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§ 1. Introduction.

In [11], Sullivan constructed the bordism _theory with singularities. Let
5 be a closed manifold. Then in this theory "W is a closed manifold with sin-
gularities of type, S" means

W=.w\j'(cone S)xL (along boundary)

where W is a manifold with dW~LxS and L is a closed manifold. Then we
can define a bordism operation Qs by QS(W)=L. In this paper, we study
this operation.

Throughout this paper, let manifolds be stable almost complex manifolds.
For finite complex X the bordism group MU(S)*(X) is defined by the bordism
classes of maps from closed manifolds with singularities of type S to X.

By taking the stratification of singularities, Sullivan also defined the theory
when singularity is a set of manifolds and proved that the ordinary mod p
homology theory is the bordism theory with singularities of type (p, xlf x2, •••)
i.e. H*(X Zp) = MU(p, xlf x2, •••)*(X) where xx denote 2z-dimensional ring gene-
rators of MU*(S°)=MU*. By using the Quillen's theorem [9], we shall show
H*(X; Zp^Zpί—, xt, —l2*MU(p,vuv2, —)*(X) where vt denote xvi.x which are

Milnor manifolds for a fixed prime p.
Let In be the set (p,vlf'~,vn) and let MU(In) be the spectrum of the

theory MU(In)*(—). We denote by Q[ the Spanier-Whitehead dual operation
of Qvi. Our main results of this paper are as follows

THEOREM 3.4. // yeiH*(X; Zp) then λQi(y)=Qi(y) for some λ*0^Zp,.
where Qτ is the Milnor exterior operation.

THEOREM 4.1. MU(In)*(MU(In))^MU*/In®MU*{MU)®ΛlQ'{, ~ , QΆ where
MU*

QΊ are cohomology operations which satisfies Qϊ(y)=Q'i(y) for each finite complex
X and each element yeΞMU(In)*(X).

In this paper we always assume that p is a fixed prime number, (co)ho-
mology theories are'reduced theories and X is a finite complex.
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After I had prepared this paper, Professor David C. Johnson imformed me
that Theorem 4.1 was independly proved by Morava [3], [6] and the proof of
Theorem 3.1 was improved by his suggestion. I would like to take this op-
portunity to thank him for his kindness, and also to thank Professor Seiya
Sasao very much for many suggestions and encouragements.

§ 2. Bordism theory with singularities.

In this section we define the bordism theory with singularities which is
due to Baas [1] and recall some known results.

Let Sn be the set of manifolds Plf P2, ~-,Pn such that Px is not a zero di-
visor of MU*/(PU - , Λ-i), i=l, - , n.

DEFINITION 2.1. V is a decomposed manifold if V is a manifold and for
each sequence a=(alf •••, am), 0^at^n, there exist submanifolds daV such that

=dia, i}V for l ί α and dCaf oV=φ for zeα.

DEFINITION 2.2. A is an Sn-manifold (or manifold with singularities type
Sn) if for each sequence a=(alf ~ ,am), 0^at^n, there is a decomposed mani-
fold Λ(a) such that

A(φ)=A,

A(a) = A(a,i)xPι for iGa, A(a,ϊ)=φ for zeα and if β is a permutation of a,
A(β)=sign (a, β)A(a) and the following diagram commutes

where Po denotes one point.
DEFINITION 2.3. A singular 5n-manifold in (X, Y) is a pair of {A, g) such

that A is an Sn-manifold and for each a, g(a) is a continuous map so that the
following diagram is commutative

g(a, i) g{a, i, 0)
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DEFINITION 2.4. Let {A, g) be a singular S^-manifold in (X, Y), it bords if
there exists a singular Sre-manifold (B, h) such that

d0B(a)^B(a, 0) P A(a), h(a, 0) | A(a)=g(a)

h(a,ΰ)\B(a,0)-(A(ά)-doA)CY

Now, in [1], we have

THEOREM 2.5. (Sullivan) The bordism classes of singular Sn-manιfolds in
(X, Y) has an abelian group structure. If we denote it by MU(Sn)*(X, Y) then
MU(Sn)*(X, Y) forms a generalized homology theory.

THEOREM 2.6. (Sullivan) There is an MU*-module exact sequence

MU(SMX, Y) ^ MU{SMX, Y)

•*(*, Y)

where i is the natural inclusion, (A(a), g(a))=(A(a, n-\-l), g(a,n-\-l)), and Sn+1=

COROLLARY 2.7. Mi7(Sn)*(S°)sM£/*/(P1, - , Pn)

EXAMPLE 2.8. Since the direct limit is an exact functor, limM£/(Sn)*(—)
n-*oo

is a homology theory, especially we have MU(S<X>)^(S°)^ZP for
Soo=(p, xlfx2, *••) and hence this is the ordinary mod p homology theory. Let
BP*(—) be the Brown-Peterson homology theory localized at p then we have

for &»=(.•., xlf - .

