ON SOME OPERATIONS IN THE BORDISM THEORY WITH SINGULARITIES

By Nobuaki Yagita

§ 1. Introduction.

In [11], Sullivan constructed the bordism theory with singularities. Let S be a closed manifold. Then in this theory " \overline{W} is a closed manifold with singularities of type S" means

$$\overline{W} = W \cup (\text{cone } S) \times L \text{ (along boundary)}$$

where W is a manifold with $\partial W \cong L \times S$ and L is a closed manifold. Then we can define a bordism operation Q_S by $Q_S(\overline{W}) = L$. In this paper, we study this operation.

Throughout this paper, let manifolds be stable almost complex manifolds. For finite complex X the bordism group $MU(S)_*(X)$ is defined by the bordism classes of maps from closed manifolds with singularities of type S to X.

By taking the stratification of singularities, Sullivan also defined the theory when singularity is a set of manifolds and proved that the ordinary mod p homology theory is the bordism theory with singularities of type (p, x_1, x_2, \cdots) i.e. $H_*(X; Z_p) \cong MU(p, x_1, x_2, \cdots)_*(X)$ where x_i denote 2i-dimensional ring generators of $MU_*(S^0) = MU_*$. By using the Quillen's theorem [9], we shall show $H_*(X; Z_p) \otimes Z_p[\cdots, x_i, \cdots] \cong MU(p, v_1, v_2, \cdots)_*(X)$ where v_i denote x_pi_{-1} which are Milnor manifolds for a fixed prime p.

Let I_n be the set (p, v_1, \cdots, v_n) and let $MU(I_n)$ be the spectrum of the theory $MU(I_n)_*(-)$. We denote by Q_i' the Spanier-Whitehead dual operation of Q_{v_i} . Our main results of this paper are as follows

Theorem 3.4. If $y \in H^*(X; Z_p)$ then $\lambda Q_i'(y) = Q_i(y)$ for some $\lambda \neq 0 \in Z_p$, where Q_i is the Milnor exterior operation.

THEOREM 4.1. $MU(I_n)^*(MU(I_n)) \cong MU^*/I_n \underset{MU^*}{\otimes} MU^*(MU) \otimes \Lambda[Q_0'', \cdots, Q_n'']$. where Q_i'' are cohomology operations which satisfies $Q_i''(y) = Q_i'(y)$ for each finite complex X and each element $y \in MU(I_n)^*(X)$.

In this paper we always assume that p is a fixed prime number, (co)homology theories are reduced theories and X is a finite complex.

Received January 29, 1976.

After I had prepared this paper, Professor David C. Johnson imformed me that Theorem 4.1 was independly proved by Morava [3], [6] and the proof of Theorem 3.1 was improved by his suggestion. I would like to take this opportunity to thank him for his kindness, and also to thank Professor Seiya Sasao very much for many suggestions and encouragements.

§ 2. Bordism theory with singularities.

In this section we define the bordism theory with singularities which is due to Baas [1] and recall some known results.

Let S_n be the set of manifolds P_1, P_2, \dots, P_n such that P_i is not a zero divisor of $MU_*/(P_1, \dots, P_{i-1})$, $i=1, \dots, n$.

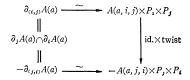
DEFINITION 2.1. V is a decomposed manifold if V is a manifold and for each sequence $\alpha = (a_1, \dots, a_m)$, $0 \le a_i \le n$, there exist submanifolds $\partial_{\alpha} V$ such that

$$\begin{split} \partial \partial_{\alpha} V &= \bigcup_{\imath \in \alpha} \partial_{(\alpha,\ i)} V \;, \\ \partial_{\imath} V &\cap \partial_{\alpha} V &= \partial_{(\alpha,\ i)} V \quad \text{for} \quad \imath \in \alpha \quad \text{and} \quad \partial_{(\alpha,\ i)} V = \phi \quad \text{for} \quad i \in \alpha \;. \end{split}$$

DEFINITION 2.2. A is an S_n -manifold (or manifold with singularities type S_n) if for each sequence $\alpha = (a_1, \dots, a_m)$, $0 \le a_i \le n$, there is a decomposed manifold $A(\alpha)$ such that

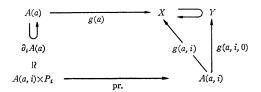
$$A(\phi) = A$$
.

