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ON THE SCHWARZIAN DIFFERENTIAL

EQUATION {w,z}=R(z,w)

KATSUYA ISHIZAKI

Abstract

It is showed in this note that if the Schwarzian differential equation (*)
{w,z]=R(z,w) = P(z,w)/Q(z,w), where P(z,w) and Q(z,w) are polynomials
in w with meromorphic coefficients, possesses an admissible solution w(z), then
w(z) satisfies a first order equation of the form (**) (w')2+B(z)w)w'-\-A(z,w)
=0, where B(z,w) and A(z, w), are polynomials in w having small coefficients
with respect to w(z), or by a suitable Mδbius transformation (*) reduces into
{w,z}=P(z,w)/(wJ

Γb(z))2 or {w,z}—c{z). Furthermore, we study the equa-
tion (**).

1. Introduction

We are concerned with the Schwarzian differential equation

_R, w ) = P(z, w)
' Q(z, w) '

where P(z, w) and Q(z, w) are polynomials in w having meromorphic coefficients
with degwP(z, w)=p and άegwQ(z, w)—q, respectively. Moreover, we assume
that they are relatively prime.

We studied the Schwarzian equation {w, z}m=R(z, w) in [2, Theorems 1-3].
The Malmquist-Yoshida type theorem to the Schwarzian equation was obtained.
Furthermore, we determined the form of the Schwarzian equation that possesses
an admissible solution especially when R(z, w) is independent of z. However, it
might be difficult to get the similar assertion in the case when R(z, w) is not
independent of z. We treat the Schwarzian equation only when m = l , say, the
equation (1.1). We also consider the first order equation

(1.2) (w')*+2B(z, w)wf+A(z, w)=0,

where B(z, w) and Λ(z, w) are polynomials in w having meromorphic coefficients.
In this note, we use standard notations in the Nevanlinna theory (see e.g., [1],
[5], [6]). Let f(z) be a meromorphic function. Here, the word "meromorphic"
means meromorphic in | z |<oo. As usual, m(r, /) , N(r, /), and T(r, f) denote
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the proximity function, the counting function, and the characteristic function of
f(z), respectively. Let n ( i l f(r, /) be the number of poles of order at least M
for a meromorphic function f(z) in \z\^r according to its multiplicity. The
integrated counting function N(M(r, f) is defined in the usual way.

We define the counting function concerning common zeros of two meromor-
phic functions f(z) and g(z). Let n(r, 0; f)g be the number of common zeros of
f(z) and g(z) in \z\^r, each counted according to the multiplicity of the zero
of f(z). The counting function N(r, 0, f)g is defined in the usual way. The
integrated counting function N(r, 0; f)g (—N(r, 0; g)f) counts distinct common
zeros of f{z) and g(z).

A function φ(r), 0^r<oo, is said to be S(r, f) if there is a set EcR+ of
finite linear measure such that φ(r)=o(T(r, /)) as r->oo with r<£E.

A meromorphic function a{z) is small with respect to f(z) if T(r, a)=S(r, / ) .
In the below, M~ {a(z)\ denotes a given finite collection of meromorphic func-
tions. A transcendental meromorphic function /(*) is admissible with respect
to 3i if T(r, a)=S(r, f) for any α(s)e.5K.

Let c e C υ j o o ) . We call z0 a c-point of f(z) if f(zQ)—c=0. Suppose that
a transcendental meromorphic function f(z) is admissible with respect to JM.
A c-point zQ of f(z) is an admissible c-point with respect to JM if a(zo)Φθ, oo
for any a(z)^3i.

