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SOME EXTREMAL PROPERTIES IN THE UNIT BALL
OF VON NEUMANN ALGEBRAS

BY HISASHI CHODA, Yόicm KIJIMA AND YOSHIOMI NAKAGAMI

This paper is prepared to investigate some extremal properties in the unit ball
of von Neumann algebras. Throughout this paper, by extremal point we mean the
extremal point of the unit ball of the algebra considered. Theorem 1 is characteri-
zations of extremal points. Theorems 2 and 6 are characterizations of finite von
Neumann algebras. Theorem 3 gives a sufficient condition for a von Neumann
algebra to be finite. Theorem 4 treats the extremal points of a von Neumann
algebra which is induced into or reduced to the invariant subspace of the algebra
or its commutant. Theorem 5 gives a necessary and sufficient condition for a
von Neumann algebra to be a properly infinite factor. Theorems 6 and 7 treat the
extremal points which appear in the tensor products. Theorems 1 and 2 are
specializations of the results obtained by Kadison [2], Sakai [4], and Miles [3].

1. Notations and definitions. Let ξ> be a complex Hubert space and S(&) be
the full operator algebra on it. Let 91 and 55 be von Neumann algebras, and C the
von Neumann algebra of all scalar multiples of the identity operator. For a pro-
jection E in 9ί or W the set {TE: Γ€9l} forms a von Neumann algebra WE, where
TE is a restriction of ET to the range of E. For convenience, we shall denote by
9lι the unit ball of 9ϊ, 9ϊe the set of extremal elements of 9lι, 9lp the set of projections
in 91 and 9ίpl the set of partially isometric operators in 91. The operators 1 and 1G

stand for the identity of 9ϊ and 91̂ , where G is a projection belonging to the center
of 91. Furthermore, denote by W the set of isometric operators in 91, by 9F the
set of A with A*€9P and 9lu the set of unitary operators in 91. For E and F€9tp,
E~F if and only if there is AsW, with A*A=E and AA*=F, and £<F if
and only if there is A €91 with A*A=E and AA*^F. Let Re(a?,y) be the real
part of the inner product (x,y) for vectors x and y. Let 91x55 be the product von
Neumann algebra of 91 and 55, and AxB be the product operator in 91x55 with
A€91 and Be®. Let 91®55 be the tensor product of 91 and 55, and 9ίe(g)55e denotes
the set of tensor products A®B of all the pairs AeW* and #€55e.

2. The following theorem due to Kadison plays an important role in this
paper and the independent proof will be given.

THEOREM 1. The following conditions1^ are equivalent
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1) Kadison has proved the mutual equivalence of (1) and (3) for C*-algebra [2].
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(1)
(2) A€$pi and there exists a central projection G of 9ί such that G^A*A and

1-G^AA*; and
(3) AeSlP1 and (l-AA*)2l(l-A*A)=={0}.

Proof. (1) implies (2): It is obvious that A 3=0 for A€$le. Suppose that an
operator Ae$tθ is not partially isometric. Then there is a vector χςξ> in the carrier
of A such that ||A#||<||#||. Let A=U\A\ be the polar decomposition of A and let
P be the projection onto the subspace of ξ> spanned by {Tx: T^\jW}. Then P is
a central projection of 91. Using these operators, put F= A(l— P)-f £7P and
T7=A(l-P)-H2A-t/)P. Then Fe^ and Ws^. Since ||Ar||<|M| and xsU*U$

\\APx\\^\\Ax\\<\\x\\^\\Ux\\ = \\UPx\\

and so AP^UP, then F^J7. But A=A(l-P)+AP=(F+TF)/2, so this contradicts
the assumption that A€$e. Thus AeSP1. Let E=l-A*A and F=1-AA* and
apply the theorem of comparability [1] to these E and F, then there exists a
central projection G of 51 such that EG^FG and F(l— G)<£(1— G). If £G^O,
then B*B=EG and BB*^FG for some non zero Pe^1. Define Λ+ and 4- by
Λ±=Λ±5, then A=(A++A~)/2 and ^eSti. This contradicts ^4.€5le and hence
EG=0. Similarly F(1-G)=0. Therefore (l-E)G = G and (1-F)(1-G) = 1-G,
that is G^l-E=A*A and l-G^l-F=AA*.

(2) implies (3): By the condition (2), 1—A*A^1—G and 1-^4A*^G, then
(l-AA*)T(l-A*A)=(l-AA*)GT(l-G)(l-A*A)=0 for every ΓcS.

