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BIHARMONIC AND QUASIHARMONIC DEGENERACY

BY LUNG OCK CHUNG, LEO SARIO AND CECILIA WANG

Among the vast complex of problems on inclusion relations between bihar-
monic and quasiharmonic null classes of Riemannian manifolds, we consider in
the present paper perhaps the most intriguing case: Are there inclusion rela-
tions between Of 2c and OξLP? Here H2, C, Q, Lp are the classes of functions
which are nonharmonic biharmonic, bounded Dirichlet finite, quasiharmonic, or
of finite Lp norm, respectively; a function u is biharmonic or quasiharmonic
according as Δ2u=Q or Δu=l, with Δ the Laplace-Beltrami operator dδ+δd;
for any two classes X, Y of functions, XY stands for Xr\Y, and 0%γ for the
class of Riemannian iV-manifolds on which XY—φ. The classes H2, Q, and Lv

are not meaningful on Riemann surfaces, but are of great interest on Rie-
mannian manifolds.

It is known that both Of 2C and OQLP are strictly contained in Oξc, but whether
or not there is an inclusion relation between O^c and OQLP ha-s been an open
question. The purpose of the present paper is to show that the answer is in the
negative. In particular, for any Λfe2 and any p^l, there exist Riemannian
Λf-manifolds which carry QLP functions but nevertheless fail to carry H2C
functions.

For any null class 0^ of Riemannian Λf-manifolds, denote by 0N the com-
plementary class. In Nos. 1 and 2, it is readily verified that the classes Of 2C

Γ\OQLP, O%2cΓλθQLP, and 0%2CΓ\0$LP are all nonvoid. The interesting relation is
OH^CΓΛOQLVΦΦ, for which we use two approaches, one in Nos. 3-6, the other in
Nos. 7-10.

1. Decomposition. We state our goal:

THEOREM. For any N^2 and any lfg£<oo, the totality of Riemannian N-
manifolds decomposes into the disjoint, nonvoid classes
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The proof will be given in Nos. 1-10.
In view of the Euclidean ΛΓ-ball, we have trivially

Regarding OJJZCΓ\OQLP> it is known that the Euclidean TV-space EN belongs
to OξLP. Suppose there exists a u in the class H2B of bounded functions in
H2 on EN. Then

u= Σ Σ {annr
n+bnwr

n+2)Snm,
n—0 vi—l

with the Snm spherical harmonics. Let ^ G Q ^ O O ) , p^O, supp pd(0,1), and
set Pt(r)=p(r—t) for f>0. It some bnmφ0, then for <pt=ptSnm,

as t—»oo, whereas

We have a violation of \(u,φt)\^c(X, \φt\) for n+N+l>N— 1, that is, all
Therefore, all £ n m =0, and MGE//5, contrary to UEΞH2B. Hence ENeLO%
and we have verified that

In No. 2, we shall show that 0%2CrΛθ$LPΦφ, and in Nos. 3-10, that

2. # 2 C functions but no QLP for l ^ ί < o o . Consider the exterior R of
the unit ball in Λf-space,

with the metric

LEMMA.

Proof. The function h=ar~ljrb satisfies the harmonic equation Jh(r)=

J oo

r"2 log r dr is biharmonic with Jw=r"1. Since
r

and
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we have %c

To show that R^O$LP, note that — log r e Q, and every qo{r)^Q can be
written qQ(r)=— logr+ar^+b. Clearly, qo(r)&Lp. An arbitrary q(r,θ)eQ, θ—
(β\-~ tθ"-1), is of the form

with the fnSn harmonic. Since qo$Lp, there exists a φ{r)^Lp> with 1/p+l/p'

= 1 such that (qo,φ)=§ q0*φ=co. By virtue of (fnSn,φ)=0, we have (q,φ)=

(,Qo,φ)=0°, hence q&Lp. The Lemma follows.

3. QLP functions, lg>p<2, but no H2C. The relation 0%2CΓ\0%LVΦφ is the
most interesting part of our Theorem. We shall use two different approaches.
The first one only applies to the case l^p<2, but offers methodological interest.
It is based on theorems of Haupt [2], Hille [3], and Bellman [1] on the asymp-
totic behavior of solutions of ordinary differential equations, and will be pre-
sented in Nos. 3-6. The second approach applies to all l^£<oo. For N=2, it
will be given in No. 7; for iV>2, in Nos. 8-10.

Consider the product of the 2-space and the (N—2)-torus,

R=R2χTN-*= {(r, θ\ •••, θ"-1) I 0^r<cx>, Q^θ%^2π, ι = l , •••, N-l]

with the metric

ds2=φ(r)dr2+ Σ V i W ^ 2 ,

where ψ and the ψt are C°°[0, oo). On {r<l/2}, the metric is to be Euclidean,
and on {r>l}, for a given 0<<5<l,

φ(r)=Φi(r)=r'i'δ 9

LEMMA. For l^P<l+δ and N^2,

The proof will be given in Nos. 3-6.
The relation

is immediate. In fact, the quasiharmonic equation ^dq(r)=—g~1/2(g1/2φ~1q/y=l
is satisfied by

q()fQg()φ()f^\) dt.

