(r, 0, g \circ h)}=1, \tag{4.4}
\end{equation*}
$$

where $N_{2}(r, 0, f)$ is the counting function of simple zeros of the referred function f. Using (4.4) together with $N(r, 0, G) \geqq N_{2}(r, 0, g \circ h)$ and $\rho_{G}=0$, we have $\rho_{h}=0$. It follows from (4.1), (4.2) and (4.4) that

$$
N\left(r, 0, g \circ h_{p}\right) \geqq N(r, 0, G) \geqq N_{2}\left(r, 0, g \circ h_{p}\right)=N\left(r, 0, g \circ h_{p}\right)+O(\log r)
$$

and

$$
N(r, 0, g \circ h) \geqq N(r, 0, G) \geqq N_{2}(r, 0, g \circ h)=N(r, 0, g \circ h)+o\left(N_{2}(r, 0, g \circ h)\right) .
$$

Hence we have

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{N\left(r, 0, g \circ h_{p}\right)}{N(r, 0, g \circ h)}=1 . \tag{4.5}
\end{equation*}
$$

Using Lemma 1 and (4.5) we have

$$
\varlimsup_{r \rightarrow \infty} \frac{N(r, 0, g \circ h)}{T(r, g \circ h)} \leqq \varlimsup_{r \rightarrow \infty} \frac{T\left(r, g \circ h_{p}\right)}{T(r, g \circ h)} \varlimsup_{r \rightarrow \infty} \frac{N\left(r, 0, g \circ h_{p}\right)}{T\left(r, g \circ h_{p}\right)} \varlimsup_{r \rightarrow \infty} \frac{N(r, 0, g \circ h)}{N\left(r, 0, g \circ h_{p}\right)}=0,
$$

that is, $\delta(0, g \circ h)=1$.
On the other hand (4.5) together with $\rho_{g \circ h_{p}}=0$ yields $\rho_{N(r, 0, g \circ h)}=0$. Combining $\rho_{N(r, 0, g \cdot h)}=0$ and $\rho_{g}=\rho_{h}=0$, we obtain $\rho_{g o h}=0$. In fact, let $\left\{w_{\mu}\right\}$ be the set of zeros of $g(w)$ and $\left\{z_{\mu \nu}\right\}$ be the set of w_{μ}-points of $h(z)$. If $g(0)=A \neq 0$ and $g(h(0)) \neq 0$, then, taking $\rho_{g}=\rho_{h}=0$ into account, we have

$$
\begin{equation*}
g(w)=A \prod_{\mu=1}^{\infty}\left(1-\frac{w}{w_{\mu}}\right), \quad w_{\mu} \neq 0 \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
1-\frac{h(z)}{w_{\mu}}=\left(1-\frac{h(0)}{w_{\mu}}\right) \prod_{\nu}\left(1-\frac{z}{z_{\mu \nu}}\right), \quad z_{\mu \nu} \neq 0 . \tag{4.7}
\end{equation*}
$$

Since $\rho_{N(r, 0, g \circ h)}=0$, the product

$$
\begin{equation*}
\prod_{\mu, \nu}\left(1-\frac{z}{z_{\mu \nu}}\right) \tag{4.8}
\end{equation*}
$$

converges uniformly in any bounded circle. Therefore by (4.6), (4.7) and (4.8) we have

$$
\begin{aligned}
g \circ h(z) & =A \prod_{\mu=1}^{\infty}\left(1-\frac{h(0)}{w_{\mu}}\right) \prod_{\mu=1} \prod_{\nu} \cdot\left(1-\frac{z}{z_{\mu \nu}}\right) \\
& =g \circ h(0) \prod_{\mu, \nu}\left(1-\frac{z}{z_{\mu \nu}}\right) .
\end{aligned}
$$

Thus we have $\rho_{g \circ h}=0$ when $g(0) \neq 0, g(h(0)) \neq 0$. In the other cases we similarly deduce $\rho_{g \circ h}=0$.