(3) implies (1): If an operator A given in (3) is not in 2le, then there are two
different operators S+ and S~ in at such that A=(S++S~)/2. For every 0€ξ)

=2ί\\S+z\\*+\\S-z\\*)-4\\Az\\*,

so that for x$A*A$ S+x=S~x^ hence S±^=(S+^+S~^)/2=^^ and for ye(l—A*A)&
(S ++S-)y=2Ay, hence S+y=-S~y. Define P=S+(l-^*yl). Then S^t^^+P and
so B^O. For every ^€y4*^4ξ) and ys(l—A*A)ξ>

= \\Ax±By\\*=\\Ax\\*±2Re(Ax,

Hence \\y\\*—\\By\\*=±2Re(Ax,By') for every ^€^4*^C) and y€(l— AM)©. There-
fore (Aα?,^)=0. Thus £€>c(l-AA*)0 and so (1-AA*)B(1-A*A)^0, which is
contrary to (3). Q.E.D.

REMARK 1. 1. In Theorem 1, (2) follows directly from (3) without assuming

2) It is easily seen that 5ίίc5ίe and ^cSί6 by the parallelogram law,
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the partial isometry of the operator. Taking Ae3ϊ with (1— AA*)3ϊ(l— A*A) = {0},
then

Q=A*(l-AA*)A(l--A*A)==(A*-A*AA*)(A-AA*A) = (A-

and so A=AA*A, therefore

A A* = (A A*)* = (A A*)2 and A* A = (A* A)* = (A* A)2

hence A€9lpl. Let G be the projection onto the subspace {Tx: ΓβSIuSΓ and
#€(!— A*A)φμ. Then G is central and 1-A*A^1-G, so G^A*A. But
(1-AA*)9I(1-A*A) = {0} and so (1-AA*)(1-G)=0. Thus 1-AA*^G.

REMARK 1. 2. (1) follows directly from (2). Suppose now that the condition
(2) holds. If A=(B+C)/2 with BeWi and CeSCi, then for each x£%

||(5-C)*||2=2(||fe||2HHW^

and so for x$A*A$, Bx = Cx = Ax. Since G^A*A, BG = CG = AG. Since
A*=CB*+C*)/2, by repeating the similar argument, 5*(1-G)=C*(1-G)=A*(1-G),
so that 5(1-G)=C(1-G)=A(1-G). Thus A=5=C and so Ae3Ie.

THEOREM 2. TΛ0 following conditions are equivalent:
(1) 9C is finite] and
(2) 3ϊe=3K

Proof. (1) fm/>/^5 (2): Being stated above2) that 5ϊucSϊe, it is sufficient to
show the converse inclusion. Suppose Azty?, then by Theorem 1, both A* A and
AA* are projections with A*A~AA*. Since 31 is finite, 1— A*A^ 1— AA* and so
there is a partially isometric operator B^ such that l—A*A=B*B and 1— AA*
=55*. Let A±-A±5, then A±€3lι. Since Aele, A=A+-A-, therefore 5=0.
Thus A*A=AA*=1, that is, A£%\

(2) implies (1): If A€5ί with A*A=1, then AsW. Hence Ae3le and so AA*=1.
Thus according to the algebric characterization of a finite von Neumann algebra
[1], a is finite.

REMARK 2. 1. In the last theorem that (1) implies (2) is obtained somewhat
different methods. If A€$e, then Ae^1 and (l-AA*)3l(l-A*A)={0}. Since a is finite,
5*£=1-A*A and £5*=1-AA* for some BsW, hence 0=(1-AA*)£(1-A*A)
=BB*BB*B=B, therefore A*A=AA*=1, which implies AeSK

THEOREM 3. (1) // Ae«e. then A*A~AA*~1; and
(2) // the converse of (1) holds, then 31 is finite.

Proof. (1) Suppose Ae3le, then there is a central projection G with GgA*A
and l—.GgAA*, and hence



178 HISASHI CHODA, YOICHI KIJIMA AND YOSHIOMI NAKAGAMI

G - A* AG = (AG)*(AG)~(AG)(AG)* = AA*G

and l-G=AA*(l-G). Thus

l=G+(l-G)<^AA*G+AA*(l-G)=AA*.

(2) If 21 is not finite, then there is a projection A^ with ^4^1 and A— 1.
Define A+ and A~ by A±=A±(l-A). Then A=(A+-\-A-)/2, therefore A$%e and
A*A~AA*~l.

