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BIHARMONIC AND QUASIHARMONIC DEGENERACY
By LuNG Ock CHUNG, LEO SARIO AND CECILIA WANG

Among the vast complex of problems on inclusion relations between bihar-
monic and quasiharmonic null classes of Riemannian manifolds, we consider in
the present paper perhaps the most intriguing case: Are there inclusion rela-
tions between Ofzc and Ofp? Here H? C,Q, L? are the classes of functions
which are nonharmonic biharmonic, bounded Dirichlet finite, quasiharmonic, or
of finite L? norm, respectively; a function # is biharmonic or quasiharmonic
according as 4%u=0 or du=1, with 4 the Laplace-Beltrami operator dd-+dd;
for any two classes X, Y of functions, XY stands for XNY, and 0¥y for the
class of Riemannian N-manifolds on which XY =¢. The classes H? @, and L?
are not meaningful on Riemann surfaces, but are of great interest on Rie-
mannian manifolds.

It is known that both O¥:; and Of;» are strictly contained in O, but whether
or not there is an inclusion relation between OZ:; and Of.» has been an open
question. The purpose of the present paper is to show that the answer is in the
negative. In particular, for any N=2 and any p=1, there exist Riemannian
N-manifolds which carry QL? functions but nevertheless fail to carry H®C
functions.

For any null class O¥ of Riemannian N-manifolds, denote by O¥ the com-
plementary class. In Nos. 1 and 2, it is readily verified that the classes Ofz¢
/-\0~ng,~0§20[-\0ng, and OZszOéVLp are all nonvoid. The interesting relation is
OF2cNOp#¢, for which we use two approaches, one in Nos. 3-6, the other in
Nos. 7-10.

1. Decomposition. We state our goal:

THEOREM. For any N=2 and any 1=<p<oo, the totality of Riemanman N-
manifolds decomposes into the disjoint, nonvoid classes
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The proof will be given in Nos. 1-10.
In view of the Euclidean N-ball, we have trivially
égzgﬂéngigﬁ .

Regarding Og:cN\Ofrp, it is known that the Euclidean N-space EV belongs
to Ofzp. Suppose there exists a u in the class H®B of bounded functions in
H? on E¥. Then

o m,
u= EO ”lzl(anmrn+bnmrn+2)snm s
n=0 m=

with the S,, spherical harmonics. Let peCF[0, ), p=0, supp p(0, 1), and
set p,(r)=p(r—1t) for t>0. It some b,,+0, then for ¢,=p,Sun,

t+1

(u, s0¢)=6f (A ™+ b D)o ¥ "t dr ~ct® TV

t

as t—oo, whereas
t+1 R i
@, Igocl)cht o ¥ tdreocth -t

We have a violation of [(u, ¢,)| =c(1, |¢;|) for n+N+1>N—1, that is, all n=0.
Therefore, all b,,=0, and u< HB, contrary to us H*B. Hence E¥<0%:3C 0%z,

and we have verified that
quvzcﬂogl,pigb .

_In No. 2, we shall show that Of:cN\OJ»#¢, and in Nos. 3-10, that Ofzcn
Ofir+ .

2. H?C functions but no QL? for 1<p<oco. Consider the exterior R of
the unit ball in N-space,

R={(,0",-,0" ") | 1<r<co},
with the metric

N—
ds*=r-tdr*+r¥(df")+ 3, dO* .
1=2
LEMMA. For N=2, 1=<p<oco,
REégzcﬂong .

Proof. The function h=ar '+b satisfies the harmonic equation 4h(r)=
—(r*h’)’=0, and the function u=fmr'2 log 7 dr is biharmonic with du=r"'. Since
usB and

D(u)zc‘fmrzu’zdr<oo s
1
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we have ReO0ya,.

To show that ReO};», note that —log7r<Q, and every ¢,(r)=Q can be
written gy(r)=—logr+ar '+b. Clearly, qi(r)&L?. An arbitrary q(r,0)eQ, 0=
@, -+, 6%, is of the form

9(r, O)=q(r)+ 2 fu(r)S(6),

with the f,S, harmonic. Since g, L?, there exists a ¢(r)eL? with 1/p+1/p’
=1 such that (q,, @)= quo*gp:oo, By virtue of (.S, ¢)=0, we have (¢, p)=
(g, p)=00, hence ge&L?. The Lemma follows.