For r>l , gm=φ=r~2~δ, and therefore,
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as r->oo. The integrand in \\q\\% is asymptotically rp~2~δ, and we have
for l^

4. Rate of growth of harmonic functions. For the proof of R(=O%2C, we
first consider nonconstant harmonic functions f(r)G(θ), where Θ—(Θ1,'",ΘN~1),
and G(θ) is a product of functions G^β*) of the form cos nβ1 or sin nfr. We
denote by R1 the class of constant functions and show:

-R1, then for r> l ,

with
U fir) UfLΫGiiθ^H-R1, then as r-+oo,

f(r)~ar,
with aΦO.

If ΛήUίΫGiiθ^^H with Gι(θi)Φconst for ι = l and some ι>l, then as

In the first case, we have for r>l ,

which gives f/;—nΐf=0, as claimed. By the maximum principle,
In the second case, we similarly obtain

J V - l

We now make use of the following theorem of Haupt [2] and Hille [3] : A
sufficient condition for the differential equation

on (0, oo) to have solutions

as x-̂ oo is that

In the present case, this condition reads

r-^ZΞL1.
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Since it is satisfied, we have the asserted asymptotic behavior of f(r). The
maximum principle gives aΦO.

In the third case, we have for r > l ,

By a preliminary transformation r-+cr, this can be written f"=(l+p(r))f. We
now make use of the following theorem of Bellman [1] : If p(x)-+Q as x-*oo

and p2dx<cof then the equation f"=(l+p(x))f on (0, oo) has solutions
J o

ΛW=exp

In the present case, Bellman's conditions take the form r~2~δ-^0 as r-+oo, and
r"2"%L2(c,oo). Both are satisfied, and the statement follows.

5. Rate of growth of biharmonic functions. We continue the proof of
R(=0H2C and use the above results to estimate biharmonic functions.

U g^Tlξ^Glθ^ϊΞH2, with GiΦconst, then gG&B.
If g(f) IK71 GtWeH*, then gG$C.

In the first case, we know from No. 3 that a quasiharmonic q(r)~cr, hence,
q(r)$B. It therefore suffices to consider the case Δ{gG)=fG^H—Rι. We have
f~aenir and, for r>l ,

hence

If g^B, then g*~cr~2~δenir and therefore g$B, a contradiction.
In the second case, f~ar, and for r>l ,

Suppose gGtΞC, hence g^B. For rf^^^nl

g'(r)=$~(f(s)-V

2g(s))s-2-δds+c.

Here c=0. In fact,
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If cφO, then D(gG)=<χ>, a contradiction.
By f~ar and g^B, the integrand in the expression of g' is ^s" 1 " 5 , hence

g/^c2r~δ and g~c3r
1~(5. In view of δ<l, we have g&B, a contradiction.

6. No H2C functions. We are ready to draw the conclusion:

For the proof, suppose there exists a u^H2C. Expand i t : u—Σngn(r)Gn(θ),
gnGn<^H2, gQG0—cg. The only radial biharmonic functions are constants and
constant multiples of radial quasiharmonic functions q(r). By No. 3, q(r)~cr&B.
Thus gQG0&C or else gQGQ=const, and we already know that gnGn&C for nφO.

To deduce a contradiction from u e C , we first observe that

for every n. Suppose first that gnGn^B for some n. Then

f uGndθ=cgn&B,
J Θ

a contradiction. If gnGn^B for all n, then by No. 5, Gn(θ) depends on θ2, •••, ΘN~X

only, and therefore gnGn&D. In view of the Dirichlet orthogonality of the Gn,
ΈngnGn&D as well. This contradiction proves that R^O%2C, and we have
established the Lemma in No. 3, hence also our Theorem for l^

7. QLV functions, any p, but no H2C, for N=2. We proceed to our second
approach in the proof of our Theorem, valid for all l ^ ^ < o o . In No. 7, we
discuss the case N=2; in Nos. 8-10, 7V>2.

Consider the 2-sρace R with the metric

ds2=φ(r)dr2+φ(r)dθ2

with φ,φ^C°° such that, for r<l/2, the metric is Euclidean, and for r>l ,

LEMMA. For

Proof. The relation

is immediate. In fact, Δq{r)=l is satisfied by

o

and q(r)~cr as r-^oo. Thus the integrand in \\q\\ξ is ~crpe~r/2, and q^Lp for
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all p.
To show that

let G(θ) be either sin nθ or cosnθ for some integer n^O.

If f(r)G(θ)t=H, with G(θ)Φconst, then f(r)~aenr, aΦO.
If g(r)G(θ)<=ΞH2, then gG&B.

