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THE DEFORMATION OF HARMONIC MAPS

GIVEN BY THE CLIFFORD TORI

MARIKO MUKAI

Introduction

The purpose of this paper is to provide some new results on deformations
for harmonic maps. Let φ be a harmonic map of a compact Riemannian mani-
fold M into a Riemannian manifold N. A one-parameter family φ(t) of harmonic
maps such that φ(O)=φ is called a harmonic deformation of φ. Then each φ(t)
satisfies the harmonic map equations:

(0.1) τ(φ(t))=Q,

where τ(φ) denotes the tension field of φ. By taking a derivative of the equa-
tion (0.1) at t=0, we have the equation

(0.2) -

Here %φ denotes the Jacobi operator of the energy functional. If a section y e
C*°(φ-ιTN) of φ'ιTN satisfies the equation (0.2), then it is called an infinitesimal
harmonic deformation (or a harmonic i-deformation) of φ. We denote by HlD(φ)
the vector space of all harmonic /-deformations of φ. The space HID(^) just
coincides with the vector space Ker3^ of all Jacobi fields of φ. If v<=WD(φ)
generates harmonic deformations, then v is said to be integrabίe. Let Harm(M,
N) denote the space of all harmonic maps of M into N. From the point of view
of the deformation theory of harmonic maps, the following are fundamental
problems

(1) to ask whether or not all harmonic /-deformations of φ are integrable,
(2) to make its cause clear if an harmonic /-deformation which is not in-

tegrable appears,
(3) to investigate the structure of a neighborhood in Harm(M, N) around φ,
(4) to determine the connected component in Harm(M, N) containing φ and

to examine its compactness, if it is noncompact, to construct its natural com-
pactification.

Because of the finiteness of the dimension of Ker£Γ^, we know that Harm(M,
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N) is locally finite dimensional (cf. [S]). For instance, Sunada [S] showed that
Harm(M, N) is a smooth submanifold of L\(My N)(k > ra/2, m = dimM) with
tangent space Tφ Harm(M, N) = Ker3^ if N is a complete locally symmetric
space with non-positive sectional curvature. Certain special harmonic deforma-
tions were studied in [T]. See also [EL], [Kl] for other references of deforma-
tion theory for harmonic maps.

Now harmonic maps of Riemann surfaces Σ into a compact Lie group G
or a compact symmetric space G/K are known to have several nice properties.
We have come to understand the construction and the classification of such maps,
moreover, their moduli space. Hitchin [H] showed that the equations for a
harmonic map from a 2-torus T2 into a 3-sphere S3 reduce in the geometry of
a spectral curve, and hence constructed the moduli space of such maps algebraic
geometrically. However, it seems to be difficult to investigate the deformations
for harmonic maps in general.

In this paper, to actualize the problems, we deal with harmonic maps de-
fined by using the Clifford tori in Ss and classify completely harmonic /-de-
formations of these maps. As we know, they are simplest and most funda-
mental examples of harmonic maps of T 2 into S\ Explicitly, they are defined
by φs: T2~^S^SU(2)(s^R\ where

coss-eUl sms-eit2

(0.3) φs{eu\ *«*)=
|

with tu t2^R. Here we endow T 2 with a conformal structure of a square. Let
Φs:=i°φs: T2-^R\ where /: S3c*#4 denotes the standard inclusion. Then we
see that each φs is harmonic, because of

(0.4)

Up to isometry of S3, it is sufficient for us to deal with harmonic maps φs

with 0 ^ s ^ π / 4 . Throughout this paper, we assume that 0 ^ s ^ π / 4 unless
otherwise specified. The images of φs with sφO are the Clifford tori in S3

with constant mean curvature. In particular, the image of φπ/4 is the Clifford
minimal torus in S3. On the other hand, we note that when s—0, the image
of φQ becomes a great circle in S\ Since the group SO(4) acts on S3 as
an identity component isometry group of S\ it induces trivial harmonic de-
formations.

This paper is organized as follows. In Section 1, we consider the harmonic
/-deformations in general case. The notion of infinitesimal harmonic deforma-
tions of higher order is also introduced. The notions are analogous to that of
infinitesimal Einstien deformations in [K2], [K3]. Moreover, we treat the case
of a harmonic map of Σ into G.

