A REMARK ON RENGEL'S THEOKBM CONCERNING

SEEGO゙'S CONJECTURE
By Masatsugu TSUJI

Let $w=f(z)\left(f(0)=0, f^{\prime}(0)=1\right)$
be regular and schlicht in $|z|<1$ and
D be the image of $|z|<1$ on the w-plane and Γ be its boundary. We draw n equi-angular half-lines through $w=0$ and let w_{1}, \ldots, w_{n} be the points of intersection of these lines with Γ, such that the segment $\bar{\sigma} w_{i}(i=1,2, \cdots, n)$, except w_{i} lies in D and put

$$
d=M_{a x}\left(\left|w_{1}\right|, \ldots,\left|w_{n}\right|\right)
$$

Then Rengel ${ }^{1)}$ proved the following Szego's conjecture.

Theorem. $\quad d \geqq \sqrt[n]{1 / 4}$,
the equality holds, only when $f(z)$ $=e^{i \theta} E_{n}\left(e^{-i \theta} z\right)$, where

$$
E_{n}(z)=\frac{z}{\sqrt[n]{\left(1+z^{n}\right)^{2}}}
$$

When n is odd, Rengel assumed that any half-line through $w=0$ meets Γ at a finite distance, but by considering $\rho f(z / \rho)(\rho>1)$, and making $\rho \rightarrow 1$, we see that the theorem holds in general. In the following lines, we shall simplify somewhat Rengel's original proof. We use the following Rengel's lemna.

Let $\Delta: 0 \leqq x \leqq b, 0 \leq y \leq a$
be a rectangle on the $z=x+i y$-plane and $\sigma_{i}: 0<x_{i} \leqq x \leqq x_{i}^{\prime} \leqq b$ $y=\eta_{i}\left(0<\eta_{i}<a\right)(i=1,2, \cdots, n) \quad$ be segments in Δ parallel to the x axis and Δ_{0} be the complement of $\sum_{i=1}^{\infty} \sigma_{i}$ with respect to Δ.

Let $w=f(z)$ be regular in Δ_{0} and J be the area of the image of Δ_{0} on the w-plane by $w=f(x)$.

then

$$
\frac{a}{b} \leqq \frac{J}{L^{2}}
$$

the equality holds, only when $f(z)=\alpha z+\beta$.

In case the inequality holds, let I be an interval on the y-axis, such that if $y \in I$,

$$
\int_{0}^{b}\left|f^{\prime}(x+i y)\right| d x \geqq L+c, \quad c>0
$$

then

$$
\frac{a}{b} \leqq \frac{J}{L^{2}}-\frac{2 a^{\prime} c}{b L}
$$

Proof of the theorem.

We supose that one of n equiangular half-lines through $w=0$ coincides with the positive real axis and

$$
\begin{equation*}
\alpha \leqq \sqrt[n]{1 / 4} \tag{1}
\end{equation*}
$$

Then we shall prove that $f(z)$ $=E_{n}(z)$, so that $d=\sqrt[n]{1 / 4}$. Let $|z|=q \rho(\rho>0)$ be the greatest circle, which is contained in the image of $|z| \leqq \rho$ by $E_{n}^{-1}(f(z))$ then $\lim _{\rho \rightarrow 0} q=1$.

By a branch of $\zeta=\xi+i \eta=\log z$, we map $\rho \leqq|z| \leqq 1$ on a rectangle $\Delta: \log \rho \leqq \xi \leqq 0 \quad, 0 \leqq i \leqq 2 \pi$ and put $g(\zeta)=\log E_{n}^{-1}\left(f\left(e^{\zeta}\right)\right)$. Then Δ may contain branch points of $g(5)$. Through these branch points, we draw parallel lines to the η-axis, which we call exceptional parallels. Then Δ is divided into a finite number of rectangles $\left\{\Delta_{i}\right\}$. In each
$\Delta_{i}, g(\zeta)$ is one-valued and regular. As is easily seen, the sum J of areas of the images of these rectangles on the ζ_{1}-plane by S_{1} $=g(\zeta)$ is

$$
J \leqq 2 \pi \log \frac{1}{q \rho} .
$$

In virtue of (1), as Rengel proved, the length of the image of a nonexceptional parallel on the ζ_{1}-plane is $\geq 2 \pi$. Hence putting 2 $=\log \frac{1}{\rho}, b=2 \pi, L=2 \pi$ in the Lemma, we have

$$
\begin{equation*}
\frac{\log 1 / \rho}{2 \pi} \leqq \frac{2 \pi \log 1 / q \rho}{(2 \pi)^{2}} \tag{2}
\end{equation*}
$$

If the equality in (2) does not hold, then

$$
\begin{gathered}
\frac{\log 1 / \rho}{2 \pi} \leqq \frac{2 \pi \log 1 / q, \rho}{(2 \pi)^{2}}-\frac{2 a^{\prime} c}{(2 \pi)^{2}} \\
\left(a^{\prime}>0, c>0\right),
\end{gathered}
$$

which is impossible, since $\lim _{g \rightarrow 0} q=L$.
Hence the equality in (2) holds, so that

$$
\log E_{n}^{-1}\left(f\left(e^{5}\right)\right)=\alpha \xi+\beta
$$

From this we have easily, $f(z)$
$=E_{n}(z)$, so that $d=\sqrt[n]{1 / 4}$. If one of n equi-angular half-lines through $w=0$ is $\arg w=0$, and $d \leqq \sqrt[n]{1 / 4}$, then $f(z)=e^{i \theta} E_{n}\left(e^{-i \theta} z\right)$ and $d=\sqrt[n]{1 / 4}$.
(*) Received July 24, 1953.

1) E. Rengel : Über einige Schlitztheoreme der konformen Abbildung. Schriften ides math. Seminars und des Instituts fur angewandte Math. der Universităt Berlin. Band 1. Heft 4 (1933) ; H. Grötzsch : Einige Remerkungen zur schlichten konformen Abbildung. Jahresber. d. deutchen Math. Ver. 44 (1934).
2) E. Rengel : 1. c. 1).

Mathematical Institute, Tokyo Univarsity.

Hence our theorem is proved.

