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ON THE FAMILY OF ANALYTIC MAPPINGS BETWEEN
TWO ULTRAHYPERELLIPTIC SURFACES

BY KIYOSHI NIINO

§ 1. Let R and S be two ultrahyperelliptic surfaces defined by two equations
y2=G(z) and u2=g(w), respectively, where G and g are two entire functions each of
which has no zero other than an infinite number of simple zeros. We denote by
ty,(R, S) the family of non-trivial analytic mappings φ of R into S. It follows from
Ozawa's theorem [5] that for every φ€tyί(R, S) there exists a non-constant entire
function h(z) satisfying the equation

f(z)*G(z)=g°h(z)

with a suitable entire function f(z). Then we shall call h(z) the projection of the
analytic mapping φ (cf. Ozawa [6]). We denote by &(R, S) the family of projections
of analytic mappings belonging to 31(7?, S). Let pf be the order of the referred
function /.

From now on we may suppose that G (or g} is always expressed as the canonical
product having the same zeros of the original function G (or g) when the order
ptfcr.o.G) (or /0tf(r,o,g)) is finite.

§2. Theorem 1 in Hiromi-Mutδ [2] may be stated as in the following form:

THEOREM A. If PG<+°°, Q<pg<+<χ> and 31(7?, S) is not empty, then every
element h(z) belonging to φ(R, S) is a polynomial of same degree p.

In this paper we shall prove the following theorems:

THEOREM 1. Assume that pg<-\-oo and there exists a polynomial hp(z) of
degree p belonging to $(R, S). Then every element h(z) belonging to &(R, S) is a
polynomial of the same degree p.

And further if pg>0, or if p is odd, then we have \ap\ = \bp\, where
and

The last assertion of this Theorem 1 is best possible. This fact will be shown
by an example in §6.

THEOREM 2. Let R and S be two ultrahyperelliptic surfaces with PC??) =4 and
P(S)=4, respectively. If there exists a polynomial hp(z) of degree p belonging to

, S), then every element h(z) belonging to €>(7?, S) is a polynomial of the same
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degree p. And further, we have \ap\ = \bp\, where hp(z)=apz
p-\-ap-ιZp~l -\ ----- \-aQ

and h&^bpzV+bp-^+ +bo (bp*ty.

In general, a study of these theorems suggests the following problem which
we have been unable to solve:

For every pair hι(z) and hz(z) belonging to &(R, S), is there a polynomial
Fhlth2(x,y) of x and y such that Fhl,h2(hι(z), A2(z))=0?

§ 3. In the first place we shall prove the following lemmas:

LEMMA 1. If g(z) and h(z) are transcendental entire functions and hp(z) is a
polynomial of degree p^l, then we have

=0.
r-*oo T(r,g h)

Proof. Since h(z) is a transcendental entire function, by Hayman [1, p. 51],
we have for any fixed N>p and sufficiently large r,

On the other hand, we set hp(z)=apz
p+ap-ιzp~1-] ----- htfι2+#o (ap^Q). Since

\hp(z)\^\ap\rp(l+έ) for sufficiently large \z\=r, we have

Λl,(r))^log Mg(\ap\rp(l+e))

And we know that T(r, g) is an increasing convex function of log r, so that
T(r, sO/log r is finally increasing and hence

that is,

T(rN+\g) =

Thus we obtain

)> g) ^ 9p

and this proves Lemma 1. q.e.d.

LEMMA 2. Let g(z) be an entire function and h\(z) and h2(z) be two polynomials
of the form apz

p-}-ap^zp~l -}- ••• +#o (ap*0) and bpz
p+bp-ιzp~l + ••• + b0 (

respectively. Then we have
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(\ap\l\bp\)q, if g(z) is a polynomial of degree q,

0 if Q(Z) is transcendental and \ap\<\bp\,

+00 // g(z) is transcendental and \ap\>\bp\.