Suppose N(r, c;f)φS(r, /) for a C G C W H , Let P be a property. We
denote by nP(r, c; f) the number of c-points in \z\^r that admit the property
P. The integrated counting function NP{r, c; f) is defined in the usual fashion.
If

N(r, c;f)-NP(r, c; f)=S(r, /),

then we say that almost all c-points admit the property P.
We define an admissible solution of the equation

(1.3) Ω(z, w, wf, ..., w<»>)= 2 Φ J = Σ cj(z)w>o(w'Yi ••• (w w y » = 0 ,

where 3 is a finite set of multi-indices J=(j0, j l f ..., / n ) , and Cj(z) are meromor-
phic functions. Let Λ{UZ) be the collection of the coefficients of Ω{z, w, wr, ...,
w^n)) in (1.3), say, JKu.s) : = {cv(^)|/e/}. A meromorphic solution u;(z) of the
equation (1.3) is an admissible solution if u>(#) is admissible with respect to c^α,3).

We now state the results below.

THEOREM 1.1. Suppose that the Schwarzian equation (1.1) possesses an admis-
sible solution w(z). Then w(z) satisfies a Riccati equation, a first order differential
equation of the form (1.2), or the equation (1.1) is one of the following forms:

(1.5) {w,z)=c{z),
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where b(z), c(z) are small functions with respect to w(z). In the case w{z) satisfies
a first order differential equation (1.2), by a suitable transformation u = l/(w—τ),
Γ G C , we see that u(z) satisfies a first order differential equation of the form (1.2)
with άeguB(z, u)^l, degw^4(^, κ)=3.

THEOREM 1.2. Suppose that degwB(z, w)<l and άegwΛ(z, u/)=3 in (1.2)

B(z, w^bi
(1.6)

A(z, w)=

If the equation (1.2) possesses an admissible solution w(z), then by a suitable Mόbius
transformation with meromorphic small coefficients with respect to w(z)

the equation (1.2) reduces into one of the following types:

(1.8) (yΎ=a(zXy-β1χy-βύ(y-βt),

(1.9) (y'+b(z)yγ=a(z)y(l+c(z)y)\

y'-^

(LID

where a(z), b(z), c{z) are small meromorphic functions with respect to w(z) and
eu e2, e3 are distinct constants.

Remark 1.1. Put g=y2/a in (1.10) and put h = y*/a in (1.11). Then we
see that g{z) and h{z) respectively satisfy the binomial equations

(gfy=16a(z)g*(g-l)2 and (h')6=729a(z)h\h-iγ.

We can find the Malmquist-Yosida-Steinmetz-He-Laine theorem to binomial
equation, for instance, in Laine [5, Theorem 10.3, p. 194].

2. Preliminary Lemmas

In this section, we prepare some lemmas to prove Theorems 1.1 and 1.2.

LEMMA 2.1 [2, Theorem 2, pp. 261-262]. // the equation (1.1) possesses an
admissible solution w(z), then the denominator Q(z, w) of R{z, w) must be one of
the folio wings:

(2.1) Q(z, w)=
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(2.2) Q(z, w)=c(z)(w2+a1(z)w-\-ao(z))2,

(2.3) Q(z, w)=c(z)(w+b(z))\

(2.4) Q(z, w)=c(z)(w^b(z))2(w-τ1)(w-τ2),

(2.5) Q(z, w)=c(z)(w+b(z)Y(w-τ1)f

(2.6) Q(z, w)=c(zXw-τι)(w-τ*)(w-τ*)(w--τA),

(2.7) Q{z, w)=c(z)(w-τ1)(w-τ2)(w-τ3),

(2.8) Q(s, u;)=c(e)(u;-r1)(u;-τ,),

(2.9) Q(z, w)=c{z)(w-τι),

(2.10) Q(z, w)=c(z),

where c{z), άι(z), άo(z) are meromorphic functions, \άi\ + \dί\ΦQ, f>i(z), B2{z), b{z)
are nonconstant meromorphic functions, and τ3, j — \ , ..., 4 are distinct constants.

LEMMA 2.2 [4, Theorem l(ii)]. Suppose that the equation (1.3) possesses an
admissible solution w(z) that satisfies ΛΓ(Λf(r, w)—S(r, w) for some M>0. Let
G(z, w) be an irreducible polynomial in w having small coefficients with respect
to w{z). If F(z, w) is a polynomial in w having small coefficients with respect
to w{z) such that F(z, w) and G{z, w) are relatively prime, then

(2.11) N(r,0;G)F=S(r,w).