In Section 2, all harmonic /-deformations of φs are determined. Then an
interesting jump phenomena of the dimensions of the vector spaces HID(̂ >S) will
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occur at s—0, π/6. In order to make the cause of this phenomena clear, we
examine the behaviour of negative eigenvalues of Jacobi operator 2ψs. The
index for each φs will also be determined.

In Section 3, we classify harmonic ^-deformations of φs. However, in cases
φ0 and φπ/6, there exist some harmonic /-deformations whose integrability can
not be easily decided. Therefore, we shall examine whether or not they are
integrabie up to second order, further, up to third order. We prove the following.

PROPOSITION 3.4, THEOREMS 3.6, 3.10.

(1) For φs(sφ0, π/6), all harmonic i-deformations of φs are integrabie.
(2) For φπ/6, there exist harmonic i-deformations of φπ/6 which are not inte-

grabie up to second order, and hence are not integrabie.
(3) For φ0, there exist harmonic i-deformations of φ0 which are integrabie up

to second order but not up to third order, and hence are not integrabie.

The results in Section 4 are the implications from those obtained in previous
sections. It follows that for s ^ O a neighborhood in Harm(T2, S3) around <ps,
even around φπ/6 at which nonintegrable harmonic /-deformations occur, becomes
a 7-dimensional smooth manifold. On the other hand, the space Harm(T2, S3)
has a singular point at φ0. Finally, we obtain the following.

THEOREM 4.2. The set of harmonic maps from T2 into S3 obtained by acting
the group SO(4) on the union of four families {φf} \J {φf\ U {φf} \J {φf} with Og
s^2π becomes a connected component in Harm(T2, S3) containing φ&. Hence, the
connected component is compact.

The author would like to thank Professor Y. Ohnita for his valuable sug-
gestions and encouragement. She also would like to acknowledge their interested
in this work with Professors N. Ejiri and M. Kotani and, especially, his advice
on Lemma 1.1 with Professor M. Kanai.

§ 1. The infinitesimal harmonic deformation

We study the infinitesimal harmonic deformation (or the harmonic /-deforma-
tion). Let (M, g) be a compact Riemannian manifold of dimension m and (N, h)
a Riemannian manifold. First we deal with a harmonic map φ: M-^N. The
tension field τ(φ) of φ is defined by τ(φ)=Σι?-i(Vdφ)(eι, et), where {ej is an
orthonormal basis on M. Then the harmonic map equations becomes Γ(0)ΞΞO.

DEFINITION. A one-parameter family φ{t) of harmonic maps with 0(0)=0
is called a harmonic deformation of φ.

DEFINITION. A harmonic deformation φ(t) of φ is said to be trivial if there
exist isometries σM(t), σN(t) of M, N with σM(0)=iάM, σN(0)=ΊάN such that φ{t)
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Assume that φ(t) is a deformation of φ. If we express the Taylor ex-
pansion of τ{φ(f)) as

(1.1) τtφW^CoW+tdφ+^ϊCάφ, φ)+-^c3(φ, φ,

where

then the equation τ(φ(t))=O implies the following system of the equations:

By the direct computation, we have the following.

LEMMA 1.1. Under the above situation, for a harmonic map φ: M—+N, we

have

(1.2)

(1.3)

(1.4)

c

c»(φ, φ,

,φ)=-Sφφ+4

+ [terms of

φ)—-~%φ(φ)+§ ]

, dφ(et))φ)

+ [terms of Vί

(1.5) £ΓίSι;=(7^*(V<i)v-Σl/?ΛΓ(v, dφ(et))dφ(et), v<=C"(φ-ιTN)
1 = 1

as ίΛe Jacobi operator of φ, where (V )̂*(V )̂ denotes the rough Laplacian with
respect to the connection V .̂

Now let us review here the Jacobi operator 2"̂  in the above lemma from
the point of view of the variational problem. It is a self-adjoint linear elliptic
differential operator, which appears in the second variational formula of the
energy for a harmonic map φ. We have C°°(φ~ιTN)=z@χVχ, where Vλ is the
eigenspace of 2^ with eigenvalue λ. Then the nullity and index of φ are
defined by
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(1.6) nullity(0)=dim V0^dim Ker Zφ,

(1.7) index(0)= Σ dim Vλ,

respectively. We note that each number is finite. A harmonic map φ is said
to be stable if index(0)=O.

