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INVARIANT CLOSED GEODESICS UNDER ISOMETRIES

OF PRIME POWER ORDER

BY MINORU TANAKA

§ 0. Introduction

Let M be a Riemannian manifold and h an isometry. A geodesic γ : R->
M is called to be invariant under h (or /ι-invariant) if there exists some number
β^O such that h{γ{t))=γ{t+θ) for all t^R. Let C°{M,h) be the topological
space of continuous curves σ: [0,1]—»M satisfying h{σ{0))=σ{l) with the com-
pact open topology. Two geodesies γlf γ2: R-+M are called to be geometri-
cally distinct if γi{R)Φγ2(R) The following is a well-known result on the ex-
istence of closed geodesies obtained by Gromoll and Meyer [3].

THEOREM. {Gromoll-Meyer). Let M be a simply connected compact Rieman-
nian manifold. If the sequence of Beth numbers for the space C°{M,ιd.) is not
bounded, then there exist infinitely many {geometrically distinct) closed geodesies
in M.

The above theorem gives us the following problem of existence on inva-
riant geodesies under isometries.

Problem. For each fixed isometry h, are there infinitely many /z-invariant
geodesies in M if the sequence of Betti numbers for the space C°{M, h) is not
bounded?

This problem was solved positively for involutive isometries by Grove [6]
and was solved positively for isometries of prime order by the author [9]. The
purpose of this paper is to show that it is also true for isometries of prime power
order. Grove claimed first that he could prove the following main theorem.
Soon after the author proved it independently and pointed out that Grove's
proof was incomplete.

MAIN THEOREM. Let M be a compact simply connected Riemannian mani-
fold and f an isometry of prime power order. Then there exist infinitely many
{geometrically distinct) f-invariant closed geodesies in M if the sequence of Betti
numbers for the space C°{M,f) is not bounded.

§ 1. Preliminaries.

Let (M, < , » be a compact Riemannian manifold of dimension n+1 and g
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an isometry of order s. Let Ω(M,g) denote the complete Riemannian Hubert
manifold of all absolutely continuous maps σ: [0,1]—>M with square summable
velocity vector σ and with σ(l)=g(σ(0)) ([4]). Note that each element in
Ω(M, g) can be regarded as a map of R into M by the natural manner ([8]).
The /2-action on Ω(M, g) induced by translation of the parameter reduces to
an S^itVsZ-action, because any element in Ω(M,g) is a closed curve of period
s in M. We have the energy function E8 : Ω(M, g)—*R defined by

)=l/2 \\c{t),c(φdt.
•/ 0

The function E8 satisfies condition (C) of Palais and Smale (see [4]). It is
also known that c is a critical point of E8 if and only if c is a ^-invariant
closed geodesic with g(c(t))=c{t+l) [4]. A nonconstant critical point c, i.e.
E8(c)φ0, lies always on a critical orbit, S1 c={a(c); a^S1}, which is a subma-
nifold of Ω(M,g). Each element of the orbit S* c is a critical point of E8.
Consider a sufficiently small tubular neighborhood 3) of S^c and let Ef denote
the restriction of the energy function E8 to Wc, the fiber over c. If the orbit
Sλ-c is an isolated critical orbit, then c is an also isolated critical point of Eg.
It follows from the splitting lemma of Gromoll and Meyer [2] that Ef satisfies
condition (C) of Palais Smale (see [8]). In [2] Gromoll and Meyer defined a
local homological invariant for any isolated critical point which was already
defined by Morse [7] for finite dimensions. Let Wc and We be admissible re-
gions for the function Ef on 3)c at c [2]. We have a local homological in-
variant 3C{Eξy c) defined by

For convenience we use singular homology with a field of characteristic zero.
For an isolated critical orbit Sλ-c we define a local homological invariant
J£(E*,Sι c) of the energy E8 by

JC(E', S1.c)=fί*(S1. Wc, S
1- We).

In [8], we obtained the following three estimations.

