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ON INFINITESIMAL DEFORMATIONS OF CLOSED
HYPERSURFACES

By Yosio Muto

§1. Introduction.

In the present paper we study the effect of infinitesimal deformations of (1) a
closed orientable hypersurface in an orientable Riemannian manifold and (2) a
closed hypersurface in a Euclidean space on some integrals.

Let M be an (n-+1)-dimensional orientable Riemannian manifold and M’ be a
closed orientable hypersurface in M whose equations are given by

z"=2"(u")

in local coordinates. We use indices 4,14, 7, & for M and «, b, c,d for M’, hence
h, i, 7, k run over the range {1, ---,#-+1} and @, b, ¢, d over the range {, -, 7). As
usual B,* means 0,x" where 3,=0/0u®. gpoa=Bs'Ba"gin=DBi%g:» are the components
of the first fundamental tensor of M’. The unit normal vector is denoted by N»*
and the reciprocal of the matrix (B,*, N*) by (B%, Ni). V means the Van der
Waerden-Bortolotti differential operator, hence VyBo*="rhpN", Ve N*=—h"Bs* where
I =hpeg®®. o, are the components of the second fundamental tensor of M’.

§ 2. Infinitesimal deformations.

Let 9’ be a set of hypersurfaces M'(t), 0=t<e, where ¢ is a sufficiently small
positive number and M’(0)=M’. We assume that the local coordinates of the
points of M’(¢) are given by

zh=x"(u® t)

in M. We also assume that z"(»% f) are C*= functions and the mapping ¢(#):
M’(0)—M’@®) induced by

2.1 a™(u®, 0)—a™(u®, t)

is diffeomorphic, #* being local coordinates of M’(¢f) in UNM’(¢) for some neighbor-
hood U of M and for all z€[0,¢). ¢() is a deformation of M’.
We define &"(u*) by
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2.2) EMu®)=(0.x™ (%", 1))

where 9,=0/o¢t and ( ), means ( )i=o. &™#%) is the vector field of an infinitesimal
deformation.

The infinitesimal deformation Dgs, of the metric of M’ associated with the
vector field €* will be denoted by Dy If gpa(%,?) is the metric tensor of M’(#),
Dy, is given by

2.3) Dyo=(0:95a(2, 1))o
for we have (2.1). Since ¢s.(%,t) is given by

Goatt, 1) = 0o (1, D)0ax™(1t, £)g:1(x(, 1)),

we obtain

Dya=056"Ba*gin+ By'0aEqin~+ Baci0,9:n,
hence
@2.4) Dyo=V 5By gin~+V o' By gin.

If N™(u,t) is the unit normal vector field of M’(¢), we have
0az(tt, 1)gin((u, £))N"(ut, £)=0,
hence
0aE"9in N+ Bo"67019:n N "+ Ba'gin(0:N")o=0
on M’. From this we obtain
2.5 NV o&*+ Bolgin P* =0
where P* is defined by

Pr=@Nt { :j}skzw

on M’ and will be called the infinitesimal deformation of the unit normal vector.
From (2.5) and N;P¢‘=0 we obtain

2. 6) Ph=—PB/NT;.

§ 3. Deformation of some integrals on a hypersurface in a Riemannian
manifold.

Let us first consider the total volume of M,

V=S av
M’
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where dV=(det (9s4))"2du*---du”. It is known that the infinitesimal deformation

of this integral, namely,
def d
pl av= [_S dV]
SM’ dt Juww 0

is given by
1
3.1) —Z—S 9%Dpod V.
M’
Substituting (2. 4) into (3. 1) and using Green’s theorem, we get

S BaiV“SidT/’:—S eF°BydV
M M’

=—S haENAV,

MI

hence

3. 2) DS dV=—S hatN&dV.
M? M

Thus we obtain the following proposition.
ProrosiTioN 3.1. Let M’ be a closed orientable hypersurface in an orientable

Riemannian manifold. A mnecessary and sufficient condition that the total volume
of M’ be critical for every infinitesimal deformation such that

3.3) g _ Ngav=0

is that the mean curvature be constant on M’.

