
ON THE SYSTEM OF NON-LINEAR DIFFERENTIAL
EQUATIONS WITH PERIODIC COEFFICIENTS

BY TOSIYA SAITO

§ 1. Recently the author has investigated the behaviour of the solution
of the non-linear differential equation

-£-=13 Mχ)y*ax fc=1

where fic(x) are uniform and holomorphic in the domain O < | Λ Γ < r, and
obtained an analytical expression of the solution valid around x = O.1*

The method of proof used there can easily be generalized for the system
of non-linear differential equations

(A) -^-= Σ f,,*r.^(x)y^-yfr, / = !,-,*,ax fc1+. .+fewsι

with fj,iβ1. icn(x) uniform and holomorphic in 0< x\<r, or, what is the
same thing, for the system

with aj9jer..Ίen(t) periodic in t.
In the present paper, we consider the system (B), and establish the

analytical expression of its solutions.

§ 2. Let the system of differential equations

Π \ <L*L = y j # a\ x _L yι a (f) x*1 — x*n =l — n

be given, where kί9 •••, kn are non-negative integers, Λj,»(f) and tff,»r..fcn (ί) are
periodic functions of ί with period 1 holomorphic for — oo < t < oo, and the
power series in the right-hand members are convergent for

— oo < t < oo, Xj <p9 p > 0, j = l,~ n.

Without loss of generality, we may suppose that the matrix || #.?,» (f) II is of
the following form:
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ΐx,

n\ columns

HI rows

n2 rows

columns

rows

where Xi, •••, X^ are complex constants.
We denote by

the solutions of (1) such that

X) — %ιo> y = 1> •*•> n, for t = fo

In what follows, we always consider these solutions in the fixed interval

where N is any (arbitrarily large) positive number. Then, for any 8 > 0
however small, we can find δ > 0 such that

in the interval (2), if

\x>(t)\<8,

\XJQ\ j = 1, •••, n.

Therefore, if xίQ , , [ xno are chosen sufficiently small, xj (t) are holo-
morphic in xίQ, -••, ^W0, and, moreover, #/(£) identically vanish whenever
their initial values XiQ, ,xnQ all vanish. Hence they admit the following
power series expression in the interval (2):

(3)

y - i,
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§ 3. We now investigate the relations between the solutions xj(t) and

Since

-Xj(£ fθ» *10f •••»#no) = *j(t + l,t,Xi(f), ~'9Xn(f)),

we can write

( 4 ;
+ Σ ^r^^ +fci+ +fcw^a

y = ι,-
where the power series in Xι(t), —,xn(t) in the right-hand members are con-
vergent (in the interval (2)) whenever XiQ\, ,\xno are sufficiently small.

From the uniqueness theorem of the solutions of differential equations and
periodicity of the coefficients aj>k(t), ajfκv..ιen(t)t the relation

Xj(t + 1, to + 1, ΛΓio, - , ΛΓWO) = ΛΓ;(^ to, XIQ, " , ΛΓWO)

holds for any A IO, •••, AΓn0 with sufficiently small absolute values. Thus we
obtain, making use of the expression (3),

( 5 ) t/,,fc (t + 1, *„ + 1) = C/i,* (^ *o) , CΛ,*r-*n (ί + 1, ίo + 1) = tO,»

Therefore, if we put

£M* + 1» 0 = us,*®* Uj,*r.«n(t + 1, ί) =«vι *»

it follows directly from (5) that

and we obtain the following conclusion:
if ί #10 !, •••, |#rool βr^ chosen sufficiently small, Xj(t) can be written as

(6)

in the interval

where the coefficients uj9τe(t), Ujfκr..κn(t) are periodic functions of t with period I.

§ 4. Next we determine explicitly the coefficients u ],*({), j, k = 1, -Ή. For
that purpose, it suffices to determine the coefficients Uj,* (t, t0) in the expres-
sin (3) . Substituting (3) into (1) and equating the terms of the same degree
in #10, -, Xno on both sides of the equations, we obtain the following system
of linear differential equations:
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{ ZUj,

(7)

3£/jr+2,»
—

Ji = 0,

As we have supposed that

Uj9τe(t,t0) must satisfy the initial condition

Uj, k(tQ, to) = 8jjb, y, A? = i, - ,

Solving the linear system (7) under this condition, we have

— - 5 —

+ - +
s =

Consequently

and the matrix (] ^>fc (/) || is of the form

A1

r =

where
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§ 5. From what we have hitherto shown, the relation between Xj(ί)
= xj (t + 1) and xj (t) can be written as follows :

(5-2)1(8)

Λ = 0, Λ+l =./r + «r, 5 = 1, —,W r , 7 = 1, —,/>.