It follows immediately from the last theorem that (1) implies (2) in Theorem 2.

REMARK 3. 1. An alternative proof of (1) in Theorem 3. In the case where
A*A=l or AA*=l, by Theorem 1, A*A~AA*~1. Therefore it suffices to prove
(1) in the case where A*A*l and AA**l. Let E=1—A*A and F=l-AA*. By
Theorem 1, E and F are projections with EF=Q, so that F^l-E=A*A. Define
Fι=F and Fw+ι=AwFA*w for Λ = 1,2,3,-. Then F«€3lP such that Fn^*Λ
Fn~Fn+ι and FnFm=Q for «,*»=!, 2, 3,— and ^^m. Put F0=Fι+F2+F8+— , then
Fo is also a projection with F^A*A and A*.A— F0~ 1— F0. Thus

(i-F0)+Fo=ι.

LEMMA. Far <wy F€^ or 21'*, (^ι)^=(^B)ι.

Proof. It is clear that (9tι)^c (21 )̂1, so that it suffices to show the converse
inclusion, i) If Fs2l and B = AEe($E)i with A €31, then \\EAE \\^l. Let
C-F^FH-(l-F). Then CcSli and CE=AS=B. Hence (^iC^)^. ii) Let E be
a projection in W and G its central carrier. Since 2l# and %? are isomorphic, for
any B in (9b)ι, there exists an element C of Ofc)ι such that CE=B. But since
G€(^n^Opc:2lP, by i) there is Ae^ with ^σ=C. Hence ^=(^^=0^=^, which
implies (

THEOREM 4. (1) For ^n^ Fe^ or 21'*,
(2) /or 3̂; F€2ί'P, (2tθ)ί.c(2lί.)

θ. /« particular, for any
which may be denoted by 21̂ ;

(3) /or

Proof. (1) For a projection E in 21 or 2F, let φ be a linear mapping A-+AE

of 21 onto 2lj£. Then 99 is weakly continuous and ^(2ίι) = (2lί )ι by Lemma. Now,
suppose #€(2ttf)e and put φ-\B) = {A€^ φ(A)=B}. Then by the continuity of
ψ, φ~l(B) is a weakly closed and convex set in the weakly compact unit sphere 2lι.
Hence by the Krein-Milman's theorem there exists an extremal point A in φ~1(B)
and this A is also an extremal point of 2lι. Because, if A is not extremal in 2lι,
then different operators Aι and A2 in 2lι exist and A = (Aι + A2)/2, while
(φ(Aι)+φ(Az))/2=φ(A)=B. Hence φ(Al)=φ(A2)=B follows from the extremality of
.βand so Alt A2^φ~1(B), which is impossible since A is extremal in φ~1(B). Conse-
quently B€(W)E, thus (2fe)ec(2le)tf.

(2) If AeW, then there is a central projection G such that G^A*A and
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1-G^AA*. Hence for every £eSl', GE ̂  EA*AE = (AE)*(AE) and (l-G)E
^>EAA*E=(AE)(AE)*. Since GE is a central projection of SU ^€(S^)e. Thus

(3) If ^4€Sft and B^l_Eί then there exist central projections F of 31* and G
of Sli-.̂  such that F^-AM, 1-F^AA*, G^B*B and l-G^BB*. Then FxG is
also a central projection of SI,

and

FxG+(l-F)x(l-G)=l.

Therefore Ax£eSϊe. Thus SftxSI^cSϊ6. Conversely, if A€SIe, then there is a
central projection G such that G^A*A and 1— G^AA*. Hence for any central
projection E of SI

and

Thus ^*€2li and Λ-*€3C_*.

COROLLARY. For any EsW?, SlecSί|;XSlf_^. The equality holds if and only if

REMARK 4.1. In (2) of Theorem 4 the inclusion does not necessarily hold for
Because, in the most case, AE=0 or AE^(^,E)pl even if ^4eSίpl. Such a

concrete example can be given as follows: let Sϊ=£(€>) where C> is of two dimension.
Let

E=

Then 0=^e(Sie)^, but 0(KSb)e. Thus (Sb)e^(SϊV
From the last theorem, Siex23θ=(Six23)e follows immediately. In general, the

fact that Sίe=SlίuSίi* whenever Si is a factor has been proved by Kadison [2], And
also, combining Theorem 1 and (3) of Theorem 4, in the case of general von
Neumann algebra Si, Sίe=U(SίkuSϊg)X(Sί;-sUSlί*_G) where the union run through all
the central projections G of Sί.8) In particular, in the case where Si is properly

3) Miles has previously shown this fact [3].
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infinite, the former relation will be sufficient for % to be a factor.