 $A(\alpha) \cong A(\alpha, i) \times P_i$ for $i \in \alpha$, $A(\alpha, i) = \phi$ for $i \in \alpha$ and if β is a permutation of α , $A(\beta) = \text{sign}(\alpha, \beta) A(\alpha)$ and the following diagram commutes



where P_0 denotes one point.

DEFINITION 2.3. A singular S_n -manifold in (X, Y) is a pair of (A, g) such that A is an S_n -manifold and for each $\alpha, g(\alpha)$ is a continuous map so that the following diagram is commutative



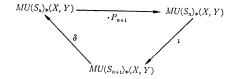
DEFINITION 2.4. Let (A, g) be a singular S_n -manifold in (X, Y), it bords if there exists a singular S_n -manifold (B, h) such that

$$\partial_0 B(\alpha) \cong B(\alpha, 0) \supset A(\alpha)$$
, $h(\alpha, 0) | A(\alpha) = g(\alpha)$
 $h(\alpha, 0) | B(\alpha, 0) - (A(\alpha) - \partial_0 A) \subset Y$

Now, in [1], we have

THEOREM 2.5. (Sullivan) The bordism classes of singular S_n -manifolds in (X, Y) has an abelian group structure. If we denote it by $MU(S_n)_*(X, Y)$ then $MU(S_n)_*(X, Y)$ forms a generalized homology theory.

Theorem 2.6. (Sullivan) There is an MU_* -module exact sequence



where i is the natural inclusion, $(A(\alpha), g(\alpha)) = (A(\alpha, n+1), g(\alpha, n+1))$, and $S_{n+1} = (S_n, P_{n+1})$.

COROLLARY 2.7.
$$MU(S_n)_*(S^0) \cong MU_*/(P_1, \dots, P_n)$$

EXAMPLE 2.8. Since the direct limit is an exact functor, $\lim_{n\to\infty} MU(S_n)_*(-)$ is a homology theory, especially we have $MU(S_{\infty})_*(S^0)\cong Z_p$ for $S_{\infty}=(p,\,x_1,\,x_2,\,\cdots)$ and hence this is the ordinary mod p homology theory. Let $BP_*(-)$ be the Brown-Peterson homology theory localized at p then we have $MU(S_{\infty})_*(X)\otimes Z_{(p)}\cong BP_*(X)$ for $S_{\infty}=(\cdots,\,x_1,\,\cdots.),\,i\neq p^j-1$.

THEOREM 2.9. (Morava, Sullivan[3] [7]) $MU(S_n)_*(X)$ is an MU_*/S_n -module.

§ 3. Relation to $H^*(-; \mathbb{Z}_p)$.

In this section we shall consider the homology theory $MU(S_n, \dots, x_s, \dots)_*$ $(-)\otimes Z_{(p)}$ and denote it by $BP(S_n)_*(-)$.

$$\begin{split} \text{Lemma 3.1.} \quad & MU(p, v_{i1}, \cdots, v_{in}, x_{m_1}, \cdots, x_{mk})_*(X) \\ & \cong & MU_*P, \; (/x_{m_1}, \cdots, x_{mk}) \underset{BP_*}{\otimes} BP(p, v_{i1}, \cdots, v_{in})_*(X) \end{split}$$