Then we return to the discussion of harmonic /-deformations of φ.

DEFINITION. Let φ: M-^N be a harmonic map. We call that
(1) a section v of φ~1TN is a harmonic i-deformation of φ if ^ ( ^ = 0 ;
(2) a pair (v, w) of sections of φ~1TN is a harmonic i-deformation of second

order of φ if v is a harmonic /-deformation of φ and c2(v, w)=Q;
(3) a triple (v, w, z) of sections of φ~ιTN is a harmonic i-deformation of

third order of φ if (v, w) is a harmonic /-deformation of second order of φ and
c8(v, w, z)=0.

DEFINITION. A harmonic /-deformation i; of φ is said to be trivial if i; is
of the form of a linear combination of dφ(X) and Y φ. Here X is a Killing
vector field on M if dimM^2, or a conformal vector field if dimM=2, and Y
is a Killing vector filed on N.

We denote by HID(^) the vector space of all harmonic /-deformations of φ.
Then it follows that

(1.8) dim HID(0)=nullity(0).

DEFINITION. Let v be a harmonic /-deformation of a harmonic map φ:
M-+N.

(1) If there exists w^C°°(φ~ιTN) such that (v, u;) becomes a harmonic /-
deformation of second order of φ, then v is said to be integrable up to second
order.

(2) If there exist w, z<=C°°(φ~ιTN) such that (v, w, z) becomes a harmonic
/-deformation of third order of φ, then v is said to be integrable up to third
order.

DEFINITION. Let φ: M—>N be a harmonic map. A harmonic /-deformation
v of φ is said to be integrable if there exists a harmonic deformation φ(t) of φ
such that

v~ dt

Obviously, the following holds.

LEMMA 1.2. // a harmonic i-deformation v is not integrable up to second or
third order, then υ is not integrable.

Next we deal with a harmonic map φ from a Riemann surface Σ into a
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Lie group G with Lie algebra g. Indeed, we are more intereseted in harmonic
/-deformations of such maps. In this case, we can describe harmonic /-deforma-
tions Lie algebraically. The harmonic map equation becomes

d*θ=Q.

Here θ :—φ~γdφ denotes the pull-back of Maurer-Cartan form of G, which is a
1-form with values in φ^TG^Q. Let φ{t) be a harmonic deformation of φ. Put
θt=φ(t)~1dφ(t). Then it is convenient to use the following expansion instead
of (1.1):

(1.9) d*« t = flβ+ίfli(f)+yΓfl.(f, ξ)+~γaB(ξ, f,

in terms of ξ, ξ=(dξt/dt)\t=0 and ζ^{d2ξt/dt2)\t=Q, where

with ξo=ξ. Note that the order of derivative of ξ in (1.9) is one order less
than that of φ in (1.1). We see that ao=d*θΞΞQ. The Jacobi operator in the
following lemma is of the form

(1.10) 3V(ζ)=-*d*d,ζ, for ζ€ΞC-(g),

with dθ = d+didθ.

LEMMA 1.3. Under the above situation, we have

(1.11) αi(€)

(1.12) at(g,ξ)=

(1.13) fla(f, ξ, 5 ) = - *

(1.14) P(S):=lL*θ,ξ]/\dξ],

(1.15) (?(f, f) :=[*rf fΛrff]+2[[^

Prao/. Since (dθt/dt)=dβtξt, we get

(1.16) - ^ - (

and hence, at <=0, αi(ί)=(d/dί)(rf*^t) i ί=β= —*£Γ^($). Using

we have
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(1.17) -^j(d*dβιξt)=d*dβt^- + ld*dβtξt, € t ] -

=d*dt>t-4j--l*dβ[ξtΛdξt'] because d*dΰtξt=O

=d*dβt-^lf—Zl*θt, ί,]Λdί t] because [*</&Λd£,]=0.

