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HAYMAN DIRECTION OF MEROMORPHIC FUNCTIONS
JINGHAO ZHU
Abstract

Let f be meromorphic in the plane. Then f has a Hayman direction
provided that

. T(r,f) _
lim Sup iog e 7
1. Introduction

We define a Hayman direction of a meromorphic function f(z) to be a ray
arg z=0, 0<0<2r, such that for every positive integer / and positive ¢>0,

¢H) lim [n(r, 0—¢, O+¢, f=a)+n(r, §—¢, O+4¢, [P =b)]=0c0

T o0

holds for all (a, H)e CX[C—0], where
n(r, 0—e, 0+¢, g=p)
is the number of roots of g—B8=0 in the region

[lzl<rIN[largz—0]<e].

Yang, Lo [1] proved that for given meromorphic function f there is a ray
arg z=46 which satisfies (1) provided that

(2) lim sup T

A problem posed in [3] asks whether (2) could be replaced by the usual
existing condition of classical Julia directions

. T, ) _ .
3 lim sup og 7 ="

In this paper we prove that there is a ray arg z=4# satisfying (1) provided
that (3) holds.
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2. Some lemmas

We use Ahlfors-Shimizu characteristic [2] for a given meromorphic func-
tion f(z) as follows
) =] 20 a
where
. 1 cen an ‘f/‘Z
A= ] 40

and a known result about the relationship between T (r) and T'(r, f) as follows.
LEMMA 1. Suppose that f(z) is meromorphic in the plane. Then
IT(r, )= Tu(r)~log*| fO)]| = 3 log 2
(for a proof, see [2], pp. 12-13).

LEMMA 2. Given positive integer | and meromorphic function f(z) mn |z|<1.
Suppose that in |z| <1, f#0, fP+1. Thenin |z|<1/32 either |fl|<lor |f|>C,
uniformly, where C, is a positive constant only depending on .

(for a proof, see [1]).

LEMMA 3. Let f(z) be meromorphic in the plane and a,, v=1, 2, 3, be three
distinct finite complex numbers. Let Fy be
S*—[a,, v=1, 2, 3],
such that
FCf(lz] <e).

Suppose that in |z| <R, f(z) has values in F,. Then we have

A(r)<hL(r), 0<r<R)
where
ex | fl(ret?)|r

o T feren Y

Mﬂzg

and for 0<r<R, we have

2n*h®R

AN<—p— >

where h only depending on the geometric nature of conditions satisfied by f(z).
(for a proof, see [2], pp. 137-144).
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3. The main results

THEOREM 1. Let f(z) be meromorphic in the plane. Suppose that

6)) lil}i_’iup Z;E); r];z =oco

Then there is a real [0, 2rc], such that for every e>0, and positive integer I,

(6) lim [n(r, 6—¢, O+¢, f=a)+n(r, 0—¢, O+, fO=b)]=oo.
for all (a, b)eCX[C—0].

THEOREM 2. Let f(z) be meromorphic in the plane. Suppose that

%) lim sup TT(?: J{i)? >1.

T 00

Then the conclusion of Theorem 1 is still true.

4. The proof of the theorems

Proof of Theorem 1. By hypothesis (5) and using Lemma 1, we can get a
ray arg z=4@, such that for arbitrary positive d

. T(r, —36, 040)
® lim sup Qg =

where

r A, o—ta. 0+9) ,

0

70, 05, 0+5)=|
_ L s
Alr, 03, 6+8)= ”SSATJ(HIW)dedy
is the Ahlfors charachteristic of f(z) in the angle area

larg z— 6| <9,

where
A 5=z, 12| <r)N\(z, |arg z—0]<9).

We prove the ray arg z=46 is desired for Theorem 1. Otherwise, without
loss of generality, we have complexes a, b(b+0) and some ¢>0, and />0, such
that

9) n(r, 0—e, 0+¢, f=a)+n(r, 0—e, O0+¢, fP=b)=0

for any r, 0<r<oo,

Now given a sequence of positive real ¢, which tends to infinitive, we find
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a sequence of circles D,, (k=1, 2, -)

Dy lz—z| <plzs, zx=l|2sle'?, lim|z,| =00,

—00

with a sufficiently small >0 such that
(10) A(Dk) >Ck log *]:—77 .