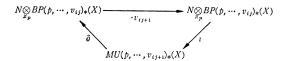
Proof. Let N be $Z_p[\cdots x_s, \cdots] \subset MU_*/p$. By the Quillen's decomposition theorem [9], we have

$$\cong N \underset{Z_p}{\bigotimes} BP_*(X \wedge S^0 \underset{p}{\cap} e^1) \cong N \underset{Z_p}{\bigotimes} BP(p)_*(X) \ .$$

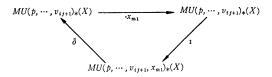
For the induction argument we assume that

$$MU(p, v_{i1}, \cdots, v_{ij})_*(X) \cong N_Z \underset{p}{\bigotimes} BP(p, v_{i1}, \cdots, v_{ij})_*(X)$$

Consider the Sullivan's exact sequence (Theorem 2.6);



Since v_{ij+1} -image of an N-module generator of $N \underset{\mathbb{Z}_p}{\otimes} BP(p,\cdots,v_{ij})_*(X)$ is an N-module generator or 0, $\ker v_{ij+1}$ and $\operatorname{coker} v_{ij+1}$ are both N-free modules and then $MU(p,\cdots,v_{ij+1})_*(X)$ is an N-free module. By considering another Sullivan's exact sequence;



Clearly we have $\ker x_{m_1}=0$ and also $MU(p, \dots, v_{i_{j+1}}, x_{m_1})_*(X) \cong MU_*/x_{m_1} \underset{MU_*}{\otimes} MU$ $(p, \dots v_{i_{j+1}})_*(X)$. The same consideration leads us the isomorphism

$$BP(p, \dots, v_{i_{j+1}})_*(X) \cong BP_* \underset{MU,*}{\bigotimes} MU(p, \dots, v_{i_{j+1}})_*(X)$$

Thus, by isomorphisms

the proof is completed.

Specially we have

Corollary 3.2.
$$Z_p[\cdots, x_s, \cdots] \otimes H_*(X; Z_p) \cong MU(p, v_1, v_2, \cdots)_*(X)$$

Let $[A,g] \in MU(S_n)_*(X)$ for $S_n = (P_1, \dots, P_n)$. Then we define bordism operation Q_{P_i} by $Q_{P_i}[A(\alpha),g(\alpha)] = [A(\alpha,i),g(\alpha,i)]$. The following lemma is clear from the definition.

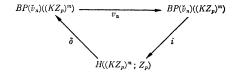
LEMMA 3.3.
$$Q_{P_i}Q_{P_j} = -Q_{P_j}Q_{P_i}$$
 for $0 \le i \le j \le n$.

We denote by Q'_{Pi} the Spanier-Whitehead dual ([10], [12]) operation of Q_{Pi} , especially we denote Q'_{vi} by Q'_{i} . Milnor proved in [5] that the multiplica-

tion of Steenrod algebra \mathcal{A}_p gives an isomorphism $Q \otimes \mathcal{P} \cong \mathcal{A}_p$ where $Q = \Lambda[Q_0, Q_1, \cdots]$, $Q_{i+1} = p^{p^i}Q_i - Q_ip^{p^i}$, and Q_0 denotes the Bockstein operation. Now, we investigate a relation between Q_i and Q_i' .

THEOREM 3.4. If $y \in H^*(X, Z_p)$ then $\lambda Q_i'(y) = Q_i(y)$ for $\lambda \neq 0 \in Z_p$.

Proof. We consider the following Sullivan's exact sequence:



where $(KZ_p)^m$ is an m-skeleton of the Eilenberg-MacLane spectrum KZ_p and $BP(\check{v}_n)$ denotes $BP(p,\cdots,v_{n+1},v_{n+1},\cdots)$. For the fundamental class $\sigma \in H^*$ $((KZ_p)^m; Z_p)$, let $\delta' : (KZ_p)^m \to S^{2p^n-1}BP(v_n)$ be the map which represents $\delta \sigma \in BP(\check{v}_n)((KZ_p)^m)$. Let σ' be the fundamental class of $H^*(KZ_p; Z_p) \cong \mathcal{A}_p$. Since $\sigma = 1 : (KZ_p)^m \to KZ_p$ and $\sigma' = 1 : KZ_p \to KZ_p$, we have