LEMMA 2.3. Let f{z) be a transcendental meromorphic function and let
Ω(z> fy f> >-> f{n)) be a differential polynomial in f of total degree γp^q having
small coefficients with respect to f(z). Define

h(z)~Ω(zf f(z), f\z\ ..., /wU))/n(/(2)-ry),

where τu ..., τq are distinct complex constants. Then

mix, h)£Jl

The proof of Lemma 2.3 is the same as that of the original proof except
for obvious modifications (see Steinmetz [8, Lemma 3, pp. 48-49]).

LEMMA 2.4. Let f{z) be a transcendental meromorphic function.

(i) Let K(z, f) be a rational function in f having small coefficients with
respect to f(z), i.e., K(z, f):=F(z, f)/G(z, f) where F{z, f) and G(z, f) are
relatively prime polynomials in f. If m{r, K)=S(r, f) where K(z)=K(z, f{z))9

then
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(r, -^-)=S(r, / ) , where G(z)=G(z, /(*)).

(ii) Let G(z, f) be a polynomial in f of degree k having small coefficients
with respect to f(z) such that m(r, l/G)=S(r, / ) , where G(z):=G(z, f(z)). Let
Ω(z, f, f, ..., fin)) be a differential polynomial in f of total degree γ^k having
small coefficients with respect to f(z). Then we have

m(r, -§-)=S(r, / ) , where Ω(z):=Ω(z, f(z), f\z\ ..., /<*>(*)).

Proof of Lemma 2.4. (i) Set d=άegfK(z, / ) . Since m(r, K)=S(r, /), by
Mokhon'ko's Theorem (see e.g., Laine [5, Theorem 2.25, pp. 29-34]), we have
dT(r, f)=N(r, K)+S(r, / ) . Set άegfF=dί and άegfG = d2. If dί>d2 so that
d — du then

y K)£(dί-d2)N(r} f)+N(r, -g)+S(r, f)

r, f)+N(r, ~

Hence, we get d2T(r, f)<N(r, 1/G)+S(r, /) , which proves our assertion in the
case dι>d2. If d^d2> then

Therefore, we also have proved our assertion in the case dx^d2.
(ii) Let Tj, y = l , 2, ..., γQ be distinct complex constants such that G(z, τ3)

^ 0 and m{χy l/(f-Tj))=S(r, f). Since γa^k, we have

(2.12) N(r, U Ϊ U

By our assumption mix, l/G)=S(r, f), and by the first fundamental theorem and
Mokhon'ko's theorem

(2.13) N(r, -^-)=T(r, G)-m(r, ~)+0{l)=kT{r, f)+S{r,

Hence, by Mokhon'ko's theorem and Lemma 2.3, we get

(,14) m(r, fl.M,, lsί§ ISψ^

The assertion follows from (2.12), (2.13) and (2.14). D



72 KATSUYA ISHIZAKI

Here, we refer to the lemmas on a representable double poles, (see [3,
Theorem 2.6]). Let f(z) be a transcendental meromorphic function and let
TΊO), rz(z), ao(z), aλ(z), ..., ab(z) be small functions with respect to f(z). Let z0

be a double pole of f(z). We call z0 z. strongly representable double pole in the
first sense of f(z) by rx(z), r2(z), ao(z), ax(z), ..., aδ(z), if f(z) is written in a
neighbourhood of z0 as

f(z)= r ^ \ +!}&>L+a0(z0)+ ... +aB(z0Xz-zQ)*+O(z-z0γ, as z^zQ.

For the sake of simplicity, we abbreviate it SDl-pole. We denote by n^myir, /)
the number of the SDl-poles. The integrated counting function N<SΌi>(r, f) is
defined in terms of W<SDI>(̂  /) in the usual way.

LEMMA 2.5. Let w(z) be a transcendental meromorphic function and let ri(z),
r2(z), ao(z), di(z), ..., β5(» be small functions with respect to w(z). If

m{r, w)+(N{r, w)-N<SΌl>(r, w))=S(r, w),

then w{z) satisfies a differential equation of the form (1.2) with άegwB(z, w)^l,
(̂ , u/)=3.