(1.1) JCk(E', S^^dJC^Ef, c)®JCh(Eg, c)

Let λ be the index of c in Ω(M, g). From the shifting theorem [1], we have

where JC% denotes the characteristic invariant which is determined by the only
degenerate part of the energy Ef. Since the dimension of the degenerate part
is not greater than In, dim JC°k(Ef, c)=0 for k>2n. It follows from (1.1) and
the shifting theorem that

(1.2) JCh(E<, Sι c)(ZJCl-λ(Ef, c^JCl-x^Ef, c).
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Let a<b be regular values of the energy Eg such that the critical set in
(Eg)~Xa, b~] consists of finitely many critical orbits S^c1, ~ ,S1 cr. Then we
have the Morse inequalities

(1.3) bk(Ω\M, g), Ω\M, g))£± Bk{c\ g)
1 = 1

where Ω\M, g)=(E')'1ί09 bl, bk(Ω\M,g), Ω\M,g))=dim Hk(Ω\ Ωa) and Bk(c\

§ 2. Index, nullity and characteristic invariant.

For each nonzero integer m and σ<=Ω(M, g) we define a curve σm

gm) by σm(t)—σ(mt). Hence the integer m defines the iteration map m : Ω(M,
g)-^Ω(M, gm) by σ^σm. Let λ(c, g) (resp. v{c, g)) be the index (resp. nullity) of
a critical orbit Sx>c in Ω(M,g). The following theorem is essentially proved by
Gromoll and Meyer [3].

THEOREM 2.1. Let S1^ be a nonconstant critical orbit in Ω(M,g) such that
S1-^ is an isolated critical orbit in Ω(M,gm) and v(c, g)~v(cm, gm) for some
nonzero integer m. Then B°k(c, g)=B°h(cm, gm) for all k. Here Bi(c,g)=άϊmMl
(Ef, c).

Let / be an isometry of order pd, where p is prime and d is a nonnega-
tive integer. Now we will study the indexes and nullities of all the critical
orbits in Ω(M, f) generated by the iteration of a critical point. If γ is a
nonconstant /-invariant closed geodesic, then it is clearly represented by a cri-
tical point csf l(M,/), whose fundamental period is pd/m for some positive
integer m^pd. Let pd°/m0, where pd° and m0 are relatively prime positive in-
tegers, and choose integers n0, k0 such that mono=l+pd° k0. If we set c(t)=
c(t/m0) for ί e [ 0 , 1 ] , that c is a critical point of Efn° and the fundamental pe-
riod of the closed geodesic c is pd°. In what follows we set g—fn°. Further-
more for any integers m and r satisfying mpdoJrrnιoΦθ, cmpdQ+rmQ is a critical
point of EJT and S1'Cmpdo+m ,m<^Z, are all the critical orbits in Ω(M,f) gene-
rated by γ. Note that c is fixed by fpd°. Let V~c be the vector space of
smooth (C°°) vector fields along the geodesic c : R-^M which are orthogonal
to c. A linear map L: V~c—* V'c is defined by

LX=-X"-R(X,C)C,

where X' denotes the covariant derivative of X along c and R denotes the
curvature tensor of the Riemannian manifold M. It follows from Theorem 2.3
in [7, p. 45] that

( f e , / ) E { * e 7 ; ; LX=μX, X(t+m)=fUX(t)) for all
(2.1) μ<0

v(Cn,Γ)=dim {XCΞV-C LX=0, X(t+m)=fr*(X(t)) for all
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Here m=mpd°-\-rm0 and /* denotes the differential map of /. Let us comple-
xify Vc as Bott did in [1] in case of f=ιd. and write it as V~c again. Extend
U, g*, and L to C-linear maps and write them as /*, g*, and L again respectively.
For a complex number ω with absolute value 1 a real number μ and a nonzero
integer m, let Sc[_μ, m, ωg%2 denote the vector space of all complex vector
fields Y in V~c satisfying LY=μY and Y(t+m)=ωg%(Y(t)) for all t^R. Recall
that we set g=fn°.

LEMMA 2.2. The following three equalities hold for any integers r, m with
mpdoJrrmoφ0 and real μ.

1) S&μ, m, / ' ] = Θ S-c \_μ, 1, ωg*lnS&μ, m, f%]

where we set m=mpd°-\-rm0 and pd=s.