Since an entire function of order zero has no deficient value, we have a desired contradictory fact, $\rho_{g \circ h}=0$ and $\delta(0, g \circ h)=1$. Hence $h(z)$ must be a polynomial.

Next we assume that $h_{p}(z)=a_{p} z^{p}+\cdots+a_{1} z+a_{0} \quad\left(a_{p} \neq 0\right), h(z)=b_{q} z^{q}+\cdots+b_{1} z+b_{0}$ $\left(b_{q} \neq 0\right)$ and $q>p$. Then we have, for any ε with $0<\varepsilon<1$ and for any sufficiently large r,

$$
N(r, 0, g \circ h) \geqq N\left(\left|b_{q}\right| r^{q}(1-\varepsilon), 0, g\right)+O(\log r)
$$

and

$$
N\left(r, 0, g \circ h_{p}\right) \leqq N\left(\left|a_{p}\right| r^{p}(1+\varepsilon), 0, g\right)+O(\log r)
$$

And we know that $N(r, 0, g)$ is an increasing convex function of $\log r$, so that $N(r, 0, g) / \log r$ is finally increasing and hence

$$
\begin{aligned}
\frac{N(r, 0, g \circ h)}{N\left(r, 0, g_{\circ} h_{p}\right)} & \geqq \frac{N\left(\left|b_{q}\right| r^{q}(1-\varepsilon), 0, g\right)+O(\log r)}{N\left(\left|a_{p}\right| r^{p}(1+\varepsilon), 0, g\right)+O(\log r)} \\
& \sim \frac{N\left(\left|b_{q}\right| r^{q}(1-\varepsilon), 0, g\right)}{N\left(\left|a_{p}\right| r^{p}(1+\varepsilon), 0, g\right)} \geqq \frac{q \log r+\log \left|b_{q}\right|(1-\varepsilon)}{p \log r+\log \left|a_{p}\right|(1+\varepsilon)} \\
& \rightarrow \frac{q}{p}>1 \quad \text { as } \quad r \rightarrow \infty .
\end{aligned}
$$

This contradicts (4.5). Similarly we have also a contradiction when $q<p$. Therefore we have $q=p$, that is, $h(z)$ is a polynomial of degree p.
§5. In order to complete our proof we shall prove that if $\rho_{g}>0$, or if p is odd, then $\left|a_{p}\right|=\left|b_{p}\right|$.

We contrarily suppose that $\left|a_{p}\right|<\left|b_{p}\right|$. For $\varepsilon>0$ satisfying $\left|b_{p}\right|(1-\varepsilon)^{3}>\left|a_{p}\right|(1+\varepsilon)^{3}$, there exists $r_{1}>0$ such that $\left|a_{p}\right| r^{p}(1-\varepsilon)<\left|h_{p}(z)\right|<\left|a_{p}\right| r^{p}(1+\varepsilon)$ and $\left|b_{p}\right| r^{p}(1-\varepsilon)<|h(z)|$ $<\left|b_{p}\right| r^{p}(1+\varepsilon)$ are valid for all $r \geqq r_{1}, r=|z|$. It follows from (4.1) and (4.2) that

$$
n(r, 0, G) \leqq n\left(r, 0, g \circ h_{p}\right) \leqq p n\left(\left|a_{p}\right| r^{p}(1+\varepsilon), 0, g\right)
$$

and

$$
n(r, 0, G) \geqq n(r, 0, g \circ h)-2(p-1) \geqq p n\left(\left|b_{p}\right| r^{p}(1-\varepsilon), 0, g\right)-2(p-1),
$$

for all $r \geqq r_{1}$. Hence we obtain, for all $r \geqq r_{1}$,

$$
p\left(n\left(\left|a_{p}\right| r^{p}(1+\varepsilon), 0, g\right)-n\left(\left|b_{p}\right| r^{p}(1-\varepsilon), 0, g\right)+2\right) \geqq 2,
$$

that is, for all $r>r_{1}$,

$$
\begin{equation*}
n\left(\left|b_{p}\right| r^{p}(1-\varepsilon), 0, g\right)-n\left(\left|a_{p}\right| r^{p}(1+\varepsilon), 0, g\right)=0 \quad \text { or } 1 . \tag{5.1}
\end{equation*}
$$