By putting f=0, we have (1.12). Moreover, we compute

(1.18) -jί

Hence at ί=0,

D

DEFINITION. For a harmonic map φ: Σ—>G, we call that

(1) a section ξ of g is a harmonic i-def ormation of φ if a1(ξ)=0;

(2) a pair (£, 77) of sections of g is a harmonic i-def ormation of second order

of φ if ξ is a harmonic /-deformation of 0 and α2(£, ^ ) = 0 ;

(3) a triple (£, 77, T') of sections of g is a harmonic i-def ormation of third

order of φ if (£, 77) is a harmonic /-deformation of second order of φ and αs(f,

7, r)=o.

DEFINITION. Let £ be a harmonic /-deformation of a harmonic map φ:

(1) If there exists ^eC°°(9) such that (£, 77) becomes a harmonic /-deforma-

tion of second order of φ} then ξ is said to be integrable up to second order.

(2) If there exist 77, ̂ eC°°(g) such that (£, 77, 7-) becomes a harmonic /-de-

formation of third order of φ, then ξ is said to be integrable up to third order.
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DEFINITION. Let φ: Σ-+G be a harmonic map. A harmonic /-deformation
ξ of φ is said to be integrable if there exists a harmonic deformation φ(t) of φ
such that

By Lemma 1.3, the following is obvious.

LEMMA 1.4. Let φ: Σ—*G be a harmonic map and ξ a harmonic i-deforma-
tion of φ. Then

(1) ξ is integrable up to second order if and only if *P(ξ) is orthogonal to
Ker Sφ.

(2) ξ is integrable up to third order if and only if *Q(ξ, η) is orthogonal to
Ker 2^ for some η such that a2(ζ, η)=0.

Here we use the L2~inner product on C°°(g).

§ 2. The infinitesimal harmonic deformations of <ps

Let us focus on harmonic maps ψs: T2->SU(2) defined by using the Clifford
tori in (0.3). We begin by determining completely the harmonic /-deformations
of <ps. In this section, it is sufficient to take O^s^τr/4. From (1.10) and (1.11),
the equation a1(ξ)=0 of the harmonic /-deformations becomes

d2ξ d2ξ Γ dξ 1 Γ dξl
(2.1) 1 ^ " * " ^ ^ r ^ ' 1 ' ί Γ Γ s'2> " F Γ^ ' ^ o r

 ^^(Q).

Here the pull-back θs=φs~
1dψs of Maurer-Cartan form of G=SU(2) by <ps is

spliting as θs=(0s)ιdt1+(θs)2dt2f where

cos2s coss
(2.2)

—sin2s coss
(2.3) ( . ) ,

L coss s ins eιtle ι ί 2 sin2s

PROPOSITION 2.1. The vector space HID(̂ >S) of harmonic i-deformations of
ψs becomes

(2.4)

if sΦO, π/6,

if s=π/6,

8Rζτ, if s = 0 .

Here ξx(i~l, ... , 9) and | t ( / = 8 , 9) are defined as



260 MARIKO MUKAI

Γ i 0 1 Γ 0 ί 1 Γ 0 1 1

L o - i J L i o J L - l o J

e 2 i ί i-tan 2 s β~2iί2

<r 2 < ίi+tan 2s e2iί2 1

J'
0 Q-^ι^2 Ί Γ 0 e-Uleu*

tan s (e-ui+eUl) eu*—tan2s •

] •
tan s -

[ 0

Proof. By regarding f = ί ^ _ M as an §u(2)c(=§ϊ(2, C))-valued function on

T2, we express a Fourier expansion of $ as ί ^ Σ a . i e z f u ^ * ' 1 ^ ' 2 , ί * ι = β f t i _ * ι .

Then the equation (2.1) is equivalent to the system of linear algebraic equations
with unknowns akU bkι, cki and parameter s:

(k2+l2)akι—{k+l)coss sins•(6*-n+i—c*+iι-i)=0,

coss sins(2.5)

We need a long calculation to solve the equations (2.5). Then setting

flo^floo, bo:=bOQ, co:=coo, bιi=b-nf cι:—cι_ι>

for simplicity, we obtain that each α, b, c is of the following form

if sφO, π/6,
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= a0—

(2.6)

if s-π/6,

a = ao—b2 tan s e""ie""2—c2 tan s e"iβ"*+£4 tan s e-^+b* tan s β"i

(2.7) ^ ^ ^ 0 + ^ " 2 ί ί l + ^ i ^ ί ί l ^ ί 2 - c 2 t a n 2 s ^2ίί2-ί:4tan2s β- 2 ί ίie ί ί2+^u2

c^Co+c^i+^ie-^-^tanV^

if s=0,

(2.8)