2) Scίμf 1, ω ^ n S ί Λ m, fi]=Sϊtμ, 1, ω ^ ] π ker {(/jd»)™»oτr*o_ω-m}

w /ierβ ίΛβ /in^αr mα^ / ^ ° : Vc-Fc zs rfe/znd by (f%dχX)){t)=fld%X(t)) for

Note that c{t) is a fixed point of fpd° for each t^R.

3) Scίμf 1, ̂ * ] Π ker {(/S'T-α" 1 } - Θ & [ ^ 1, ω Λ ] π ker
i l

where we set a—ωM and n=mno+rko.

Proof. If | m s | = l , then 1) is trivial because f—g—id. and S£μ, 1,2ύf.] =
S3C//, — 1, zrf.]. Hence we assume |ms|Ξ>2. It is obvious that S£μ, m, /*]Z>

0 Sg[/i, 1, ̂ * ]nS£jt£, m,/5c]. For each FeScCμ, m,/5J and ω with ωm=l,
| m S | l

we set rΛ>(ί)=l/|ws| Σ « " ^ ? + V ( ^ ? - l ) ) . Itiseasy to check thatLYω=μYω,Σ

γ= 2 ω r ω and F^eScE/^, w, / J ] . Thus it is sufficient to prove YωtΞS~clμ, 1,
* = l

for each ω with ω^*=l. From the definition of Yω,

lmsl-1

[_ Σ
Q=0

lmsl-1

=ωl\ms\g*ί Σ ft
Q l

because \ms\ is a period of Y.
We obtain 2) from a direct computation.

We assume that | n | ^ 2 since 3) is trivial when | n | = l . For each
ωg*lr\ ker {(/S^'-α" 1 } and z with arΛ=α-1, set
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Inl-l .

γ.=i/\n\ Σz-q(fίdy-\Y).

It is easy to check that Y= _Σ zYz and Y2^S~dμ, 1, ωg*~]r\ ker (ff°-z).

Thus 3) is true for nφO. If n=0,

Sc[μ, 1, α>g*]Λ ker {(/|d°)°—α'1}=S£j«, 1, ωg*]n ker {(ft0)8—&'1}

= Θ_ Sc[μ, 1, ω£*]Π ker (fξd°—z)

= 0®_Scίμ, 1, α)^*3n ker (/{d°-z),

since £ s = l for any z satisfying ker(/f °—z)φ{0}. Hence 3) is settled.

It follows from the above lemma that

SόHμ, fn, /5J = © ScHμ, 1, a)g*]Γ\ScLμ, m, /*]

= θ S&μ,l,ωg*lnker {ftΎ-o>~*}

= 0 0 S£μ,l,ωg*3nkeτ {(ft0)*-**'1}

= © 0 _θ Sfe l,,ω^]nker(/fd0-z)

= 0 © θ S-ctμ,l,ωg*lr\ker(nd°-z),
ap

d~d0^ ωm=a z™=a-1

since (z*)*d-d°=l for any z with ker ( / ί d o - z ) ^ {0}.
If we set yl z (ω)=Σ dimc {S~clμ, 1, (og*]ΓΛ ker (fξd°—z)} and A^2(ω)

gd°—z)} for each complex number z, ω with | z | = | ω | = l , then for
each z Λz( ) and Af*( ) define nonnegative integer valued functions on the
unit circle, {ω^C; | ω | = l } . It follows from (2.1) that we obtain formulas on
the indexes and nullities of the critical orbits S1-cmpdo+rm .

7(r frλ— V T* V Λz(nΐ\
^ mpdo+rm > J ' ^-* ^ ^ **- \ '

pd~d0_ mpd0+rm _ mn +rkn- -1

(2.2)
Kcmpcf0+rm , fr)= Σ Σ Σ N'(ω)

° *P*-d*=l ω^Pd^rm0=<χ 2mnQ+rk0=ΰί-l

The functions Λz and Â 2 have the next properties.

LEMMA 2.3.