THEOREM 2.9. (Morava, Sullivan[3] [7]) MU(Sn)*(X) is an MU*/Sn-rnodule.

§ 3. R e l a t i o n t o / / * ( - Z p ) .

In t h i s s e c t i o n w e shal l c o n s i d e r t h e h o m o l o g y t h e o r y MU(Sn, •••, x β, •••)*
S^ppl—1

( - ) Θ ^ C P ) and denote it by J3P(S n)*(-).

LEMMA 3.1. MU(p, υ i u •••, vιn, xm ••-,

= MU*P, (/xmi,.», xmk)

Proof. Let iV be Z p[ xs, -"^ClMU^/p. By the Quillen's decomposition

theorem [9], we have
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= TV(g) BP*(XΛSone1)2*N®BP(p)*(X).
zp p * zp

For the induction argument we assume that

MU(p, vn, •••, vlJ)*(X)^Nz®BP(p> vilf •••, t; t J

Consider the Sullivan's exact sequence (Theorem 2.6)

p,~,vtMX)

Since ι>u +1-image of an TV-module generator of N®BP(p, ~,vl3)*(X) is an N-
zp

module generator or 0, ker ι ;̂+1 and coker z;ΐJ+1 are both iV-free modules and
then MU(p, •••, vιJ+1)*(X) is an TV-free module. By considering another Sulli-
van's exact sequence

Clearly we have ker x m = 0 and also MU(p, ~-,vιj+1, xml)*(X)^MU*/xml ® MU
MU*

(P, "mVιj+i)*(X). The same consideration leads us the isomorphism

BP(P, -, vll+MX) = BP* ® MU(p, - , vt,+

Thus, by isomorphisms

MU(p, •-., vlJ+1h(X) = Nz®BP* ® MU(p, - , f

p

the proof is completed.
Specially we have
COROLLARY 3.2. Z p [ , *„ - ] Θ ^ * ( ^ ; Zp)^MU{ρ, vu v\, -

Let [i4,5 ]eMί/(S n )*(Z) for Sn=(Plf —, Pn). Then we define bordism opera-
tion QF ί by Oi><[i4(α),51(α)] = Ci4(α, i),5r(α, z)]. The following lemma is clear
from the definition.

LEMMA 3.3. QpιQP^-QPjQpi for O^i^j^n.

We denote by Q'Pi the Spanier-Whitehead dual ([10], [12]) operation of
QPι, especially we donote Q'n by Q[. Milnor proved in [5] that the multiplica-
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tion of Steenrod algebra Jlp gives an isomorphism QξZ)&=Jίp where Q—Λ[_QQ,
Qi, ••*], Qι+i=Pp*Qi—Q%PV\ and Qo denotes the Bockstein operation. Now, we
investigate a relation between Qτ and Qί.

THEOREM 3.4. If y€ΞH*(X,Zp) then λQί(y)=Qi(y) for

Proof. We consider the following Sullivan's exact sequence:

BP(ΰn)((KZPT) ^ BP(vn)({KZp)
m)

H({KZpr-,Zp)

where (KZp)
m is an m-skeleton of the Eilenberg-MacLane spectrum KZP and

BP(vn) denotes BP(p, —, υn+1, vn+1, •••). For the fundamental class σeH*
((KZp)

m; Zp), let δ': (KZ^-^S^^BPivn) be the map which represents δσ<Ξ

BP(vn)((KZp)
m). Let σ' be the fundamental class of H*(KZP; Zp)^Jlp. Since

σ = l : {KZPY-*KZP and σ'=l: KZP->KZP> we have

On the other hand, Baas-Madson proved in [2] that H*(BP{vn)\ Zp)^
Jlp/Qntt. Since i V = τ and δ'*: cJp/Qn[VHJ^σ for *<m, we have 57*(τ)=
Qnσ or=0. But clearly Q'n*0. Thus we have Q'n(σ)=Qn(σ) and hence the
theorem is proved by naturality.

COROLLARY 3.5. // XELH*(X\ ZP) is represent able, by Sn-manιfold and Vi$Sn

for Sn=(p,vj2,--vjn), then Qtx=0.

Proof If x is representable by Sn-manifold then x has no singularities of
type Vι hence we have Qτx=0.

COROLLARY 3.6. Let i be the natural inclusion MU*(X)-*H*(X; Zp). If
Vjx=0 for X(ΞMU*(X) then there is z^H*(X; Zp) such that ix=Qμ.