Before we state Lemma 2.6, we write (1.2) as

(2.15) (w'+B(z, w))*=B(z, w)2-A(z, w)=D(z, w).

Moreover, we write D(z, w) as

(2.16) D(z, w)=d3(z)w3-\-d2(z)w2-{-dί(z)w+do(z)

= ds(z)(w — i)i(z)Xw - η2(z))(w - ηz(z)),

where dj(z), j=0, 1,2, 3 are meromorphic functions, η&z), j=l, 2,3, are algebroid
functions.

LEMMA 2.6. Suppose that the equation (2.15) possesses an admissible solution
w(z). Let η(z) be a root of the equation D(z, η)=0. If η{z) is a simple root,
then η(z) satisfies the equation

(2.17) η'+B(z, η)=Q.

Lemma 2.6 is originally proved by Steinmetz [8, p. 51] under the condition
that the coefficients are not transcendental. We will follow his proof. To do
this, we refer to the following Malmquist-Yosida type theorem, see Steinmetz
[7], Laine [5, Theorem 13.1].

LEMMA 2.7. Let P(z, w, w', ..., w{n)) be a differential polynomial in w with
meromorphic coefficients and let R(z, w) be a rational function in w having mero-
morphic coefficients. If the differential equation
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P(z, W, W', ..., W™)=R(Z, W)

possesses an admissible solution, then R(z, w) reduces to a polynomial in w.

Proof of Lemma 2.6. Differentiating (2.15), and combining (2.15) with the
obtained equation we get

(2.18) (2w"+2BB(z, w)+2Bw(z, w)w'-Dw(z, w)f

= (D,(z, w)-Dw(z, w)B(z, w)f
D(z, w)

Write D(z, w)=(w — η)A(z, w), where A(z, η(z))^Q. We denote by R(z, w) the
right-hand side of (2.18). We actually compute

u»Wz, w) 2(V,

{w—η(z)){Az(z, w)-Aw(z, w)B(z, w)f
^ A(z, w)

By means of Lemma 2.7, R(z, w) must be a polynomial in w. Since w — η{z)
and A(z, w) are mutually prime polynomials in w, there exists a polynomial
Q(z, w) in w such that

(η'(z)+B{z, w)YA{z, w)=Q(z, w){w-η{z)).

From the reasoning A(z, η(z))^0, we obtain η'(z)+B(z, η(z))=0. D

LEMMA 2.8. Let a(z), bi(z), bo(z), ηj(z), 7 = 1, 2, 3 be meromorphic functions.
Suppose that the equation

(2.19) (w' + b^w + boizW^aizXw-η^Xw-η^Xw-ηsiz))

possesses an admissible solution w(z). Then by a suitable Mδbius transformation
with small meromorphic coefficients with respect to w{z)

the equation (2.19) reduces to the type (1.8) or (1.9).

We note that Lemma 2.8 is originally proved by Steinmetz [8, pp. 51-52].
In fact, if ηί=η2=

:η3, then by y=l/(w — η1(z)) the equation (2.19) reduces to

In case, ηi—η^, ^ i ^ ^ 2 , then by y=(w—η1(z))/(w—rj2(z)) we get

(yΎ=a(zXηz(z)-Vl(z))(y-l)y\
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Finally we consider the case ηjΦrjk, jΦk. By Lemma 2.7, κ=(j)i(z)—
{η*(z)—ηz(z)) is a constant, κΦθ, 1. Put y={w — η1{z))/{w--η%{z)). Then ;y(z)
satisfies

3. Proof of Theorem 1.1

Proof of Theorem 1.1. We may assume that άegwP(z, w)=άegwQ(z, w).
Moreover, we can suppose that almost all poles of w(z) are simple and we have

(3.1) m(r, w)+Nx{rf w)=S(r, w),

(see [2, Proof of Lemma 1, p. 266]). By means of Lemma 2.2,

(3.2) N(r,0;Q)P=S(r,w),

where Q(z):=Q(zf w(z)) and P{z):=P{zy w(z)). Furthermore, we know that the
existence of an admissible solution implies that Q(z, w) must be of the form
(2.1)-(2.10) in the statements of Lemma 2.1. We prove Theorem 1.1 separately
according to the cases above.