$$Q_n \sigma = i \delta \sigma = \sigma' i \delta' = (i \delta') * \sigma'.$$

On the other hand, Baas-Madson proved in [2] that $H^*(BP(\check{v}_n); Z_p) \cong \mathcal{A}_p/Q_n[\tau]$. Since $\mathrm{i}^*\sigma' = \tau$ and $\delta'^*: \mathcal{A}_p/Q_n[\tau] \to \mathcal{A}_p\sigma$ for *< m, we have $\delta'^*(\tau) = Q_n\sigma$ or =0. But clearly $Q_n' \neq 0$. Thus we have $Q_n'(\sigma) = Q_n(\sigma)$ and hence the theorem is proved by naturality.

COROLLARY 3.5. If $x \in H^*(X; Z_p)$ is representable by S_n -manifold and $v_i \notin S_n$ for $S_n = (p, v_{j2}, \dots v_{jn})$, then $Q_i x = 0$.

Proof. If x is representable by S_n -manifold then x has no singularities of type v_i hence we have $Q_i x = 0$.

COROLLARY 3.6. Let i be the natural inclusion $MU^*(X) \rightarrow H^*(X; Z_p)$. If $v_j x = 0$ for $x \in MU^*(X)$ then there is $z \in H^*(X; Z_p)$ such that $ix = Q_j z$.

Proof. Let $x^*=[A, f](\in MU^*(DX))$ be the dual of x. Since $v_jx^*=0$ means that there exists a manifold [B,g] such that $\partial [B,g]=[v_j\times A,f]$, we can give [B,g] a v_j -manifold structure such that $Q_{v_j}[B,g]=[A,f]$.

Remark: This corollary can be proved by Sullivan's exact sequence.

§ 4. The spectrum $MU(p, v_1, \dots, v_n)$.

In this section, we shall study only the case $S_n=(p,v_1,\cdots,v_n)$, and denote it by I_n . Our purpose is to prove

Theorem 4.1. $MU(I_n)^*(MU(I_n)) \cong MU^*/I_n \underset{MU*}{\otimes} MU^*(MU) \otimes \Lambda[Q_0'', \cdots, Q_n''].$

Proof. By the induction on j, we construct $MU(I_j)_h$ which satisfies the following for $j \le n, h > 0$.

- $(1) \quad MU(I_j)^*(MU(I_j)_h) \cong MU^*/I_j \underset{MU*}{\otimes} (\bigoplus_{\substack{(i_1,\bullet,i_m) \subset (1,\bullet,j)}} R^{h+q^1+\cdots+q^j-q^{i_1}-\cdots-q^{i_m}} Q'_{i_1}\cdots Q'_{i_m}). \quad \text{where} \quad q=2p^n, \, R^k=MU(MU^k) \ \text{and} \ MU^k \ \text{is a k-dimensional skeleton of MU.}$
 - (2) For h < h' there is an inclusion

$$i: MU(I_i)_h \subseteq MU(I_i)_{h'}$$

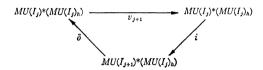
and the induced map

$$i^*: MU(I_j)^*(MU(I_j)_{h'}) \longrightarrow MU(I_j)^*(MU(I_j)_h)$$

is an epimorphism.