Let us calculate the deformation D#y, of the second fundamental tensor.
Let Zsq(u, t) be the second fundamental tensor of M’(#). Since we have

Roa(ut, 1) = — ByginV o N

in M'(¢), we get
3. 4) dulusalte, )= —(mx%mmm—Bbzgm<atmNh+ { kl;}az:c"VaNi).

By straightforward calculation we get
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a,VaN'L=at(aaNh+{ ;lz.}BafNi)
=8a3tN"+8tx"ak{ ..}Baf N‘+{ . 10a0t B’ N+ 1 . .t Bg/o, Nt
Jt Jt Jt
i

; }atfoi>+Kkj,;"8m’“BafNi——{ ; }at:cf<aaN" —i—{lk}Ba‘N")

=I7a(a;N"—|-{ .. ..
Jt Jje

where Kj;* is the curvature tensor of M. Thus we have
3.5) @OF eN?)o=V o P?+ K3 5i"E* Ba/ Nt — { ;li}ffVaN i

on M’. From (3.4) and (3.5) we get
(3. 6) Dhyo=—V38qinV o N*— By*(V o Pn+ Kz jinE* B/ N?).
From (3. 6) we get
D(h")=D(ha9"*) = (Dha)g"*—h"*Dya
=—V W N;— BV o P*+ K ;£ N*— hyo D",
hence

3.7 Dh= % [—V*N¥ o§*+K;jiN &+ B ¥ o( By NV %) — 21" B4V o£7]

where % is the mean curvature.
Let us calculate deformation of the integral of the mean curvature over the

hypersurface M’, namely,

DH=DS hdV

M
1
=S (Dh—l——hg"“Dm)dV.
M’ 2
Substituting (2. 4) and (3.7) into the last member and using Green’s theorem,

we get

DH=\ (=7 NF o KN B (BN
MI

—2/ B o5+ h? BV (£]dV

M

+2V o(l* B%)§'—V o(ls"B*)EYd V.
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As we have
Vil Ni=—V ofts®) B%— s hy® N3,

we get after some calculation
DH= %;S [Voha® —V ahs®) B i ~{(ha")* — "o} NiE*+ K s NIE}d V.
M/

Substituting the equations
Voho®—V ohy?=—K;;N7 By,

which are derived from the equations of Codazzi, into the last member, we get
3.8 DH= %S [KijNE N7 —(ho®)?+ oI N:EA V.
MI

If we use the scalar curvature 'K of M’, we can write (3.8) in the form

3.9 DH= %S (K—'K—Ke;NEN)NgV,
M’

for the equations of Gauss state that
'K=K—2KynN*N"+(h")2— lis"ha?.
Thus we obtain the following proposition.

PROPOSITION 3.2. A mecessary and sufficient condition that the integral of
the mean curvature over an ovientable closed hypersurface M’ in an orientable
Riemannian manifold M be critical for any infinitesimal deformation such that

S Ngd V=0
MI

is that K—'K—Kz;N*N’ be constant on M'. A necessary and sufficient condition that
the integral of the mean curvature over M’ be critical for any infinitesimal defor-
mation is that the following equation be satisfied on M’,

K—"K—K;NEN?=0.
If M is an Einstein space, K and Ki;N*N7 are constant. Hence we obtain the

COROLLARY. A mecessary and sufficient condition that the integral of the mean
curvature over an orientable closed hypersurface M’ in an orientable Einstein space
M be critical for any infinitesimal deformation such that

S Ngid V=0
M'
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is that the scalar curvature 'K of M’ be constant.

§4. Deformation of a closed hypersurface in Euclidean space.