Proof. Let x*=[A, fl(^MU*(DX)) be the dual of x. Since vμ*=0 means
that there exists a manifold \_B,g] such that 3[J5,g]—[yjXA, / ] , we can give
[_B,g] a v^-manifold structure such that Qυj[B, g] = LA, / ] .

Remark: This corollary can be proved by Sullivan's exact sequence.

§ 4. The spectrum MU(p, vu •••, i J .

In this section, we shall study only the case Sn=(p,v1, -",vn), and denote
it by In. Our purpose is to prove



6 NOBUAKI YAGITA

THEOREM 4.1. MU(In)*(MU(In))^MU*/In ® MU*(MU)®Λ[_Q'{, •..,££].

Proof. By the induction on j , we construct MU(Ij)h which satisfies the
following for j^n,

(1) MU{I^{MU{I3)h)^Mm/I3 ® (0/?*-«1+ +^-«»--^Q{1...gj |iι). w h e r e
itfί7* (ίl-, ,tm)c(l, ,j)

where 4=2ί n , Rk=MU(MUk) and Mf/* is a ^-dimensional skeleton of MU.

(2) For h<h! there is an inclusion

i: MU(Ij)hQMU(Ij)h,

and the induced map

i* : MUiljΠMUilj)

is an epimorphism.

(3) M£/(/,)*+ ί '+ 1 P Mί/(/,)ft ^) M£/(/J)
Λ and

(4) MU{Ij)*{.MU(.Ij))sMU*/I) <g

Now we consider the Sullivan's exact sequence:

MU{Ij)*{MU(Ij)k)

First we obtain from (1)

MU*

and from (2) lim1Mί7(/i/+i)*(Mί7(/^)Λ)=0. Thus there exists an isomorphism:

MU(IJ+ί)*(MU(Ij))~MU*/Ij+1 (g)
MU*

Then there is a map:

1=1(8)1(8)1: M£/(/,) — > MU(IJ+1)

and we can define X(Ij+i) by the cofiber map

where r=2(pJ+1—1). Since f ^ + 1 = 0 , there is a map # such that gf=ι. By
the homotopy exact sequence, X(Ij+i) is homotopically equivalent to MU(Ij+1).

From (1) there is a map:

vJ+1:
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On the other hand, from (3) we may consider vj+1 as a map

Now we define MU(IJ+1)U by the cofiber map:

* MU(IJ+1)κ

Then, from (3) and X(IJ+1)g*MU(IJ+1), (3) holds for + l .
Next we consider the exact sequence derived from this cofiber map:

We want to show vj+1*= vJ+1.
From [4], [8], we have MU^MUh)=Rh^MU^{Sy\ \a\ ^h}, where Sa is

the Landweber-Novikov operation σf is the class represented by the inclusion
i: MUh-*MU. Since v%ar: SrMUh — > MUh-*MU

VJ+1

is equivalent to σ-vJ+1: SrMUh^SrMU—>MU
VJ + 1

where σ: SrMUh-*SrMU is the inclusion, we have vj+ϊσ
f—v}+ισ and then

it follows that

v*+i(Sα^/)=Sα(vJ+iσl/)= Σ Sβvj+1'Srσ=vj+1'Saσ mod (p, vu - , , v 7 ).

On the other hand, since the following diagram is commutative

SrMU ^ MU

SrMU(ίj)

we have vf+ί (iSaσ)=vj+1iSaσ. If we assume that there exists a natural
M£/*-module map 3,: MU^MU^MUil^'^'^'-'^^KMUilj)^ and hence
Qo"'QjSjσ=σ. Then we obtain vf+l=-vj+1 from equalities vf+1δjσ=δjvf+ίσ
=vJ+1'δjσ.

Thus we get by (1) the isomorphism

(5)

Now we consider the Sullivan's exact sequence:
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MU(IjΠMU(IJ+1)h)

Then, from (5) and iδ=Q'J+1, we have an isomorphism

This shows that (1) holds for j+L And moreover, if we put δj+1=δ~1JδJ where
δ'1 is the spliting of δ, then it is clear that δj+1 satisfies the above assump-
tion.

Next, from (2) for j and exact sequences of cofiber maps for h and hf,

we can know that (2) holds for j+L At the last, since we have lim1 MU(Ij+1)*
h-*oo

(MU(Ij+1)h)=0 (4) holds for j+1 and these complet the induction. By using

the same argument, we have

COROLLARY 4.2. BP{In)*(BP(In))^BP*/In ® BP*(BP)®Λ[_Q><>, - , <?£'].

Especially we have

COROLLARY 4.3. {Milnor)

H*(KZP; ZP)^ZP 8) BP*(BP)(g)ΛtQ0,-3.
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