1) For each Nz(ω)=Q except for at most 2n points which will be called Poincare
points with respect to z (see [3] or [9]).
2) For each z Λz(ω) is locally constant except possibly at Poincare points with
respect to z (see Theorem 3.1 and 3.2 of M. Morse [7, p. 91]).
3) For each z and ωQ, lim Λz(ω)^Λz(ω0).
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4) For any z with ker(f%do-z)={O},Az=O and Nz=0.
Now we state a growth estimate like Lemma 1 in [3].

LEMMA 2.4. For each integer l,0^l<pd~d°, either λ(cmpdo^m , / ) = 0 for all

mGD;={meZ+W{0}; mnQ-\-kQ = l moάpd~d°} or there exist positive numbers εt

and at such that

fo? any mi^Ώι,i—\12 with m1^

Proof. It follows from (2.2) and Lemma 2.3 that for each

aV
d d0=ί ωmpd0+mQ=o[

where Fι

aQ(ω)= Σ Λz(ω). If Fι

ao^O for some a0, then there exist positive

numbers ε}ά0 and aίQ such that

Σ Fι

aQ{ω)- Σ Ή>)^(ro1--wza)e£0--αί0

for any mι^Dh i—1,2 with m 1^m 2, where mi—mιp
dQJrm0. The proof of ex-

istence of such numbers ε 0̂ and aι

ao is analogous to that of Lemma 1 in [3],
since the functions Fι

ao have the same properties as the functions Λz have.
Therefore if Kcmpdo+mo, / ) ^ 0 for some m<=Dh then Fι

a^0 for some a. Set
ei = pd°yZ/sl

a and aL = Σ'aι

a, where Σ ' denotes the sum of all a, apd~d°=l, sa-
tisfyingV^O. For any mi^Dι,i=l,2 with m^m^

λ{cmv f)-λ(cWl2, /) = Σ7( _Σ Ή(ω)- _Σ Fί(ω))

^ Σ ' ί C ^ i — m 2 ) ε ι

a — a ι

a ) = ( m 1 - m 2 ) ε ι — a t . (q.e.d.)
σ

The next lemma is also important.

LEMMA 2.5. F<9r eαc/i integer l,0^l<pd~d°, there exist positive integers klf

~-,kq and sequences m},ι>0,j = l, •--, q, such that the numbers rrήkj are mutually
distinct, {m)kj\ z>0,; = l, •-, q) = {mpd°-\-mo; m^Dt} and for m) with (m),p)=l,

and for m) with (m),p)Φl,

where r m) = lmodpd,

Here v(c)τ denotes the nullity of a critical orbit S1^ in Ω (Fix (/), id.) where
Fix(/) is the set of all points fixed by f. Note that the set Fix(/) is a totally
geodesic submanifold of M.

Proof. For each positive integer a and pdl satisfying (a,pdl) = l and 0 ^
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d^d—do, put Pf={w, Σ Nz(ω)Φθ} and Qf={q^Z+; there exists some po-

sitive integer b such, that exρ(2πib/(q-pdl))^P? and (b,q-pdl)=l], where α=

exp (2πιa/pdl). If we set Q t = U OfW{l}, then the number of the elements in

Pi is finite by Lemma 2.3. If for some m^Dlf

^mpdΰ+mo,f)= ^Σ ^ ^ Σ ^ ' M ί O ,

then there exist α=exρ (2πιa/pdl) and ω=exp(2πip/q) satisfying α p d " d ° = l ,
ω m p d o + m ° = α and ωePf. This implies that g is devided by £ d l , that is, Qΐ con-
tains 5//>dl for a=exp (2πia/pdl). Here it is assumed that (a,pdl)=l and (p,
q)=l. For each subset ^4cQz, let k(A) denote the least common multiple of
all elements in A. Choose distinct numbers klf ~,ku such that {klf ",ku}~
{k(A); ACLQI). Keeping je {1, •••, u) fixed, we select from the sequence mk3,
rn<=Z+, the greatest subsequence mψ3 satisfying q\mψ3 whenever q^Qi and
q)[k3. The numbers m)k3 are mutually distinct, {m) z>0} contains 1 for each
j^{l, -,u} and {fή)k3; ι>0, j = l, ••>, u} =Z+. Choose all elements k3v ~,k3q