Indeed, the harmonic equation J(/G)=0 gives

which for r > l reads f/;—n2f, and f=-aenr+be~nr. By the maximum principle,
aΦO.

The equation Δ(gG)—fG takes, for r > l , the form

g»=n2g-e-r/2f

If gtΞB and G^const, then g"~-ae(n-1/2>r, and g^ae(n~1/2n contradicts g^B if
Gφ const.

If G=const, then gG—cg is radial quasiharmonic, hence by gn ——er'2fy we
again have g&B.

Now suppose there exists a u^H2B. Since in the expansion u=J^ngn(r)Gn(6),
gn^0 for some w, the corresponding transform

a contradiction. We have shown that

8. <3LP functions, any p, but no H2C9 for ΛΓ>2. We now come to the
main part of our Theorem: the relation O'H2CΓ\OQLPΦΦ for all l^p<oo and
N>2.

For the base manifold we take the same product of R2 and the (N— 2)-
torus as in No. 3,

R={(r,θ) I 0 ^

but endowed with the metric

where >̂, ̂ i^C°°[0, oo) for ί = l , •••, ΛΓ—l, the metric is Euclidean on {r<l/2},
and

The choice of ψi will depend on a partition {ItJ} of the interval (1, oo) and on
an auxiliary function ψ(r) to be presently specified.
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The partition {Itj} with ι,j=l," ,N—l, and iφj consists in dividing each
semiopen unit interval In=(n, n+1] , n = l , 2, •••, into (N— 1)(Λ/— 2) equal semi-
open intervals Ify, and by setting I%j=\JnI%.

The function ^ is defined on each 1% as follows. Subdivide IQ into five
equal semiopen subintervals, Ilf I2, /3, /4, /5, in this order, and let ψ^C°° with

Ψ(r)=<

Thus φ is well defined on (1,

Φt(r)=-

1

^ 1

oo), and

• e-rψ(r)

e-*φ(τY

e~r

for
r for

for

we set

for

1 for

for

The Riemannian TV-manifold J? is thus well defined.
Note that the determinant of the metric tensor is g(r)=φTlφi. For r > l ,

^ • ( r ) 1 / 2 r = : β " ( Λ Γ - 1 ) r .

We claim:

LEMMA. For l ^ ^ < c o αnrf iV>2,

The proof will be given in Nos. 8-10.
The relation

is immediate. Indeed, the quasiharmonic equation. Δq{r)—l has a solution

For r>l, ^1/2=^-^-1)^ a n d ^ - i / 2 ^ = l β T h u s ^ ( r ) ^ α r a s r_>Oo, and

9. Rate of growth. To prove that

we first observe that if u(r)^H2, then w ΐ 5 . In fact, M(r)=
Next consider harmonic functions f(r)G(θ), with' the notation as in No. 7.

If f(r)G(θ)£ΞH, fGΦconst, then
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\f(r)\>ce2reer

for all sufficiently large r.

For the proof, note that by the maximum principle, |/ | is strictly increas-
ing and / is of constant sign. The sign of G suitably chosen, we have />0.
In the relation Δ(fG)=Δf-G+fΔG=O, we obtain for r>l,

Δf=-eCN-1>rf", ΔG^Σnlψ^G,

so that

where cψ^1 comes from a nonvanishing term with ntQ>0. Integrating / / ; ^
ce-tN-i>rψ-i t w j c e w e obtain

In view of /(l)>0 and /'(l)>0, we have

We estimate the growth of e-^N~1:>sψiQ\s)ds as ί->oo. Let n=[f ]—1, and denote
J 1

by n+δ the left end point of //ίo3. The right end point of IfiQ8 is n+δ+
ί5(N-l)(N-2)T\ and, for t>r0, say,

=e~se*s

ί = l ^ ee'ds

e~seeSds

+δ

For r0 sufficiently large, this dominates

with c an appropriate constant. Integration by parts gives

f(r)>cC e-teet-1dt^ce'2reer-1.
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It follows that

hence

and

A fortiori,

and

for sufficiently large r.

10. No H2C functions. To continue the proof of R<ΞO%2C, we consider
nonharmonic biharmonic functions g(r)G(θ), with the notation as in No. 7.

If g(r)G(θ)<aH2, then gG&B.

For the proof, suppose gG is bounded. For sufficiently large r,

hence

Since f(r)>ce2reer for all sufficiently large r, and φ^e'^'^g does not grow
faster than c#er, the right-hand side is unbounded as r-^co, and of constant
sign for large r. Integrating twice, we see that g&B, hence gG&B.

We are ready to draw the conclusion

To see this, let u{r,θ)^H\ Write w(r,0)=Σn£»MGΛ(0), with Go(0) stand-
ing for a constant. Here some gnGn^H2, say ^ G ^ If U(ΞB, then

(T l M)(r)=f uG.
J Θ

in violation of uG1dθ=cg1&B.
J
 Θ

The proof of the Lemma in No. 8 and of the Theorem is herewith com-
plete.
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