Let us consider the case where M is a Euclidean space E™**.
Let H(2) and H;*(2) be defined by

4.1) H(2)=det (/"—208),

@2 Hy " (Q)(he?—208) =03 H(2)

and put

@3 H@)=Hp+2AHp 1+ -+ Hi (=)™

From (4. 2) we get
(7 oHp (2))(1? — 20%) + Hy (A o> =V . H (2).
As we have Vah'=V h by virtue of the Codazzi equations and as we have

Ve H (2)=Hy )V cha,

we get

V Hy™(2)) (e — 208) =0,
hence
4.4 Vo Hy*(2)=0.

Differentiating Hy*(2)(ho’—405)=05H (X) covariantly, we also obtain
(PP Hy™(2)(ha® — 20G)+ Ho () ha’ =V H(2),
hence
4.5) PP H*(2)=0

by virtue of the Codazzi equations and F°H(2)=H,*(A)V°h,D.
Now let us calculate deformation of the integral of H () over M’.
As we have (2.4) and

DH ()= Hy>(2) Dhp*
= Ho*()(9°* Dhye—h°9°* Dyc),

we get
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DS HRAV
1

_ SH(z) 50“DacdV

+ SHJ(A)(gf“Dhbc—hbdgcapdc)dV
= gH(])BcchEid 14

+ SH,,”(X)(—V W ,N;— BV o P*—ho® 48 B%— hpaV “6 B %)dV

by virtue of (3.6) and Kjj;i»=0. By Green’s theorem the last member becomes

- S[— T HO) B & —hHANEIdV

+ S[Ha"(l)(V VoN)& +H" (D" Ni P+ V aHo" (D)) B 6"

+HLDV ahs®) B &4+ Ha(Dho®ha" Ni&*+ Ho* (D) *hoa) B4:E*
+HP(Dhoah™ NV
where we have used (4. 4) and (4. 5).
As we have
VeV s Ns=—V *hse) B®s— hoch** Ny,
N;Pi=0,

we get
DSH(z)dV
- S[—VCHO) — H QP e+ (7 cHI Q)

+HLAW ahy®+ Ha" DV *hoc]l BC:5*d V

+ g [—AH () — H?Dhych® + H P (D ot hg® + Ha? (A hoah* 4 NS

We easily get
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V aH ()
=V o(HA)®)— HO AV aly®
=V { HP(A) (?— 26§)+AH2(A)} — HL2 (A ahy®
=V o(0¢ H(R) — H)V alte®
=V . HQ)— H2QAV aho?,

and the first integral containing B°%&® vanishes.
Thus we obtain

@. 6) DSH(z)dV =S [— B H )+ H Dl “INd V.
On the other hand we have
— B H Q)+

=—he"H()+ Ho*(D)[(s° — 205) (ho" — 20) 22" — 205) + 2071
=—hH @)+ (ke —n)H(A)~+2nAH (3)+ 2*H,*(2)

=nAH () +22H,%(2)
and
%H D) = H*(2) -57 (ha®—233)
=—H,"(2),
hence
—hHQ)+ Ha*(Dhyeh™

. d
=niH@A)—2 a7 H@®)

= 3 (1) Hp_pt™

m=0

where we have used (4. 3).
Substituting this identity into (4.6) we get

r»

D SHn_md vam

ibMs

ibse

(n—m) SHn_mNiE‘d Ve,

0
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hence
@ DSH,,d =0,
A.8) DSHn_de=(n—m+1)SHn_m+1M4-de (m=1, -, n).

Thus we obtain the following theorem.

THEOREM 4. 1. Let M’ be a closed hypersurface in a Euclidean space E™*' and
let HQQ) and H, be defined by 4.1) and 4.3). If & is a wvector field of an
infinitesimal deformation of the hypersurface M' and D is the symbol of the defor-
mation induced by &, then Hy, H, ---, H, satisfy (4.7) and (4. 8).

(4. 7) states that the integral of det (%" over the hypersurface M’ is a topo-
logical invariant. This is a well-known fact, the integral being equal to the volume
integral of S™ multiplied by the degree of mapping of the Gauss map ¢: M’'—S™
induced by the unit normal vector field N*.
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