from the set {klf -",ku} which satisfy {m)rk3r; ι>0}r\{mpd°+m0; m e D J Φφ for
each r, l^rrgg. Then we can choose the subsequences {mϊ\i>0, lrgrrgg, from
the sequences {fή)r}ι>0 which satisfy {mpdoJrmo; m^Dι} = {mt

rk3r; lύr^q,ι>0}.
Set kr=k3r. Note that for each j , l^j^Lq, the number of the elements in {mj;
i>0} is infinite, because if m is an element of the set, then m-\~KQi)'Pd is also.
In the first place we will consider the case where (m),p)φl. If for some a—
exp (2πιt/pdi)

Σ Σ Nz(ω)Φ0

then there exist positive integers q^Q? and i; satisfying exp(2πiv/(q pdl))mj 3

=exp(2πit/pdi). Since (v/(q'pd'))m)k3 = t/p^ mod 1, {v/q)m)k3 = t moάpdK Of
course it is assumed (t,pdl)=l. The integer <? devides k3 because q\m)k3 and

Since ((vkj/q)m)>p^)=l,(m),p^)=l. Therefore

Σ

If ω e P J satisfies ωm*k'=l, then ω ^ = l . Thus

m\kTJ
, /)= Σ

On the other hand mpd°+m0 and ίώ° are relatively prime for any integer m,
because (mpd°+mo)no=l^Γp

do (mno+ko). Since m)k3^{mpd(iJrm0\ m^D^ and
p\rn3,p

d° is equal to 1. Thus (l,ρ)=l because l=—l mod p. Hence if we notice
that NZΞΞ0 for any z with zpdφl we have that for each ωy N\ω)=Σ N%ω).

We obtain
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<eM*k,f)= Σ N\ω)= Σ N\ω).
3*3 l kml*

ω 3 3=\

On the other hand it follows from (2.2) that

<cm%k)
τ= Σ ΛT(ω) and K ^ ) Γ = Σ N\ω).

Note that Fix(/) is a totally geodesic submanifold of M, and that a vector i;
at a point in Fix(/) satisfies f^v—v if and only if v is tangent to Fix(/).

Next we will consider on m) with (m), ί ) = l . Since m$ and ίώ are relati-
vely prime, there exists some integer r satisfying r-m) = l moάpd. For each

a with apd-d°=l and ω_ePf, if ωw^*^=α, then ωkj = ar, since (ω*Opd=l from
the construction of {mψ3). Thus

(2.3) v(c , / ) = Σ Σ Σ N\ω).

On the other hand m)kj is written as m} Ĵ =m 1 ^°+m 0 for some mx^Ώu because
m)kj^{mpd°-\-m0; m^Dt}. Hence kJ = {rm1)pdQJ

ΓrmQ moάpd. Since l^nLiΠo+ko
modpd-d°, irΈBζrmJrio+rko modpd-d°. Thus it follows from the formulas (2.2)
that

(2.4) K c v / r ) = Σ Σ Σ N'(ω).

Note that n'no+rko^ίrmjrio+rko moάpd~d° if ^=n/ί>d°+rm0 for some n7. It
follows from 4) in Lemma 2.3 that (2.3) is equal to (2.4).

Now we assume that all the critical orbits 5J c %u are isolated in Ω(M, /).

For mj with (m),p)=l it follows from Theorem 2.1 and the above lemma that
for all k

For m) with (m),p)Φl, it holds that for all k

dim JCi(E£Fi«f\ c %b )=dimJCl(E{}FMf\cki) and
)k m3kJ kJ 3

m}k .
m%k )

3 3

Here JC°(E{ιm^f\ c) denotes the characteritic invariant of c in the manifold
Ω (Fix (f), id.). The first equality follows from Theorem 2.1 and compare the
proof of Lemma 3.6 in [6] for the second one.

Thus we obtain

C O R O L L A R Y 2.6. Let S1 cmpdo+m be a nonconstant isolated critical orbit in
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Ω(M, f) for each m^Z+^J{0}. Then there exists some constant B such that
B°^mP<io+mo>f^B f°r a l i k^Z a n d m^Z+U{0}. Furthermore Bl(cmpdo+mQ, f)
= 0 for all k>2n and W G Z + W { 0 } .