Proof of Lemma 2. The result is clearly true in the case where g(z) is a
polynomial of degree q.

Suppose that g(z) is transcendental and \ap\<\bp\. Then for ε>0 satisfying
\bp\(l—ε)>\ap\(l+ε), there exists n>0 such that \hι(z)\^\ap\rp(l+ε) and \h2(z)\
^\bp\rpQ—έ) are valid for all r>n, r=\z\. Putting ^Λ2(r)=min,^|=r|^2(^)|, we have
for r>rι,

and

It is well known from Hadamard's three circle theorem that logMg(r) is an
increasing convex function of log r, so that log M^(r)/log r is finally increasing and
tends to infinite as r— >+oo. Hence we have for r>r2>rlf

log |α,|r*(l+6) ~ log |

and for any fixed N and r>r3>rι,

Therefore we deduce for all r>max(r2)rs),

MgΛl(r)

— (1^ \

This implies

Since JV can be chosen as large as we please, we obtain
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lim

The last assertion of the lemma is clearly deduced from the above argument.
q.e.d.

§ 4. Proof of Theorem 1. Our assumption implies that with a suitable entire
function fp(z), the equation

(4. 1) fP(z)2G(z)=g°hp(z)

is valid. And for h(z) belonging to ξ>(R, S), there exists a suitable entire function
f(z) satisfying the equation

(4.2) f(z)2G(z)=g°h(z).

In the first place we shall prove that every element h(z) of &(R, S) is a poly-
nomial of degree p. To this end, we shall consider two cases according as pg>Q
or pg=0.

CASE 0</00<+oo. If pg is finite, so is pg.hp, for hp(z) is a polynomial. From
the equation (4. 1) we deduce that

(4.3) N(r,0,G)^N(r9Q,g hp).

Hence /o^cr.o.oi that is, pG is finite. Therefore it follows from Theorem A that
every element h(z) of φ(Rt S) is a polynomial of degree p.

CASE 100=0. If 00 is zero, so is pg.hp Then (4. 3) yields that |0A cr,o,σ)=0, that
is, /0β=0. Hence by (4. 1) we have p/p=Q. Since fp(z) has only at most p—l zero
points where hp(z) vanishes, fp(z) is a polynomial of degree at most p—l.

We contrarily assume that 'h(z) is a transcendental entire function. Then
using the reasoning of Hiromi-Mutδ [2, pp. 239-240], we deduce that h(z) is of
finite order and

tΛ Λ^ v(4.4) lim — x - T V — » ~ 7̂7 — A - ττ~ — >r, 0, gro^) ^^ A^2(r, 0, g°^)

where N2(r,Q,f) is the counting function of simple zeros of the referred function
/. Using (4. 4) together with N(r, 0,G)^A^2(r,0, g°ti) and pG=Q, we have /oΛ=0. It
follows from (4. 1), (4. 2) and (4. 4) that

N(r, 0, g»hp)^N(r, 0, G)^ΛΓ2(r, 0, g hp)=N(r, 0, βfoAp)

and

jV(r, 0, g°h)^N(r, 0, G)^7V2(r, 0, g°ti)=N(r, 0, g°k)+o(N2(r, 0, ?«*)).

Hence we have
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tλ ^ r ^foO»0°*ι»)(4.5) lim^ΓFT — ~ - rr =

' r— N(r,Q,g°ti)

Using Lemma 1 and (4. 5) we have

_ , , < 7 o A ) ^^ T(r,g hp) _ Λί(r, 0, go/^) —
Aim * — ̂ Γ7 - 7τ — =^ urn ~7fτ; - FT" Aim — ̂  - ̂ -\ — - urn~ », g°hp) r->oo Λ^(r, 0, g°^)

that is, 5(0, go A) =1.
On the other hand (4.5) together with pg,hp=Q yields jθjV( r,o,g.A)=0. Combining