Our final step is to solve this system of functional equations and to deter-
mine the explicit forms of x j ( t ) .

For that purpose, we add an assumption that

(9) \eλr >l (i.e. 9tλr >0), r = !,•»,£.

Moreover we may suppose, without loss of generality, that λ,ι, •• ,Xp are so
arranged that

(10) 0 < SRλ! < ̂ Rλ2 < - < 3t\».

It is known that,2) under the condition (9), we can find an analytic trans-
formation

xj(t) -+ys(t)=<Pι(xι(t)9 •••, xn(t)\ t}

defined by the power series, convergent for sufficiently small values of | xι(t) |,
—,\Xn(ί)\ (i.e. for sufficiently small values of \XIQ\, •••, \xno\)9

yj(t) = 9>j(*i(t), ~,χ«(t)\t)

(Π) - 2
-

j = 1, •••,«,

where ̂  are constants with det pjje \ Φ 0, and Wj9τeγ.. κtn (t) are polynomials of
uj^r-τcn(t) (hence periodic in t) such that the system (8) is transformed into

Φlr+s(χl(t + 1)' •"» ^«(^ + 1 ) » ^)

(12)

Λ = 0, Jr+i-Jr + nr, s = 1, —, «r, r = 1, —,/>,

where vj,.+!>,»!»*„ (ί) are periodic functions of £ with period 1, and

tfj+** * ( f ) Ξ 0 if e
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' 0, s = 1,
δ. = .

1, s = 2, —,«r.

From the periodicity of wj^...^ (t), we have

Φι(xι(t + 1), •••, Xn(t + 1); t) = ̂ (ί + 1).

So the system (12) can be rewritten as

(13)
Σ

As we have supposed that 9ΐX r are all positive, the relation

can be realized for only a finite number of combinations of non-negative
integers kι,- ,kn with kι-\ ----- f- kn ̂  2. Hence the right-hand members of the
equations (13) are all polynomials in yj (t) . Furthermore, owing to the sup-
plementary condition (10), kjr+ι,—,kn must all vanish for the relation (14)
to hold. Consequently, in the expressions

in the right-hand members of the equations (13), the functions y j r + ι ( t ) 9 •••,
^n(ί) can never appear. Thus we can rewrite the system (13) in the follow-
ing form:

(is) J -h y1 vi

§ 6. The system of functional equations (15) are divided into p groups
according to the value of r.

For r = 1, these equations will be written as follows:

(16-1) *(* + l) = *λι*(f),

(16-2) y2 (* + !) = eλιy2 (f) + 3>ι (f),

(16-Λι) y»ι « + 1) = eλl^»ι (0 + Λι-ι (*)

From (16-1), we can immediately see that yι(t) must be of the form

where Φι(ί) is a periodic function of t with period 1. Next we put
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Then

y2(t + l) = eλιeλι*{e-*ιtΦι(t) + P(t + 1)} + *λι%(f).

Comparing this with (16-2)

we obtain

Therefore the function P(£) must be periodic in t.
In the same way, the equations (16-3), •••, (16-%) can be solved successively,

and y ι ( t ) , ~ ,ynι(t) must be of the form

where Φj(t) are polynomials of t whose coefficients are all periodic functions
of t with period 1.

We will then show that all yj(t) can be written in the form

(17) y,r+.(t) = e*'<Φ,r+,(t)

where Φjr+s(t) are polynomials of t whose coefficients are periodic functions
of t with period 1. The proof can 'be carried out by induction with respect
to r in the following way.

Suppose that y ι ( t ) , , y j m ( t ) have been expressed in the form (17). The
next group of functional equations (corresponding to r = m + 1) will be

ί Λ»+»m (ί + 1) = e^yJm+Λm (t) + yJm+Λm-ι (t)

+ Σ ^+»Λ,*r^mo-..o

Since ί;jϊn+,,»r.*/JΛo o W Ξ 0 for

XTO ^ ftjXj H ----- f- &jmλm_ι (mod 2τr/),

and yκ(t),k = 1, •• ,ywl, are supposed to be of the form (17), we can write

Σ t^+.*ι~»,mθ"θ (^ Oi (^ }*ι Ό;m (^ }*J» = β '̂̂ ^ (t) ,
fcl+'"+fcJm^2

s = 1, — ,n»,

where Vjm+s(t) are polynomials of t whose coefficients are all periodic func
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tions of t with period 1. Then the epuations (18-1), •••, (18-nm) are rewritten
as