First we treat the case Q(z, w) is of the form (2.1) or (2.2). It follows from
(1.1) that almost all zeros of Q(z) are zeros of w\z). We have that almost all
zeros of Q(z) are double zeros, (see [2, Lemma 2(i), p. 264]). Define

w'
^ ) ) ) ' ίf Q(Z' W) ίs °f th

ίf Q(Z> W) iS ° f the f0Γm
ψ l z ) : = w>+aί(z)w+a0(Z) '

Then almost all zeros of Q(z) are regular points of ψj(z), j=l, 2. It follows
from (3.1) that almost all poles of w{z) are also regular points of <pj(z), j=l, 2.
Hence we get N(r, ψj)=S(r, w), j=l, 2. Using the theorem on the logarithmic
derivative, from (1.1) we have that m(r, R)=S(r, w) in each case. By Lemma
2.4 (i), we get m(r, Q)=S(r, w). By virtue of Lemma 2.4 (ii), we conclude that
m(r> ψj)=S(r> w)> 7=1, 2. Therefore, φs(z), / = 1 , 2, are small functions with
respect to w(z) in both cases. This implies that w(z) satisfies a Riccati equation
in each case.

We see that if Q(z, w) has a factor (w—τ), then almost all τ-points of w{z)
are of multiplicity two. Thus w'{z) has a simple zero at these r-points, (see
[2, Proof of Lemma 2 (ii), p. 267]).

Next, we treat the case Q(z, w) is of the form (2.4) or (2.6). We define

(w'Y
φi(z):=-—, , . .^s r-, r , if Q(z, w) is of the form (2.4),Ύ (w;+W2r))8(u;—Γi)(u;—τ8)

(wΎ
ψ%(z):=- r, 4 ^ rz - , if Q(z, w) is of the form (2.6).
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Then almost all zeros of Q(z) are regular point of <βj(z), j=l, 2, and almost all
poles of w(z) are also regular points, which means that N(r, ψ3)—S(r, w), / = 1 , 2.
By the same arguments in the first case, we get m(r, φj)=S(r, w), / = 1 , 2.
Hence we conclude that w(z) satisfies a binomial equation which is a special
form of (1.2).

Finally we consider the case Q(z, w) is of the form (2.5), (2.7), (2.8) or (2.9).
We know that almost all τvpoints of w(z) are double points without defect in
each case. It gives that if we put u = l/{w—τλ) in (1.1), then almost all poles
of u{z) are double poles and we have in each case

(3.3) m{r, u)+(N(r, u)-N(2)(r, u))=S(r, u).

It is easy to see that when Q{z, w) is of the form (2.5), (2.7), (2.8) or (2.9) the
equation (1.1) transforms into the following equations, respectively:

(3.4) {u, z}=χζ+gφγ > if Ofe w) is of the form (2.5),

(3.5) {u, 2} = . P ^ U) . , if Q(z, w) is of the form (2.7),
(u — σί){u — σ2)

(3.6) {M, z}=P^Zf U) , if Q(z, w) is of the form (2.8),
U — ύi

(3.7) {u, z}=P4(z, u), if Q(z, u) is of the form (2.9),

where Pj(z, u), j=l, 2, 3, 4, are polynomials in u having small coefficients with
respect to u(z) and degwΛ(2, w)=3, άeguP2(z, M ) = 3 , deguPB(z, u)=2, άeguP^z, u)
= 1, B(z) is a non-constant small function with respect to u(z), σJf / = 1 , 2 are
constants σιΦσ2. Let z0 be an admissible pole of u(z). We write uiz) in a
neighbourhood of z0 as