Using the conditions G G V - 1/2 and b——c of £eδu(2), we can show that £ e
HID(^)S) can be written as a linear combination of £t or ξt. Hence we complete
the proof of Proposition 2.1. •

Consequently, we have determined the dimension of each vector space
HID(̂ >5), namely, the nullity of φs as a harmonic map from (1.8). Then we
encounter an interesting jump phenomena of the numbers.

COROLLARY 2.2. We have

9, if s=0, π/6,
dim ( y 5 ) {

7, otherwise,
(see Figuer 2.1(i)).

To make the cause of this jump phenomena at s—0 and π/6 clear, we next
examine the behaviour of the negative eigenvalues of 2φs.

PROPOSITION 2.3. Take s with 0£s<^π/2. Each Jacobi operator Zφs has
negative eigenvalues

Λi:==l-V2(l+cos2i), if

Λ2:=l-V2(i-cos2s), if

with multiplicity 2 (see Figuer 2.1(ii)). Moreover, the eigenspace corresponding to λ%
is spanned by ξ8, ξ9.

Proof. Suppose Λ<0. Similar to the proof of Proposition 2.1, we find that
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the equations %Ψs(ξ)=λξ are equivalent to the system of linear algebraic equa-
tions with unknowns akU bku ckι, and parameters s and λ:

(k2jrl2-λ)akι-(k+l) cos s sin S'(bk-ll+l-ck+u-i)=0,

cos s sin s ak+ll-i-~ {(k2+l2)+2(k cos2s-lsin2s)-λ}bki=0,

cos s sin s ak-n+i+ P 2 + / 2 ) - 2 ( & cos2s-/ sin2s)->ί} ckl=0.

(2.9)

By a harder calculation than that for (2.5), we find that akι—^ for except (k, I)
satisfying either (2.10) or (2.11) of the following:

(2.10) 1=0 and λ2-2k2λ+ki-2k2(l-cos2s)=0

(2.11) 12=1 and / Ϊ 2 - 2 ( ^ 2 + 1 ) ^ + ^ 4 + 2 ^ 2 C O S 2 S - 1 - 2 C O S 2 S = 0 ,

which are equivalent to

(2.12) /=0 and Λ = & 2 - A / 2 F ( 1 - C O S 2 S )

(2.13) I2=l and /M£ 2 +l)-V2(£ 2 -Fcos2s+l+cos2sy~,

respectively. Then it follows from λ<0 and k(=Z that

(2.14) (fe, /, λ)=(±l, 0, l -V2( l-cos2s))

(2.15) (ft, /, ̂ )=(0, ± 1 , l-V2(l+cos2s)) ,

respectively. In particular, put λ2 : = 1 — V2(l— cos2s). Using (2.9) again, we

obatin that each a, b, c in £=|~£ ^λ satisfying Zφt(ξ)=λt(ξ) is of the form:

a=c4 tan s e " " i+6 4 tan s eUl

b=—cA tan2s e'^^e^+biβ^

c= — b* tan2s e^^e'^+c^'*^. D

By virtue of Proposition 2.3, it follows that the subspace of HlD(φx/6) which
cause the jump phenomena of dimension 2 just coincides with the eigenspace
corresponding to λ2. The index of each φs can be also determined.

COROLLARY 2.4. Take s with 0 ^ s ^ π / 2 . We have

2, if 0<s£π/(

4, if π/6<s<πβ,

(see Figure 2.1(iii)).

Remark. Proposition 2.3 implies that the harmonic maps from T 2 into 3-
dimensional real projective space RPZ obtained by compositions of {φs} and the
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natural projection S*->RPZ are stable in the sense of index=0. Very recently
Ejiri proves in [Ej] that the maps become non-zero homotopically energy mini-
mizing. Thus our result supports Ejiri's one.

9 <>

( i ) nullity

(ϋ)

λ=l - V2(l+cos 2s) Λ=l-V2(l-cos 2s)

4 +
(iii) index

Figure 2.1.