/θΛ cr,o,^.Λ)=0 and ρg=ρh=ΰ, we obtain ^βft=0. In fact, let {̂ } be the set of zeros
of g(t0) and {zμv} be the set of ^-points of h(z). If g(ty=A^Q and g(A(0))^=0, then,
taking pg=ph=-^ into account, we have

00 / IfJ \

(4.6) tr(w)=AΠ (1— ̂ -), »^0,
^=1 \ Zi/ju /

and

(47) i

Since /o^(r,o,i7.w=0, the product

(4.8)
/

converges uniformly in any bounded circle. Therefore by (4. 6), (4. 7) and (4. 8)
we have

Thus we have /oα.Λ=0 when g(0)^=0, g(A(0))=^0. In the other cases we similarly
deduce /v/^0.

Since an entire function of order zero has no deficient value, we have a desired
contradictory fact, ^.^=0 and d(0, g°ti)=l. Hence h(z) must be a polynomial.

Next we assume that hp(z)=apz
p-\ ----- h#ι2+#o (flp^O), h(z)—bqz

q-\ ----- \-bιZ+b0

(bq^Q) and q>p. Then we have, for any ε with 0<ε<l and for any sufficiently
large r,

N(r, 0, goh}^N(\bq\r\l-ε), 0, <7)+O(log r)

and

N(r, 0, g hp)^N(\ap\t*(l+ε), 0,
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And we know that N(r, 0, g) is an increasing convex function of log r, so that
N(r, 0, g)/log r is finally increasing and hence

N(r,Q,g h) ^ N(\bq\r«(l-ε), 0, g)+O(logr)
N(r,0,Q*hp) -

_ N(\bq\r*(l-e),0,g) fflogr+log |
N(\ap\r*(l+e), 0,0) ~ p log r-flog \ap\(l+e)

— » — >1 as Γ-^oo.
P

This contradicts (4. 5). Similarly we have also a contradiction when q<p. There-
fore we have q=p, that is, h(z) is a polynomial of degree p.

§5. In order to complete our proof we shall prove that if pg>Q, or if p is
odd, then \ap\ = \bp\.

We contrarily suppose that \ap\<\bp . For ε>0 satisfying \bp\(l—έ)B>\ap\(l+έ)*,
there exists rι>0 such that \ap\rp(l-ε)<\hp(z)\<\ap\rp(l+ε) and \bp\rp(l-έ)<\h(z)\
<\bp\rp(l+έ) are valid for all r^n, r=\z\. It follows from (4. 1) and (4. 2) that

Λ(Γ, 0, G)^»(r, 0, go^^^d^lr^l+ε), 0,

and

»(r, 0, G)^»(r, 0, groA)_2(^-l)^^(l^kp

for all Γ^ΓL Hence we obtain, for all r^n,

p(n(\ap\r*(l+e), 0, g)-n(|^|^(l-ε), 0,

that is, for all r>rι,

(5. 1) n(\bp\t*(l-έ), 0, g)-^(|^ rp(l+ε), 0, βr)=0 or

Let {MV}~,I be the set of zeros, of g(w) satisfying \Wj\>\bp\r?(l+e), and suppose
that \Wι\^\w2\^-". From (5. 1) we deduce, for all y^l,

(5.2) 0<

Therefore the exponent of convergence of the sequence [Wj] is zero. Hence
/ O j V C r , 0 , g ) = 0, that is /Og = 0.