COROLLARY 2.7. Under the hypotheses of Corollary 2.6 for the resulting
constant B, Bk(cmpdo+m , f) are uniformly bounded by 2B. Moreover, given k>2n-\-l,
the number of orbits S1'Cwpd^mι^ such that Bk{cvld^w ,f)Φθ is bounded by a
constant C which is independent of k.

Proof. From (1.2) and the above corollary Bk(cmpdo+mo, f)^Bl_λ(cmpdo+mo, f)
+Bl-z-i(empd0+no,f)£2B where λ=λ(cnpdo+no,f). For each integer / with 0g/
<pd~d\ if Kcmpdo+mo, f)=0 for all m^Dh then Bk(cnpdo+no,f)=O for all m e A
and k>2n+l. If λ(cmpdo+m , f)Φθ for some m^Dh we have to estimate the

number of orbits y c ^ ^ w i G A , with Bl-άc^fl+Bi.χ^c^flΦO, where
m=mpdoJrmo. Since B°k(c^, /)=0 for k>2n or k<0, we need an estimate for
the number of orbits S1-cm,nι^Dh satisfying k—(2nJ

Γl)^λ(cin, f)^k. Let εt

and aL be the constants in Lemma 2.4. Then a number C i=(α ί+2n+l)/ε ί+l
is an upper bound for the number of orbits S1-cliiym^Dly with Bk(cm,f)Φθ.
Therefore the number C=y^,Ct is an upper bound for the number of orbits
sl'Cmpdo+mo>

m^z+uW}> with Bh(cnpΛo+mo,f)Φθ. Here A denotes the set of
integers 0^l<pd~d° such that there exists some integer m^Dt satisfying

THEOREM 2.8. (Main theorem) Let f be an isometry of prime power order
on a compact simply connected Riemannian manifold M. If the sequence of the
Beth numbers for the manifold Ω(M, f) is not bounded, then there exist infini-
tely many geometrically distinct f-invariant closed geodesies in M.

Remark. The inclusion of Ω(M,f) into C°(M,f) is a homotopy equiva-
lence [4]. For each positive integer k the &-th Betti number for C°(M,f) is
finite, because M is simply connected [8].

Proof. If there exist only finitely many /-invariant closed geodesies, then
we can find some critical points cι of EfUt(l^ι^r, nt^Z+) such that any non-
constant critical point in Ω(M,f) lies on some orbits S1-^1)^ m<=Z+. It follows
from the assumption that all the critical orbits in Ω(M, f) are isolated. Choose
Bι and Cι for the critical point cι according to corollaries 2.6 and 2.7 and set
£=max {Bι l^i^r} and C=ΣC\ Now for any &>2n+l the constant C is an
upper bound for the number of orbits S1 (cι)m(=Ω(M, f), l^i^r, with B^c1)^,
f)φQ. Hence it follows from the Morse inequalities (1.3) that we can choose
some regular value b for each fixed &>2n+l such thatfor all regular values

bk(Ωd(MJ)fΩ\MJ))^ and bk+1(Ωd(M,f),Ωb(M,f))=0.



INVARIANT CLOSED GEODESICS UNDER ISOMETRIES 129

Hence it follows from the exact sequence of homology that

bk{Ω(M,f))=bk{Ω\M,f)).

It also follows from (1.3) that for any regular value a with 0<a<b

bk(Ω\M, f), Ω\M, f))^

If we choose 0<α<min {£/n*(c*) l^i^r}, then Fix(/) is a strong deformation
retract of Ωa(M,f) (see [4]). Thus from the exact sequence

bk(Ω\M, /), Ω\M, f))=bh(Ω\M, f), Fix (f))^2CB.

Since bk(Fix(f))=0 for all k>n+l, we derive by using the exact sequence

bk(Ω\M, f), Fix (f))=bk(Ω\M, /)).

Thus bk(Ω{MJ))=bk{Ω\M, f))=bk(Ω\M, f), Fix (f))S2CB. This contradicts
the hypothesis of the theorem.
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