§3. Classification of infinitesimal harmonic deformations

In this section, assume that O^s^τr/4. It is easy to check the following.

LEMMA 3.1. Let f(a,b): T2Ξ)(eιti, e

u*)->(el^+a\ ex^+b))ξΞT* be a conformal
transformation of T2. Let R and L denote right and left translations of SU{2),
respectively. Then

A=[*Q β ? l β ] , 5 = ̂  e-tβ]eSU(2), putting a=(a + b)/2, β=(a-b)/2.where

LEMMA 3.2. Trivial harmonic i-deformations of φs span

0:=-ΣUiRξχ, if sΦQ,

0:=Έ\-iRξ» if s = 0 .

Proof. By Lemma 3.1, a trivial harmonic /-deformation of ψs is of the
form Y°<ps, where Y is a Killing vector field on SB. By a direct computation,
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we obtain the statement. D

Now let us examine harmonic z-deformations of φs which are not trivial.

3.1. The case of sΦO, π/6
We decompose as HlD(φg)=W0®W1, where Wι—Rξ1.

LEMMA 3.3. Let sΦΰ, π/6. Then a harmonic i-deformation of φs obtained
by moving the parameter s spans Wx.

Proof. We compute

\~ui — sins £ i ί 2 ~|Γ — sins e" 1 cos

s-e~it2 coss £ ί f l JL — coss £~ ί ί2 —sir

0 β-itlβit2

Then we obtain the following.

PROPOSITION 3.4. Let sΦO, π/6. Any element of H\D(φs)=WoφW1 is inte-
grable.

Proof. We see that harmonic /-deformations of <ps, which are induced by
compositions of harmonic maps obtained by moving the parameter s and isome-
tries of SU(2), span a direct sum W9@WX. D

3.2. The case of s=π/β
We decompose as HlD(φπ/6)=W0®W1®W2, where W^Rξ,, W^ΣUsRξt.

When s=7r/6, the statement of Lemma 3.3 also holds. Hence we obtain the
following similar to Proposition 3.4.

PROPOSITION 3.5. Any element of TF0Θ^iC:HID(^π/6) is integrable.

However, the integrability for an element of HID(^Λ/6)\(H/Γ

0Θ^i) can not be
decided consequently. Then our next effort is to examine whether or not this
element is integrable up to second order.

THEOREM 3.6. Any element of HID(^/6)\(PFo0PFi) is not integrable up to
second order. Hence, it can not be integrable.

Proof. Let £=|j? J ^ e H I D ^ W o e ^ ) satisfying (2.7). Note that W=

By Lemma 1.4(1), we check whether or not
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*.,Λ, €3, f ] -
is orthogonal to Ker3:9π/6. Choose

0 - β -

0 J ^π/

Then by long calculations, we obtain

u(2> = - 2 ( 3 - t a ^ ^

Hence ξ is not mtegrable up to second order. The second statement follows
from Lemma 1.2. •

3.3. The case of s=0

We decompose as HlΌ(φo)=Vo®V1®V2, where VΊ=Σϊ=βΛSt, V2=ΣιU*RL.

Let us define two maps φf, φf: T2->SU(2)(<O(ΞR) by

—sins e" ί ( t 2 + < 0 ) coss e""i

(3.2) ^
L—sin s e*<*ί+ω> cos s

Then we see that φ%—ψ^^φQ and that φf, φf are harmonic maps in the same
way to (0.4).

LEMMA 3.7. Infinitesimal harmonic deformations of φf (respectively, φf),
which are obtained by fixing the parameter ω arbitrarily and moving the parameter
s, span Vι (respectively, V2).

Proof. We see that

cos s-e-^i - s i n s e ι ( t2+ ω>ΊΓ-sins e i ίi cos s-eHt*+ω)

0 β*ωβ""ie

e-i<oeitίe-it2 0

By putting ω=0, π/2, it becomes £7, f6, respectively. Similarly, since

ΛΛ» ΓCOS s e""i —sin s g-t(ί2+ίϋ>ΊΓ~sin s ^^i cos s g-ι(ί2+ΰ>η
( 0 f ) - i ^ . =

^ s Lsins β ι ί ί 2 + ω ) coss e**1 JL—cos s βι(ί2+ω> —sins ^" ί N .
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0 e-"»e-
uie-

_eιωeitleίt2 Q

putting ω=0, 37Γ/2, it becomes | 9 , | 8 , respectively. Π

We discuss the integrability of harmonic /-deformations of <p0. By Lemmas
3.2 and 3.7, we have the following.