Let $\left\{w_{j}\right\}_{j_{=1}^{\infty}}^{\infty}$ be the set of zeros of $g(w)$ satisfying $\left|w_{j}\right|>\left|b_{p}\right| r_{1}^{p}(1+\varepsilon)$, and suppose that $\left|w_{1}\right| \leqq\left|w_{2}\right| \leqq \cdots$. From (5.1) we deduce, for all $j \geqq 1$,

$$
\begin{equation*}
0<\left|\frac{w_{j}}{w_{j+1}}\right| \leqq \frac{\left|a_{p}\right|(1+\varepsilon)}{\left|b_{p}\right|(1-\varepsilon)}<1 . \tag{5.2}
\end{equation*}
$$

Therefore the exponent of convergence of the sequence $\left\{w_{j}\right\}$ is zero. Hence $\rho_{N(r, 0, g)}=0$, that is $\rho_{g}=0$.

Next, if $\rho_{g}=0$, then $\rho_{g \circ h_{p}}=\rho_{g \circ h}=\rho_{G}=0$. Hence $f_{p}(z)$ and $f(z)$ must be polynomials of degree at most $p-1$. We denote by μ and ν the degrees of $f_{p}(z)$ and $f(z)$, respectively. If $\mu=\nu$, then it follows from equations (4.1) and (4.2) that

$$
M_{g \circ h_{p}}(r)=M_{f_{p}^{2} G}(r) \geqq m_{f_{p}^{2}}(r) M_{G}(r)
$$

and

$$
M_{g \circ h}(r)=M_{f 2 G}(r) \leqq M_{f 2}(r) M_{G}(r) .
$$

Hence we have

$$
\lim _{r \rightarrow \infty} \frac{M_{g \circ h_{p}}(r)}{M_{g \circ h}(r)} \geqq \frac{\lim _{r \rightarrow \infty}}{} \frac{m_{f_{p}^{2}}(r) M_{G}(r)}{M_{f_{2}}(r) M_{G}(r)}>0 .
$$

However, using Lemma 2 and noting $\left|a_{p}\right|<\left|b_{p}\right|$, we have

$$
\lim _{r \rightarrow \infty} \frac{M_{g \circ h_{p}}(r)}{M_{g \circ h}(r)}=0
$$

which is a contradiction. Therefore, noting Lemma 2, we obtain $\nu>\mu$.
From the equations (4.1) and (4.2) we deduce that

$$
2 n\left(r, 0, f_{p}\right)+n(r, 0, G)=n\left(r, 0, g \circ h_{p}\right)
$$

and

$$
2 n(r, 0, f)+n(r, 0, G)=n(r, 0, g \circ h),
$$

that is, for all $r>r_{2}>r_{1}$,

$$
\begin{equation*}
2(\nu-\mu)=2\left(n(r, 0, f)-n\left(r, 0, f_{p}\right)\right)=n(r, 0, g \circ h)-n\left(r, 0, g \circ h_{p}\right)>0 . \tag{5.3}
\end{equation*}
$$