- (3) $MU(I_j)^{h+qj+2} \supset MU(I_j)_h \supset MU(I_j)^h$ and $MU(I_j) = \bigcup_h MU(I_j)_h$.
- $(4) \quad MU(I_{j})^{*}(MU(I_{j})) \cong MU^{*}/I_{j} \underset{MU}{\otimes} MU^{*}(MU) \otimes \Lambda [Q_{0}^{"}, \cdots, Q_{j}^{"}].$

Now we consider the Sullivan's exact sequence:



First we obtain from (1)

$$MU(I_{j+1})^*(MU(I_j)_h) \cong MU^*/I_{j+1} \underset{MU*}{\bigotimes} MU(I_j)^*((I_j)_h)$$

and from (2) $\lim^1 MU(I_{j+1})^*(MU(I_j)_h)=0$. Thus there exists an isomorphism:

$$MU(I_{\jmath+1})^*(MU(I_{\jmath})) \cong MU^*/I_{\jmath+1} \underset{MU*}{\otimes} MU(I_{\jmath})^*(MU(I_{\jmath}))$$
 .

Then there is a map:

$$i=1 \otimes 1 \otimes 1: MU(I_j) \longrightarrow MU(I_{j+1})$$

and we can define $X(I_{j+1})$ by the cofiber map

$$S^rMU(I_j) \xrightarrow{v_{j+1}} MU(I_j) \xrightarrow{f} X(I_{j+1})$$

where $r=2(p^{j+1}-1)$. Since $i\cdot v_{j+1}=0$, there is a map g such that gf=i. By the homotopy exact sequence, $X(I_{j+1})$ is homotopically equivalent to $MU(I_{j+1})$. From (1) there is a map:

$$v_{i+1}: S^r MU(I_i)_h \longrightarrow MU(I_i)$$

On the other hand, from (3) we may consider v_{j+1} as a map

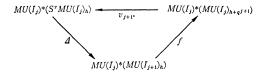
$$v_{j+1}: S^r MU(I_j)_h \longrightarrow MU(I_j)_{h+q^{j+1}}.$$

Now we define $MU(I_{j+1})_h$ by the cofiber map:

$$S^r MU(I_j)_h \xrightarrow{v_{j+1}} MU(I_j)_{h+q^{j+1}} \longrightarrow MU(I_{j+1})_h$$

Then, from (3) and $X(I_{j+1}) \cong MU(I_{j+1})$, (3) holds for j+1.

Next we consider the exact sequence derived from this cofiber map:



We want to show $v_{j+1}^* = v_{j+1}$. From [4], [8], we have $MU^*(MU^h) = R^h \cong MU^* \otimes \{S_{\alpha}\sigma' \mid |\alpha| \leq h\}$, where S_{α} is the Landweber-Novikov operation σ' is the class represented by the inclusion the Landwebel-Novikov operation $i: MU^h \to MU. \quad \text{Since } v_{j+1}^*\sigma': S^rMU^h \xrightarrow{v_{j+1}} MU^h \to MU$ is equivalent to $\sigma \cdot v_{j+1}: S^rMU^h \to S^rMU \xrightarrow{v_{j+1}} MU$

is equivalent to
$$\sigma \cdot v_{j+1} : S^r M U^h \rightarrow S^r M U \xrightarrow[v_{j+1}]{} M U$$

where $\sigma: S^rMU^h \to S^rMU$ is the inclusion, we have $v_{j+1}^*\sigma' = v_{j+1}\sigma$ and then it follows that

$$v_{j+1}^*(S_\alpha\sigma') = S_\alpha(v_{j+1}^*\sigma') = \sum_{\alpha=\beta+\gamma} S_\beta v_{j+1} \cdot S_\gamma \sigma = v_{j+1} \cdot S_\alpha\sigma \bmod(p, v_1, \cdots, v_j).$$

On the other hand, since the following diagram is commutative

$$S^{\tau}MU \xrightarrow{v_{j+1}} MU$$

$$\downarrow i \qquad \qquad \downarrow i$$

$$S^{\tau}MU(I_j) \xrightarrow{v_{j+1}} MU(I_j)$$

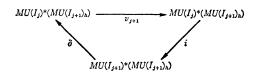
we have v_{j+1}^* $(iS_{\alpha}\sigma)=v_{j+1}iS_{\alpha}\sigma.$ If we assume that there exists a natural MU^* -module map $\delta_j: MU^*(MU_h) \rightarrow MU(I_j)^{*-(2p-1+\cdots+2pJ-1)}(MU(I_j)_h)$ and hence $Q_0 \cdots Q_j \delta_j \sigma = \sigma$. Then we obtain $v_{j+1}^* = v_{j+1}$ from equalities $v_{j+1}^* \delta_j \sigma = \delta_j v_{j+1}^* \sigma$ $=v_{j+1}\cdot\delta_{j}\sigma.$