3. QL? functions, 1=<p<2, but no H*C. The relation OF;N\OJp# ¢ is the
most interesting part of our Theorem. We shall use two different approaches.
The first one only applies to the case 1=p< 2, but offers methodological interest.
It is based on theorems of Haupt [2], Hille [3], and Bellman [1] on the asymp-
totic behavior of solutions of ordinary differential equations, and will be pre-
sented in Nos. 3-6. The second approach applies to all 1=<p<co. For N=2, it
will be given in No. 7; for N>2, in Nos. 8-10.

Consider the product of the 2-space and the (N—2)-torus,

R=R*XTY2={(r, 0", ,0" ") | 0=r<o0,0<60'<27,1=1, ---, N—1}
with the metric
dst=p(r)dr*+ Jrjjgbi(r)d&“ ,
where ¢ and the ¢; are C[0, c0). On {r<1/2}, the metric is to be Euclidean,
and on {r>1}, for a given 0<d<],
Pp(=gi(r)=r""2,
¢(n=1, 1>1.
LEMMA. For 1<p<1+4+0 and N=2,
RE0}2cNOs .

The proof will be given in Nos. 3-6.
The relation
ReO»

is immediate. In fact, the quasiharmonic equation 4q(r)=—g "*(g"%p"1¢’)' =1
is satisfied by

ar)=—{ gty ()| g x(s)ds dt .

For r>1, g¥*=¢=r"%"%, and therefore,
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r pt
q(r)z—f j 72 9ds dt~cr
ovo

as r—oo, The integrand in [¢||Z is asymptotically #?~27%, and we have ¢=QL?
for 1=p<14-9.

4. Rate of growth of harmonic functions. For the proof of R0}z, we
first consider nonconstant harmonic functions f(»)G(6), where 8=(6",---, 6% "),
and G(0) is a product of functions G;(6*) of the form cos n;6* or sinn,0*. We
denote by R' the class of constant functions and show :

If f(r)G,(8") H—R?, then for r>1,

f(r)=ae™ +be ™",

with a+0.
If f(r) IBG'Gy(6Y)€ H—R', then as r—oo,
Ar)~ar,

with a+0.

If fINIINAIG(0Y) e H with G,(6%)#const for 1=1 and some 1>1, then as r—oo,

f(r)~aem™,
with a+0.

In the first case, we have for r>1,

A(fGC)=—r**(f"G,+fGI)=0,
which gives f”—n}f=0, as claimed. By the maximum principle, a+0.
In the second case, we similarly obtain

N-1 .
=5 mir=tf
1=2

We now make use of the following theorem of Haupt [2] and Hille [3]: A
sufficient condition for the differential equation

Fr(x)=p(x)f(x)
on (0, ) to have solutions
Fi(x)=x(1+40(1)),

Jo(x)=1+0(1)
as x—oo is that
xp(x)€ L}0, 00).

In the present case, this condition reads

r-i%et,
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Since it is satisfied, we have the asserted asymptotic behavior of f(r). The
maximum principle gives a#0.
In the third case, we have for r>1,

N—
fr=(ni+ 5 nir+f.

By a preliminary transformation r—cr, this can be written f7=(1+p())f. We
now make use of the following theorem of Bellman [1]: If p(x)—0 as x—oo

and ,f :pzdx<°°» then the equation f”=(1+p(x))f on (0, %) has solutions

fi=exp[+x 5 | o],

fo(x)=exp [— <x—|—%~f;p(x)dx+o(l))] .

In the present case, Bellman’s conditions take the form r*%—0 as r—oo, and
r~*%eL*c, o). Both are satisfied, and the statement follows.

5. Rate of growth of biharmonic functions. We continue the proof of
Re0%:; and use the above results to estimate biharmonic functions.

If g() TIY Gy(0Y) e H?, with G,+#const, then gGe B.
If g(n) 1L G(0Y) e H?, then gGeC.

In the first case, we know from No. 3 that a quasiharmonic ¢(r)~cr, hence,
g(r)é B. It therefore suffices to consider the case 4(gG)=fGe H—R'. We have
f~ae™™ and, for r>1,

N—
H(gG)=—r*¥(g" —mig— ¥ nr*g)G=fG
1=2
hence
N-1
gr=(ni+ T nir*%)g—r=°f.
1=2

If g B, then g”~cr %%™" and therefore g& B, a contradiction.
In the second case, f~ar, and for r>1,

N—-1
gr=(Z nig—fir—=’.
Suppose gGC, hence geB. For 7’=X{"'n},

2= ()—rg(Nsds+e.