Let $w_{\text {, }}$ be an element of $\left\{w_{j}\right\}$ satisfying the inequality $\left|w_{j}\right|>\left|b_{p}\right| r_{2}^{p}(1+\varepsilon)$. We put $r_{j}^{\prime}=\left(\left|w_{j+1}\right| /\left(\left|b_{p}\right|(1-\varepsilon)\right)\right)^{1 / p}, r_{j}^{\prime \prime}=\left(\left|w_{j}\right| /\left(\left|a_{p}\right|(1-\varepsilon)\right)\right)^{1 / p}$ and $r_{j}=\max \left(r_{j}^{\prime}, r_{j}^{\prime \prime}\right)\left(>r_{2}\right)$. Then, using (5.2), $\left|a_{p}\right|(1+\varepsilon)^{3}<\left|b_{p}\right|(1-\varepsilon)^{3}, \quad\left|a_{p}\right| r^{p}(1-\varepsilon)<\left|h_{p}(z)\right|<\left|a_{p}\right| r^{p}(1+\varepsilon)$ and $\left|b_{p}\right| r^{p}(1-\varepsilon)<|h(z)|<\left|b_{p}\right| r^{p}(1+\varepsilon)$, we obtain

$$
\begin{aligned}
& \left|w_{j+1}\right| \frac{\left|a_{p}\right|}{\left|b_{p}\right|}<\min _{|z|=r_{j}^{\prime}}\left|h_{p}(z)\right| \leqq \max _{|z|=r_{j}^{\prime}}\left|h_{p}(z)\right|<\left|w_{j+1}\right|, \\
& \left|w_{j}\right|<\min _{|z|=r_{j}^{\prime}}\left|h_{p}(z)\right| \leqq \max _{|z|=r_{j}^{\prime}}\left|h_{p}(z)\right|<\left|w_{j+1}\right|, \\
& \left|w_{j+1}\right|<\min _{|z|=r_{j}^{\prime}}|h(z)| \leqq \max _{|z|=r_{j}^{\prime}}|h(z)|<\left|w_{j+2}\right|
\end{aligned}
$$

and

$$
\left|w_{j}\right| \frac{\left|b_{p}\right|}{\left|a_{p}\right|}<\min _{|z|=r^{\prime} j^{\prime}}|h(z)| \leqq \max _{|z|=r_{j}^{\prime}}|h(z)|<\left|w_{j+2}\right| \cdot
$$

Noting that if $r_{j}^{\prime} \geqq r_{j}^{\prime \prime}$, then $\left|w_{j}\right| \leqq\left|w_{j+1}\right|\left|a_{p}\right| /\left|b_{p}\right|$ and if $r_{j}^{\prime} \leqq r_{j}^{\prime \prime}$, then $\left|w_{j+1}\right| \leqq\left|w_{j}\right|\left|b_{p}\right| /\left|a_{p}\right|$, we find

$$
\left|w_{j}\right|<\min _{|z|=r_{j}}\left|h_{p}(z)\right| \leqq \max _{|z|=r_{j}}\left|h_{p}(z)\right|<\left|w_{j+1}\right|
$$

and

$$
\left|w_{j+1}\right|<\min _{|z|=r_{j}}|h(z)| \leqq \max _{|z|=r_{j}}|h(z)|<\left|w_{j+2}\right| .
$$

Therefore we deduce

$$
n\left(r_{j}, 0, g \circ h_{p}\right)=p n\left(\left|w_{j}\right|, 0, g\right)
$$

and

$$
n\left(r_{j}, 0, g \circ h\right)=p n\left(\left|w_{j+1}\right|, 0, g \circ h\right)
$$

that is,

$$
n\left(r_{j}, 0, g \circ h\right)-n\left(r_{j}, 0, g \circ h_{p}\right)=p .
$$

From (5.3), we have $2(\nu-\mu)=p$. This implies that p is even. Similarly we have the same result when $\left|a_{p}\right|>\left|b_{p}\right|$.

Therefore we obtain the desired result that if $\rho_{g}=0$ or if p is odd, then we have $\left|a_{p}\right|=\left|b_{p}\right|$. This completes the proof of Theorem 1 . q.e.d.