Thus we get by (1) the isomorphism

(5)
$$MU(I_{j})*(MU(I_{j+1})_{h}) \cong MU*/v_{j+1} \bigotimes_{MU*} MU(I_{j})*(MU(I_{j})_{h})$$

$$\bigoplus (MU(I_{j})*(MU(I_{j})_{h+gJ+1}) - MU(I_{j})*(MU(I_{j})_{h}).$$

Now we consider the Sullivan's exact sequence:



Then, from (5) and $i\delta = Q'_{j+1}$, we have an isomorphism:

$$\begin{split} MU(I_{j+1})^*(MU(I_{j+1})_h) &\cong MU^*/I_{j+1} \underset{MU \text{ *}}{\bigotimes} MU(I_j)^*(MU(I_j)_h)Q'_{j+1} \\ MU^*/I_{j+1} \underset{MU}{\bigotimes} MU(I_j)^*(MU(I_j)_{h+q^{j+1}}) \text{ .} \end{split}$$

This shows that (1) holds for j+1. And moreover, if we put $\delta_{j+1} = \delta^{-1} \Delta \delta_j$ where δ^{-1} is the splitting of δ , then it is clear that δ_{j+1} satisfies the above assumption.

Next, from (2) for j and exact sequences of cofiber maps for h and h', we can know that (2) holds for j+1. At the last, since we have $\lim_{h\to\infty} MU(I_{j+1})^*$ ($MU(I_{j+1})_h$)=0 (4) holds for j+1 and these complet the induction. By using the same argument, we have

Corollary 4.2.
$$BP(I_n)^*(BP(I_n)) \cong BP^*/I_n \underset{BP*}{\otimes} BP^*(BP) \otimes \Lambda[Q_0'', \cdots, Q_n''].$$

Especially we have

COROLLARY 4.3. (Milnor)

$$H^*(KZ_p; Z_p) \cong Z_p \underset{BP*}{\otimes} BP^*(BP) \otimes \Lambda[Q_0, \cdots].$$

REFERENCES

- [1] N.A.BAAS, On bordism theory of manifolds with singularities, Math. Scan. 33 (1973), 279-302.
- [2] N.A. BAAS AND I. MADSEN, On the realization of certain modules over the Steenrod algebra, Math. Scand. 31 (1972), 220-224.
- [3] D.C. JOHNSON AND W.S. WILSON, BP operations and Morava's extraordinary K-theories, Math. Z. 144 (1975), 55-75.
- [4] P.S. LANDWEBER, Cobordism operations and Hopf algebras, Tran. Amer. Math. Soc. 129 (1967), 94-110.
- [5] J. MILNOR, The Steenrod algebra and its dual, Ann. Math. 67 (1958), 150-171.
- [6] J. MORAVA, (in preparation)
- [7] J. MORAVA, (unpublished)
- [8] S.P. NOVIKOV, The methods of algebraic topology from view point of complex cobordism theory, Math. U.S.S.R.-Izvestiia, 1 (1967), 827-913.
- [9] D. QUILLEN, On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293-1298.
- [10] E. SPANIER, Function spaces and duality, Ann. Math. 70 (1959), 338-378.
- [11] D. SULLIVAN, Geometric seminor notes, Princeton University (1967).

[12] G. WHITEHEAD, Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962), 227-283.

DEPARTMENT OF MATHEMATICS
TOKYO INSTITUTE OF TECHNOLOGY