(k=1, 2, -+)
We’ll get D, by induction.
After getting D,, D,, -+, D,_, if we cannot get D, such that (10) holds,
then for each »>r¥=Max (|z,-,|, k), we have

1 Yo
< — =
(11) A(A))=c, log =y ci log —
where
Vo=V
Aot |z—ree? | <yro
and
(12) A(An) Sci log ——=c, log —1m
= I—y Fn—Nm’
(m=1L, 2, -+)
where
Vm:(]-“‘ﬂ)f’m—l
(13) Ap: lz—7ne'? | <nra.
Noting
70—7’1=7770
ri—ry=n(1—=9)t,
(14) Fmai—m=n1—9)""'r,
and
15) 1+1A—n)+A—9)+ - Ire=1,
we see there is a positive integer m such that
(16) TmZVE
and

) Pmar=Vm— T m ST
1.e.
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_l_n)rf.

7 rn=(5
On the other hand
18) En)=(z: rn< ]zl <r)m(z: larg z— 0| <127-)c JQ A, .

But by (11), (12), and (15), we have

<c; log —<c,, log

Vet Ym

Then by (16), (17), (18) and (19), we have

19) 2 AlA)Ece 2 log —

APTUAT VAYIRS L
20) A(r, 6 Z, 0+ 2)_ A(rm, 0— 2, o+ 2)+ nSSEmm(1+|f|2)2dxdy
IR TR} VAW
S A7 0- 3, 0+ )+ B A
1
gA(l_nrk,0 0+ )+erlog 5.
Since »>r¥ is arbitrary, we have
@1) A( 6— ’27 0+2) Ol (log 1)].
Then
At 0-2 9+ 1
(22) T(r, 6— % 6+ ) g ( 2>dt=0(log )

and this yields a contradiction to (8).
Take a sequence of circles D,: |z—z¢| <64nlz:|, (k=1,2, ). If 9<
(1/32%)e, then D,C(z: |arg z—@| <e). By (9), functions

_ f(ze+649|ze|t)—a
8= ey 1z, )

are meromorphic in |¢|<1 and for each %, g.(t)#0, gi®(#)+1. Then by Lemma
2 we have in |t]£1/32, either |g.(®)| <1 or |g.(t)|>C, uniformly.
There are two cases for each % as follows.

CAse 1. |g:@®)|>C, holds uniformly in |¢|<1/32.
Denoting
Fe@®)=f(z:+647]2:11),
this deduces

(23) [fe)—al>C.|bl(64nlz.]) .
holds uniformly in |#]|<1/32.



42 JINGHAO ZHU
CASE 2. |g:(®)|<1 holds uniformly in |#] <1/32, and this deduces

[ fe@)—al<|b|(647|2z:|)
for all ¢ in |#] <1/32.

Now in case 1 we choose three distinct values a;, a,, a;, such that

a=a, la,—al|=1, v=2,3.
In case 2, we let
a=a, a;=e'"*ay,

lan|=2(lal+161(64n]z:1)"),  (v=2,3).

At the same time, without loss of generality, we assume that [«,, v=1, 2, 3]
includes all values (at most two) which are not taken by f(z) in the plane.
Then by the method of Theorem 5.3 in [2], in order to use our Lemma 3, we
choose

F,=S*~[a,, v=1, 2, 3]
and clearly
FoC fa(ltl <o),

since f(z) is meromorphic in the plane and so is f.(t). Noting the geometric
nature of conditions satisfied by f(z) and a, on Riemann sphere, we have

(1t s 55)cF,

for
f:@)+a,, v=1, 2, 3,

when |t|<1/32. Then by Lemma 3 we have

A(nsg)<hi(it=g)

where £ is independent of %, since for both cases we can properly construct
Jordan arcs B, (v=1, 2, 3) to join a;, @, @, in turn just like in [2] such that
the length of B, and the sphere area of F; and F{ are all greater than C(a),
where C(a) is a positive constant only dependent of a, and

FoUF{=F,

are two Jordan domains divided by B,, v=1, 2, 3.
Clearly

A(1t1< g5)=ADy) |
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So by (10), we have
<ADy)<4m*h?

¢ log 1
l—9
i.e.
1 -1
co<dn*h(log 1“—;7) .
But this violates that ¢, tends to infinitive. We are done.

Proof of Theorem 2. Since

T(r, f)=0(og r)
means
T@r, ))~T@, ),

so by hypothesis of Theorem 2, we have

. T(r,
s T

Then we deduce Theorem 2 from Theorem 1 directly.
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