Here ¢=0. In fact,
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If ¢+0, then D(gG)=o0, a contradiction.
By f~ar and ge B, the integrand in the expression of g’ is ~s7'7%, hence
g'~cyr™? and g~er*?. In view of 6<1, we have ge& B, a contradiction.

6. No H®C functions. We are ready to draw the conclusion:
REO}vnc.

For the proof, suppose there exists a usH?C. Expand it: u=>,2,(r)G,(0),

2.G.€ H? g,Gy=cg. The only radial biharmonic functions are constants and

constant multiples of radial quasiharmonic functions ¢(v). By No. 3, ¢(r)~cre B.

Thus g,G,<C or else g,G,=const, and we already know that g,G,<C for n=0.
To deduce a contradiction from u=C, we first observe that

(Ta)={ uG,df<B

)

for every n. Suppose first that g,G,< B for some n. Then
jaucndazcg,,eEB,

a contradiction. If g,G,< B for all n, then by No. 5, G,(8) depends on 62, ---, 671
only, and therefore £,G,<D. In view of the Dirichlet orthogonality of the G,,
20:.8,.G,&D as well. This contradiction proves that R€O}:;, and we have
established the Lemma in No. 3, hence also our Theorem for 1=p<2.

7. QLP? functions, any p, but no H2C, for N=2. We proceed to our second
approach in the proof of our Theorem, valid for all 1=p<oco. In No. 7, we
discuss the case N=2; in Nos. 8-10, N>2.

Consider the 2-space R with the metric

ds*=@(r)dr*+¢(r)do*
with ¢, ¢=C= such that, for r<1/2, the metric is Euclidean, and for »>1,
pr=g(r=e"".

LEMMA. For 1=p<co,
RE0%:cNOy .
Proof. The relation
REO%Lp

is immediate. In fact, 4q(r)=1 is satisfied by
a=—{ o(tig)[ g(syedsat,

and ¢(r)~cr as r—oo. Thus the integrand in |q||3 is ~crPe™™2, and ¢ L? for
p
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all p.
To show that
Re O%ﬂc ,

let G(6) be either sinnf or cos nf for some integer n=0.

If f(r)G(O)e H, with G(0)+const, then f(r)~ae™", a+0.
If g(r)G(f)= H?, then gG& B.

Indeed, the harmonic equation 4(fG)=0 gives
(g1/2¢—1f/)/:n2g1/2¢—1f’
which for »>1 reads f”=n’f, and f=ae" +be ™. By the maximum principle,
a+0.
The equation 4(gG)=fG takes, for r>1, the form
g"=n’g—e""*f.

If geB and G+#const, then g”’~—ae™ V> and g~ae™ ¥»" contradicts geB if
G+const.

If G=const, then gG=cg is radial quasiharmonic, hence by g”=-—¢"*f, we
again have g B.

Now suppose there exists a u< H*B. Since in the expansion u= Y, g.,(r)G.(8),
8,70 for some n, the corresponding transform

(Tnux@):fouG,,(f))dﬁ:cgnEB ,

a contradiction. We have shown that R€0%:5C O%:c.

8. QL? functions, any p, but no H?C, for N~>2. We now come to the
main part of our Theorem: the relation Of:cNOfir#¢ for all 1=p<oco and
N>2.

For the base manifold we take the same product of R? and the (N—2)-

torus as in No. 3,
R={(r,0)]| 0=r<co, 0=6'<2m, 1=1, ---, N—1},
but endowed with the metric
N-—
ds*=o(r)drtt S du(r)de*
1=1
where ¢, ¢;=C>[0, ) for i=1,-+, N—1, the metric is Euclidean on {r<1/2},

and
p(r)=e V-7 on {r>1}.

The choice of ¢; will depend on a partition {/,,} of the interval (1, o) and on
an auxiliary function ¢(r) to be presently specified.
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The partition {/,;} with 1,7=1,---, N—1, and 1#) consists in dividing each
semiopen unit interval ["=(n,n+1], n=1, 2, -+, into (N—1)(N—2) equal semi-
open intervals I3, and by setting I,;=\U,I7.

The function ¢ is defined on each I} as follows. Subdivide I into five
equal semiopen subintervals, I,, I,, I;, I,, I;, in this order, and let ¢=C* with

1 for rel,VI;,
d(r)=4 VD" for rel,,
=1 for rel,\JI,.

Thus ¢ is well defined on (1, ), and we set
e "P(r) for rel,,,
o (=] eTg(r)  for rely,
e’ for re&l;Uly;.

The Riemannian N-manifold R is thus well defined.