Next, if /00=0, then pg.hp=ρg,h=(>G=Q. Hence /p(^) and /(«) must be poly-
nomials of degree at most p—l. We denote by μ and v the degrees of fp(z) and

, respectively. If μ=u, then it follows from equations (4.1) and (4. 2) that
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Mg.hp(r) =

and

Hence we have

lim qW? ^ lim fffffff? >0.
^ Mg.h(r) 7=^ Mf2(r)MG(r)

However, using Lemma 2 and noting I t fpKI&pl, we have

which is a contradiction. Therefore, noting Lemma 2, we obtain
From the equations (4. 1) and (4. 2) we deduce that

2»(r, O.ΛO+nfc 0, G)=»(r, 0, go^)

and

2«(r, 0,/)+n(r, 0, G) = Λ(Γ, 0, (/oA),

that is, for all r>r2>Γι,

(5. 3) 2(*-/ι)=2(n(r, O,/)-Λ(Γ, 0,/p))=»(r, 0, go^)_^(r, 0, go

Let &0J be an element of {Wj} satisfying the inequality \Wj\>\bp\rξ(l + έ). We
put r}=(\u>J+ίmi>p\(l-6W'p, r ' / = ( \ W j \ / ( \ a p \ ( l - ε ) ) y / p and r^max^rJO (>r»).
Then, using (5.2), |̂ |(l + ε)3< l^l(l-ε)3, \ap\r*>(l-ε)<\hp(z)\<\ap\rp(l+e) and
|6p|ι*α-e)< !*(«)!< l&pl^d+e), we obtain

min

and

min \hp(z)\ ^ max I
|*| «rj' M=r}'

| < min \h(z)\^max |
\z\=r'j \z\=r'j

min \h(z)\^ max |
\z\=r'j \z\=r'j
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Noting that if rj^rj', then |^|^|^+ι| \ap\l\bp\ and if rj^rj', then \wj+1\^\Wj\ \bp\j\ap\,
we find

and

mm \hp(z)\ ^
\Z\=TJ \z\=rj

min \h(z)\^ max\h(z)\<\tvJ+2\.
\Z\=Tj \Z\=Tj

Therefore we deduce

n(rjt 0, gohp}

and

n(rj9 0, g°h)=pn(\wj+1\, 0, g°h\

that is,

n(rjt 0, g°ti)—n(rj, 0, g°hp)=p.

From (5. 3), we have 2(v—μ)=p. This implies that /> is even. Similarly we have
the same result when \αp\>\bp\.

Therefore we obtain the desired result that if ^=0 or if p is odd, then we
have \αp\ = \bp\. This completes the proof of Theorem 1. q.e.d.

REMARK. It is worth while to be remarked that our argument in this section
remains valid when ρg=+oo.

§6. The last assertion of our Theorem 1 is best possible. Let R be an
ultrahyperelliptic surface defined by y2=G(z),

and P is

Let S be an ultrahyperelliptic surface defined by u2=g(w),

w

Then it is clear that ^=0. hp(z)=(l/α)(zp-l) and h(z)=zp belong to $(R,S). For,
setting

and /(z)=2p/2, we have

fp(z)*G(z)=g°h?(z) and
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§ 7. Proof of Theorem 2. Let R and S be two ultrahyperelliptic surfaces with
P(R)=P(S)=ί defined by the equation y2=G(z) and u*=g(w\ respectively. Then
by a result in [4], we have

F(zγG(z) = (eH^-a)(eH™-β\ aβ(a-β)*Q, #(0)=0,

where F(z) is a suitable entire function and H(z) is a non-constant entire function
and

f(w)2g(w) = (eLw-γ)(eL™-d), rd(γ-δ)*Q, L(0)=0

where f(w) is a suitable entire function and L(w) is a non-constant entire function.
Hiromi-Ozawa [3] implies that for hp(z)£$(R,S) one of two equations

(7. 1) H(z)=L°hp(z)-L°hp(Q) and

and for h(z)s%>(R,S) one of two equations

(7.2) H(z)=L°h(z)-L°h(Q) and H(z) = -L°h(z)+L°h(Q)

are valid. Since Λpfc) is a polynomial of degree p, using Lemma 1 and Lemma 2
together with their proof, the equations (7. 1) and (7. 2) imply that h(z) must be a
polynomial of degree p and further \ap\ = \bp\. q.e.d.
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