(3.8) u{z)= T2

 λ2 + ^ ^ — + a o + ••• +a5{z-zQγ+O(z-zQ)\ as z->z0.
\Z—ZQ) Z—Zo

We assert that in each case r2, ru a0, ..., aδ are written in terms of small
functions with respect to u(z), say, z0 is an SDl-pole. In fact, we put Pχ(z, u)
= Pι(z)uz + pl2{z)u2 + pn(z)u + plo(z), P2(z, u) = p2(z)u* + p22(z)u2 + p21(z)u+p20(z),
Pz(z, u) = P3(z)u2 + p3ί(z)u + p30(z) and PA(z, u) = p*(z)u + p40(z), PJ(Z)Ξ£0, j=l, 2,
3, 4. Using Test-power test, say, substituting (3.8) into the both sides of (3.4),
(3.5), (3.6) and (3.7), we compare the coefficients of (z—zo)~2. Then we see that
in each case r2——Z/(2pj(z)), / = 1 , 2, 3, 4. Moreover, comparing the coefficients
of (z-zo)

m, m = - l , 0, ..., 5, we get -2pJ(z0)r1=S(Ji(ri), -pj^o)ao^S^(r2f n),
4ί/^ 0 )βi=5p ) (r 2 , ri, flo), 15iX^0)«2=S^)(r2, r1? α0, fli), 34^χ^0)α3=

:SF)(r2, n, α0,
fli, α2), 6 3 / ) / z o ) α 4 = S i Λ ( ^ n , βo, fli, «2, fls) and 104^X^ 0)β 5

:=5^ )(r 2, r 1 ? α0, fli, fls,

fls, ^4), 7 = 1, 2, 3, 4, where Sff are polynomials in the indicated arguments with
the coefficients that are the values of small functions with respect to u{z) at z0.
This implies that r2, ru Q<o, •>> Q>ι are written in terms of small functions with
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respect to u(z), say, z0 is an SDl-pole in each case. Hence, by Lemma 2.5, u(z)
satisfies a first order differential equation of the form (1.2). Therefore, by a
simple computation, we see that w(z) also satisfies a differential equation of the
form (1.2). Hence, we conclude that unless Q{z, w) is of the form (2.3) or (2.10),
then w(z) satisfies a first order differential equation of the form (1.2). Then
the assertion follows. D

4. Proof of Theorem 1.2

Proof of Theorem 1.2. In the case B(z, w)=Q, the equation (1.2) is a
binomial equation. Hence, by the Malmquist-Yosida-Steinmetz theorem, the
equation (1.2) reduces into (1.8) or (1.9). Therefore, we may assume that
B(z, w)^Q. Lemma 2.8 insists that if the all roots η(z) of D(z, η)=0 are
meromorphic, then (2.15) reduces to the equation (1.8) or (1.9). Hence we shall
show that ηj(z) in (2.16) are meromorphic or (2.15) reduces to (1.9), (1.10) or
(1.11). In case there is a double or triple root of D(z, -η)—^y then they are
meromorphic. Hence we may assume that ηj(z), j—l> 2, 3, are all simple roots.
It follows from Lemma 2.6 that they satisfy the equation (2.17). We put
u = d3(z)w + d2(z)/3 in (2.15) and (2.16). Then we get the equation

where B(z, u) is a polynomial in u with degree at most 1, and 3U 30 and the
coefficients of B(z, u) are small functions with respect to u(z). Hence, we also
assume that ds(z)=l and d2(z)=0 in (2.16).

Since ηfa), / = 1 , 2, 3, satisfy the equation (2.17),
satisfies the equation

From the assumption d2(z)=0, we have y(z)~0. This implies that bo(z)=O.
Therefore, η^z) are written as

(4.1) ηj(z)=Cje-^ωdz

f /=1, 2, 3.