Note that the determinant of the metric tensor is g(r)=¢Il¢,. For r>1,
g(r)I/Z___e—(N—-l)'r-

We claim:

LEMMA. For 1=p<co and N>2,
REOZZCﬂégLP -

The proof will be given in Nos. 8-10.
The relation _
REO&p

is immediate. Indeed, the quasiharmonic equation. 4¢9(r)=1 has a solution
=—(Tg=2g(s)( gtndt ds.
a=—{ g7(s) g dt ds
For r>1, g¥?=¢ ¥-Y7 and g~"*¢(r)=1. Thus ¢(r)~ar as r—oo, and

H(Ili%:f}e lq] p*1~cl+c2f1mrpe"1"‘l’rdr<oo .

9. Rate of growth. To prove that
REO?I,%‘,

we first observe that if u(r)e H? then u& B. In fact, u(*)=aq(r)+b~a;r+b&B.
Next consider harmonic functions f(r)G(f), with the notation as in No. 7.

If f(rG(@)e H, fG+const, then
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| f(r)] >ce®et”
for all sufficiently large r.

For the proof, note that by the maximum principle, | f| is strictly increas-
ing and f is of constant sign. The sign of G suitably chosen, we have f>0.
In the relation 4(fG)=4f-G+f4G=0, we obtain for r>1,

N-1
Af=—e¥-v7fr,  AG= TG,
=1
so that
N-—-1
N fr= S g 2 ot >0,
=1

where c¢¢;' comes from a nonvanishing term with #n,,>0. Integrating f”7=
ce™¥-brgol twice we obtain

fryzef [ e nggis)ds did e —D+7).
In view of f(1)>0 and f’(1)>0, we have
fry>ef’f :e"N'l”gb;o‘(s)ds dt>0.

t
We estimate the growth of f e3¢ 1(s)ds as t—oo, Let n=[t]—1, and denote
1

by n+40 the left end point of I}, The right end point of I, is n+d+
[5(N—1)(N—2)1"%, and, for t>r,, say,

t
e~ WN-D3 g1 g ds>f e~ V=D ds=f e*’ds
RO P R O L P

s n+8+1/[5(N—1)(N~-2)] _s ¢S
=S¢t f,, e *e®ds
n+o Tjiss
o -5 08 n+3+1/[5(N —1)(N—2)]
=e %
n+4
ge-n-a—l/[s(zv —1)(N—2)]eenv5+1/[5(N—1)(N-Z)J_e-n—aeen+5

:e_(n+5)een+5[(een+5)e1/t5<N-1><N—2>1-1e—1/[5<1v—1)(N-2)J__1]
ge—(n+5)een+5[(een+5)e"e-l/[5(N—1)(N—2)]_1] .
For 7, sufficiently large, this dominates

- +é - t-1
e (n+5>een >ce tot s
with ¢ an appropriate constant. Integration by parts gives

r
> cf et i dt=ce e
7o
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It follows that
N—
e(N—l)rf//___ Zl n%¢;1fgc¢%le—2reer-l s
1=1
hence
f//gce—UVH)eri—oxeeT-l ,
and
T
S =)z cf e ¥ orgpierd
1

;cj e e ety
Tji08
A fortiori,

f/<7’) 2 CeSreeT

and
f(r)—f(l);cj:e“e”dr

Z Czezreef

for sufficiently large 7.

10. No H?C functions. To continue the proof of ReO0}.;, we consider
nonharmonic biharmonic functions g(r)G(8), with the notation as in No. 7.

If g(r)G(@)= H?, then gG<B.
For the proof, suppose gG is bounded. For sufficiently large 7,
A(gG)y=(—eN"7g"+3nipi'g)G=/G,

hence
g”:Zinwi—]e—(N—l)rg_e—(zv-l)rf.

Since f(r)>ce*"e” for all sufficiently large 7, and ¢;le ¥ V"g does not grow
faster than ce®”, the right-hand side is unbounded as 7—oo, and of constant
sign for large r. Integrating twice, we see that g B, hence gG& B.

We are ready to draw the conclusion :

REO}I\;ZBCOIA;QC .
To see this, let u(r, ) H?% Write u(r, §)=3,8.(r)G.(0), with Gy«(6) stand-
ing for a constant. Here some g,G,= H? say g,G,. If uB, then

(Tyu)(r)= j uG.dO<B,

in violation of LuGld0=cg1€EB.

The proof of the Lemma in No. 8 and of the Theorem is herewith com-
plete.
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