(19-1) yίm+1 (ί + 1) = e^yJm+1 (t) + e^VJm+l (t),

(19-2) yJm+2 (t + 1) = e^yJm+2 (t) + y3m+1 (t) + e^VJm+2 (t),

yjm+»m (*+!) = e^yjm+nm (t)

KίTO+ιW can ^>e written in the following form:

VJm+l(t) - QoW + id(*)+-+ / V 0 v (

where ζ?0(ί)> •••» Q^(0 are all periodic in t. Then put

(20) Λw+ι(ί) - βλ»'{J?0(ί) + ̂ (ί) +-+ tv+1R

where Rι(t), ,Rv+ι(t) are determined from the following system of linear
algebraic equations:

As the determinant constructed from the coefficients of the left-hand mem-
bers of the above equations is obviously different from zero, Rj.(t), •••, Jf?»+ι(ί)
are uniquely determined as the linear combinations of Qa(t) , •••, Qv (t) . Hence
they are all periodic functions of t with period 1.

Then

y,m+l(t + 1) = e^e^{R0(t + !) + (* + !).&(*) +•••+ (t +

R2(t)

"7 * +



SYSTEM OF NON-LINEAR DIFFERENTIAL EQUATIONS 105

= eλ™e^{RQ(t + 1) + tRι(t) +•••+ tv+1Rv

Comparing this with (19-1), we obtain

Therefore ^jm+ι(ί) must be of the form (17).
Substituting the expression of yjm+ι(t) just obtained into (19-2), we have

(21) yίm+2(t + 1) - e^yjm+2(t) + e^WJm+2(t)

where Wjm+2(t) is a polynomial of t with periodic coefficients. It is then
evident that the equation (21) can be solved by the same method as we have
adopted for the equation (19-1), and yjm+z(t) must also be of the form (17).

Proceeding in this way, we can successively show that y j m + s ( f ) , s = 1, •••,
nm must be of the form (17). Thus we have completed the proof.

§ 7. Substituting (17) into (11), and solving it with respect to xλ (t) , •••, xn(f)
we arrive at the desired analytical expression of Xj (t) which can be written
as follows:

*j(t) - Σ JW*»(*) *<*ιλι+"+*»λi'>ί, j = 1, -, n,
*!+•••+ *n2>l

where P3licr^n(t} are polynomials of t whose coefficients are periodic functions
of t with period 1.

The same conclusion can be obtained if we replace the condition (9) by

(90 \e*r <1 (i. e. ̂ λr < 0) , r = l, ~,p.

Thus we have established the following

THEOREM. // the real parts of the characteristic exponents λi, λ2, •• ,λw oi
the linear part of the system (1) are all positive or all negative, the solutions
Xj(t),j — 1, - ,n, of the system with the intial condition

Xj = *Jo» i = 1> •"» n, for t = t0

can be expressed in the domain

in the following form:

(*) xj(t) = Σ Pj,*1..*n(t)e<*ι*ι+'"+*»*»»,
fci+ +fcw^l

where N is an arbitrary positive number, £& is a positive number depending
upon N, and Pj,3fcr..»n(0 are polynomials of t whose coefficients are all periodic
functions of t with period 1.3)
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In praticular, if \19 ~,\n are all distinct and the relation Xm = kι\ι -i—
+ kn\n (mod 2τri) can never be realized for any combination of non-negative
integers kι, ~ 9kn with &H h kn^2 and m = 1, - , w, the functions 0;(ί) in
(17) are all periodic functions of t. Hence Pj,»r..»w(i) in (*) must be all peri-
odic in t. Whence follows the

COROLLARY. If, besides the condition stated in the Theorem, Xi, ••sTw are all
distinct and the relation ,

\m = kι\ι H f- knλ n (mod 2πi)

can never be realized for any set of non-negative integers klf ~ ,kn with &H—
+ kn^2 and m = 1, ~ , n , x j ( t ) can be expressed in the domain

| e λ ι* i<M, -, \eλnt <M9 \xjQ <ZM, ; = !,-,«,

in the form (*), where M is an arbitrary positive number, &M is a positive
number depending upon M, and Pj9jer ^n(t) are periodic functions of t with
period 1.
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