THEOREM 5. Let 31 be properly infinite. Then the following conditions are
equivalent

(1) 3ϊ is a factor] and
(2) 3ie=3

Proof. (1) implies (2): Since 3IiU3li*c3le, it suffices to show the converse
inclusion. If ^€^ίe, then there is a central projection G such that G^A*A and
l-G^AA*. Since 31 is a factor, G=0 or G = l. Hence either A*A=1 or AA* = 1.
Thus ^eWuW*.

(2) implies (1): If 31 is not a factor, then a central projection G of 3ί exists
with 0<G<1. Since 91 is properly infinite, G and 1— G is not finite. Hence
there exist A and B such that AsWQ with AA*=¥l and £e3ϊ!_<? with B*B*l.
Therefore by Theorem 4, ,4x#€3Ietf x3l!_s=3le, (Ax5)*(Ax5)=A*^lx5*JB^l and
(AxB)(AxB)*=AA*xBB**l. Thus Ax £$ SI1 U SI1*. Consequently SPuSP'ct 3lθ.

THEOREM 6. The following conditions are equivalent:
(1) 31 is finite;
(2) 3ίe(x)55ec(3ί(x)55)e /0r any 23; *»d
(3) 3ίe(x)S(§)ec(3l®S(€)))e for any €> 0/ infinite dimension.

Proof. (1) implies (2): If ^4e3ίe and #e53e, then A is a unitary operator and
there is a central projection G with G^,B*B and l-G^BB*. Hence l(x)G is
also a central projection, 1®G^1®5*£ = AM®5*5=(A®5)*(4®5),
l(g)(l-G)^l(x)££* - AA*® BB* = (A®B)(A®B)* and 1®G + 1® (1-G) - 1.
Thus ,4(x)£€(3l(8)23)e.

(2) implies (3) is obvious.
(3) implies (1): If 3ί is not finite and ξ> is infinite dimensional, then there exist

A and 5 such that AsW with AA*^1 and £e£(ξ>)e with B*B*l. Now define
C+ and C- by C±=A®B±(l-AA*)®(l-B*B). Then

-B*B)

and so C±e(3l(x)S(€)))ι with C + ̂ C-. But ,4®£ = (C ++C-)/2, hence

THEOREM 7. TΛ^ following conditions are equivalent
(1) 51= C;
(2) 3le(x)Se = (3i(g)33)e for any 33; <mJ
(3) 3le (x) S(€>)e = (31 ® S(ξ)))e /or ftc σ dimensional ξ).

(1) ίwί/fe5 (2): If £€(C(g)33)e such that B=l®B, with #ι€33, then
there exists a central projection G of C(x)$B such that G=l<g)Gι with Gι€(SBn950p,
G^B*B and l-G^BB*. Since O^A whenever 0^1 ®Λ there exists Gi in ̂ Π^7

such that G1^BfB1 and l-G^B.Bf. Thus ^eS6, i.e. (C(g)33)ecCe(x)33e. The
converse inclusion is also similar,
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(2) implies (3) is obvious.

(3) implies (1): If A€($C(x)S(0))θ, then it may be expressed in the form

A=
VAa ι

However, since $e(x)£(€>)e=(9ϊ(><)£(€>))e, A must be expressed by a suitable operator
and a matrix 0=(#*./) €S(ξ»θ in the tensor product

#12 £7
[7(8)0 "Cιι(y

ziU

Now, suppose that 9ί^C, then a projection E with 0<JE'<1 exists in 2ί. Define

by

E l-

Then B*B=BB*=1 and so £€(9ί(x)£(€>))β, which is a contradiction to

The authors are indebted to Professor M. Nakamura, Professor H. Umegaki

and the members of their seminars.

REFERENCES

[ 1 ] DIXMIER, J., Les algebres d'operateurs dans Γespace hilbertien. (1957).
[ 2 ] KADISON, R. V., Isometries of operator algebras. Ann. Math. 54 (1951), 325-338.
[3] MILES, P., £*-algebra unit ball extremal points. Pacific J. Math. 14 (1964), 627-

637.
[4] SAKAI, S., The theory of T7*-algebras. Lecture note, Yale Univ. (1962).

OSAKA KYOIKU UNIVERSITY,
TOKYO INSTITUTE OF TECHNOLOGY, AND
TOKYO INSTITUTE OF TECHNOLOGY.