Remark. It is worth while to be remarked that our argument in this section remains valid when $\rho_{g}=+\infty$.
§6. The last assertion of our Theorem 1 is best possible. Let R be an ultrahyperelliptic surface defined by $y^{2}=G(z)$,

$$
G(z)=\prod_{n=1}^{\infty}\left(1-\frac{z^{p}}{\left(a^{n}-1\right) /(a-1)}\right), \quad a>1 \text { and } p \text { is even. }
$$

Let S be an ultrahyperelliptic surface defined by $u^{2}=g(w)$,

$$
g(w)=w \prod_{n=1}^{\infty}\left(1-\frac{w}{\left(a^{n}-1\right) /(a-1)}\right) .
$$

Then it is clear that $\rho_{g}=0 . \quad h_{p}(z)=(1 / a)\left(z^{p}-1\right)$ and $h(z)=z^{p}$ belong to $\mathscr{S}(R, S)$. For, setting

$$
f_{p}(z)^{2}=-\frac{1}{a} \prod_{n=1}^{\infty}\left(1+\frac{a-1}{a\left(a^{n}-1\right)}\right)
$$

and $f(z)=z^{p / 2}$, we have

$$
f_{p}(z)^{2} G(z)=g \circ h_{p}(z) \quad \text { and } \quad f(z)^{2} G(z)=g \circ h(z) .
$$

§ 7. Proof of Theorem 2. Let R and S be two ultrahyperelliptic surfaces with $P(R)=P(S)=4$ defined by the equation $y^{2}=G(z)$ and $u^{2}=g(w)$, respectively. Then by a result in [4], we have

$$
F(z)^{2} G(z)=\left(e^{H(z)}-\alpha\right)\left(e^{H(z)}-\beta\right), \quad \alpha \beta(\alpha-\beta) \neq 0, \quad H(0)=0,
$$

where $F(z)$ is a suitable entire function and $H(z)$ is a non-constant entire function and

$$
f(w)^{2} g(w)=\left(e^{L(w)}-\gamma\right)\left(e^{L(w)}-\delta\right), \quad \gamma \delta(\gamma-\delta) \neq 0, \quad L(0)=0
$$

where $f(w)$ is a suitable entire function and $L(w)$ is a non-constant entire function.
Hiromi-Ozawa [3] implies that for $h_{p}(z) \in \mathscr{S}(R, S)$ one of two equations

$$
\begin{equation*}
H(z)=L \circ h_{p}(z)-L \circ h_{p}(0) \quad \text { and } \quad H(z)=-L \circ h_{p}(z)+L \circ h_{p}(0), \tag{7.1}
\end{equation*}
$$

and for $h(z) \in \mathscr{F}(R, S)$ one of two equations

$$
\begin{equation*}
H(z)=L \circ h(z)-L \circ h(0) \quad \text { and } \quad H(z)=-L \circ h(z)+L \circ h(0) \tag{7.2}
\end{equation*}
$$

are valid. Since $h_{p}(z)$ is a polynomial of degree p, using Lemma 1 and Lemma 2 together with their proof, the equations (7.1) and (7.2) imply that $h(z)$ must be a polynomial of degree p and further $\left|a_{p}\right|=\left|b_{p}\right|$. q.e.d.

References

[1] Hayman, W. K., Meromorphic functions. Oxford Math. Monogr., London (1964), pp. 191.
[2] Hiromi, G., and H. Mutō, On the exıstence of analytic mappings, I. Kōdai Math. Sem. Rep. 19 (1967), 236-244.
[3] Hiromi, G., and M. Ozawa, On the existence of analytic mappings between two ultrahyperelliptic surfaces. Kōdai Math. Sem. Rep. 17 (1965), 281-306.
[4] Ozawa, M., On ultrahyperelliptıc surfaces. Kōdaı Math. Sem. Rep. 17 (1965), 103-108.
[5] Ozawa, M., On the existence of analytıc mappıngs. Kōdaı Math. Sem. Rep. 17 (1965), 191-197.
[6] Ozawa, M., On a finite modificatıon of an ultrahperelliptıc surface. Kōdai Math. Sem. Rep. 19 (1967), 312-316.

[^0]: Received September 12, 1968.