It follows from (4.1) that at least one function element ηj(z), which does not
vanish, is a meromorphic function if and only if all function elements rjj are
meromorphic. From (2.15), we get

(4 2) U(z,w)w'+V{z,w)
K ' 2D(z, w)

where

(4.3) U(z, w)=-b1(z)w3+(di(z)+bι(z)d1(z))w+d'0(z)+2b1(z)d1(z)

+(3a1(z)b1(z)-ai(z))w+2a(l(z)b1(z)-a'0(z),
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V(z, w) are polynomials in w having meromorphic coefficients with respect to
w{z). From (4.2) and (2.15), we get

-U(z, w)w"w'+{V(zy w)-2U(zy w)B(z, w))w"+U{z, w)2

_ (B(z, w)U(zf w)-V(z, w)f
D(z, w)

In view of Lemma 2.7, we see that V=BU or D\(V—BU) as polynomials in w,
since ηJf / = 1 , 2, 3 are simple roots. We get from (4.2),

. . . . / „ 1 __. A 2 U(z, w)2

(4.4) (w"--H(z, w)) = K^D ,

where H(z, w) is a polynomial in w having small coefficients with respect to
w(z). Hence, by Lemma 2.7 and (4.4) we have D\U as polynomials in w.
Write U(z, w) as

U(z, w;)=-61(2r)DU, w)+S(z, w),
(4.5)

S(z, w)=si(z)w2-\-s1(z)w^rs0(z)f

with

sa=α861-ftf+flί-—fl2+—6?-2«ftx,
α 3 «3

From our assumptions rf3(2:)=--α3(^) = l and d2(z)=b1(z)2—a2(2)=0, we get
Ξ O and

(4.6) s1(ar)=2fl1(2:)61(2:)+αίW and

We have S(z, w)=0, say 51(^)^52(^)^0. Thus from (4.6), we obtain

a1(z)=C1(e-^(z)dz)2 and ao(z)=Cύ(eSbιωd'γm

If CiΦO and C 0 ^0, then e-$b^z)dz is meromorphic. This implies that D(z, w)
has a meromorphic function element. If CiΦO and Co=0, then the equation
(1.2) reduces to the equation (1.10). If Ci=0 and C 0 ^0, then the equation (1.2)
reduces to the equation (1.11). If Ci=0 and Co=0, then the equation (1.2)
reduces to the equation (1.9). •

Acknowledgment. I would like to thank Professor Dr. N. Yanagihara and
Professor Dr. I. Laine for their suggestions and kind encouragements. I also
would like to thank Dr. Y.M. Chiang and Dr. K. Tohge for their helpful
discussions. Moreover, I dedicate acknowledgments to the referee for his
suggestions and comments.



78 KATSUYA ISHIZAKI

REFERENCES

[ 1 ] W. K. HAYMAN, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[ 2 ] K. ISHIZAKI, Admissible solutions of the Schwarzian differential equations, J.

Austral. Math. Soc. Ser. A, 50 (1991), 258-278.
[ 3 ] K. ISHIZAKI, A third order differential equation and representable poles, Nihonkai

Math. J., 4 (1993), 201-220.
[ 4 ] K. ISHIZAKI AND N. YANAGIHARA, On admissible solutions of algebraic differential

equations, Funkcialaji Ekvacioj, 38 (1995), 433-442.
[ 5 ] I. LAINE, Nevanlinna Theory and Complex Differential Equations, W. Gruyter,

Berlin-New York, 1992.
[ 6 ] R. NEVANLINNA, Analytic Functions, Springer-Verlag, Berlin-Heidelberg-New York,

1970.
[ 7 J N. STEINMETZ, Eigenschaften eindeutiger Lόsungen gewohnlicher Differential-

gleichungen im Komplexen, Doctoral Dissertation, Karlsruhe, 1978.
[ 8 ] N. STEINMETZ, Ein Malmquistscher Satz fur algebraische Differentialgleichungen

erster Ordnung, J. Reine Angew. Math., 316 (1980), 44-53.

DEPARTMENT OF MATHEMATICS

NIPPON INSTITUTE OF TECHNOLOGY

4-1, GAKUENDAI MIYASHIRO-MACHI

MINAMI-SAITAMA-GUN SAITAMA-KEN 345

JAPAN