PROPOSITION 3.8. Any element of VΌ0VΊ, F o 0V 2 cHID(^ o ) is integrable.

Therefore our problem is to investigate whether or not an element of
is integrable.

THEOREM 3.9. Any element of HΐD(φ0) is integrable up to second order.

Proof. Fix arbitrary ξ=\a

c J> leHIDty0) satisfying (2.8). Then we obtain

that η = \^ ^JeC°°(g) with A^V^ΪR, B = -C is a solution to *3

P(ξ)=0 if and only if each A, B, C is of the form

(3.3)

with άo^V^R, S ^ - ^ G C ^ O , 1, 2, 3) chosen arbitrarily. •

Unfortunately, Theorem 3.9 has not given any answer to our problem yet.
Then let us proceed a more step.

THEOREM 3.10. Any element of HlD(<po)\{(Vo®V1)\j(Vo®V2)} is not inte-
grable up to third order. Hence, it can not be integrable.

Proof. Let £=[* iJeKer^ 0 \{(F o ΘF0W(F 0 ®F 2 )} satisfying (2.8). Note

that &i(=— Ci)Φθ and bz(—— cz)φQ. Take also arbitrarily η such that (£, η)
becomes a harmonic /-deformation of second order of φ0, and then it satisfies
(3.3). Our claim is to show *Q(ξ, η) is not orthogonal to Ker2^0. Choose

0 bte-^

0 J

Then by very long calculations, we can show
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η\ eo>»u(2) = -12616a(δ»c1+δ1c8)-12(r1c.(-6,&1-ft1ft8)

=48|&1 |
2 |&8Γ=? t0. •

§ 4. The structure of a neighborhood and the component in Harm(T2, S3)

Using the results in previous sections, we discuss the local structure of a
neighborhood in Harm(T2, S3) around φs.

PROPOSITION 4.1. Let O^s^π/4. For sφO, a neighborhood in Harm(T2, S3)
around φs becomes a 7-dimensional smooth manifold. On the other hand, the space
Harm(T2, S3) has a singular point at φ0.

Remark. Although nonintegrable harmonic /-deformations occur at s — π/6,
a neighborhood in Harm(T2, S3) around φπ/6 becomes a smooth manifold.

Let 0<s^2π. We need to give attention to the case of s — π/2. It follows
from Lemma 3.7 that the families φf and φf intersect orthogonally each other
at φ0. Similarly, we observe that up to deformations obtained by moving the
parameter ω, φf and φf intersect orthogonally each other at φπ/2. Here φf:
T2—»Sί/(2) (ωeΛ) is a family of harmonic maps defined by

coss e"*'1 sms eHt2+ω)

(4.1) φΐ(e"i, *"»):=

Finally let us determine the connected component in Harm(T2, S3) contain-
ing φs and discuss its compactness. We define a new family φf: T2 —* SU(2)
(o)G/ί) of harmonic maps defined by

(4.2) ??(*"*, *"»):=
L — sin s-eHt2+ω) coss eιtl

THEOREM 4.2. The set of harmonic maps from T2 into Sz obtained by acting
the group SO(4) on the union of four families {φf} \J {φf} U {φf} W {φf} with 0£
s<2π becomes a connected component in Harm(T2, S3) containing φs. Hence, the
connected component is compact.

Figure 4.1 indicates how four family {φf}, {φf}, {φf} and {φf} with O ^ s ^
2π of harmonic maps intersect orthogonally each other, up to deformations with
respect to the parameter ω.

Remark. The action of SO(4) moves {φf} to {φf} and {φf} to {φf}. Then
the union of two circles [_φf] and [_φf~\, which intersect orthogonally each other
at [ψo], becomes the connected component in the quotient space Harm(T2, S3)/
SO(4) containing [<ps].
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Figure 4.1.
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