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HOLOMORPHIC EQUIVALENCE PROBLEM FOR A CERTAIN

CLASS OF UNBOUNDED REINHARDT DOMAINS IN C\ II

BY SATORU SHIMIZU

Introduction.

For a pair {a, b) of real constants with (α, b)Φ(0, 0) and a positive constant
r, we define an unbounded Reinhardt domain D%,b(r) in (C*)2 by

Dtb(r)={{z,w)£Ξ{C*γ\ \z\a\w\b<r}.

Also, for a pair (a, b) of non-negative constants with {a, b)Φφ, 0) and a posi-
tive constant r, we define an unbounded Reinhardt domain Da>b{r) in C 2 by

\z\a\w\b<r).

Here, when ab=0, for example, when b=0, the domain Da,o(r) is understood as

Da>o(r)={(z,w)<=ΞC2\ \z\a<r}.

In our previous paper [3], we investigated the holomorphic automorphisms
and the equivalence of the domains Daιb(r) with (a, b)^Zz as well as those of
the domains Dttb(r) with {a, b)^Z2. The purpose of the present paper is to
continue our study in the case where a and b are arbitrary real constants.

Our main results of this paper are as follows (see Section 1 for ter-
minologies).

Main THEOREM 1. // D%tb{r) and D%>v(s) are holomorphically equivalent,
then they are algebraically equivalent.

Main THEOREM 2. // Da,b(r) and DUίV(s) are holomorphically equivalent,
then they are algebraically equivalent under a transformation given by

C2^{zy ιυ)\ >(az,
or

C2^{z, u;)'—>(rw, δz)<ΞC*,

where a, β, Y, δ are non-zero complex constants.
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This paper is organized as follows. In Section 1, we recall basic concepts
and results on Reinhardt domains. In Section 2, we discuss a correspondence
between Reinhardt domains and tube domains, which is needed later. Section
3 is devoted to the study of the holomorphic automorphisms of domains D%tb{r).
In Section 4, we first introduce the notion of a plurisubharmonic Liouville folia-
tion, and then apply this to the study of the holomorphic automorphisms of
domains Da,b(?) The results of Sections 3 and 4 are used in Section 5 to
prove Main Theorems 1 and 2 stated above. In Section 6, we give a conclud-
ing remark on our results.

1. Basic concepts on Reinhardt domains.

We first recall notation and terminologies. The set of non-zero complex
numbers is denoted by C*. The multiplicative group of complex numbers of
absolute value 1 is denoted by U(l). An automorphism of a complex manifold
M means a biholomorphic mapping of M onto itself. The group of all auto-
morphisms of M is denoted by Aut (M). Two complex manifolds are said to
be holomorphically equivalent if there is a biholomorphic mapping between
them.

We now recall some basic concepts and results on Reinhardt domains (cf.
[2, Section 2]). Write T—(U(l))n. The group T acts as a group of automor-
phisms on Cn by

••• , anzn)

for (alf •••, an)£ΞT a n d (zlf ••• , zn)ς=Cn

By definition, a Reinhardt domain D in Cn is a domain in Cn which is stable
under the action of T ; that is, a-DcD for all α e T . The subgroup of Aut(D)
induced by T is denoted by T(D).

An automorphism φ of (C*)n is called an algebraic automorphism of (C*)"
if the components of φ are given by Laurent monomials that is, φ is of the
form

<p:(C*)n=>(zlf - , * » ) • — > { w u - , wn)tΞ(C*y ,

wi=aιz1

au - zn

ant, ί = l , -.., n ,

where (atJ)t=GL(n, Z) and (α,)e(C*) n . The set Autaig((C*)n) of all algebraic
automorphisms of (C*)n forms a subgroup of Aut((C*)n). The group
Autaig((C*)n) is a Lie group with respect to the compact-open topology.

Let φ be an algebraic automorphism of (C*)n and write φ(z)~(φι(z), ••• ,
φn(z)) In general, the components φu •••, φn have zero or poles along each
coordinate hyperplane. Let D and D' be domains in Cn, not necessarily con-
tained in (C*)n. If φu ••• , φn have no poles on D and φ:D-+Cn maps D
biholomorphically onto D', then we say that ψ induces a biholomorphic mapping
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of D onto D'.
Two Reinhardt domains in Cn are said to be algebraically equivalent if

there is a biholomorphic mapping between them induced by an algebraic auto-
morphism of (C*)7*.

PROPOSITION 1.1 ([2, Section 2, Proposition 1]). Let φ: D->D' be a biholo-
morphic mapping between two Reinhardt domains D and Dr in Cn. If φT(D)φ~ι

= T(D'), then φ is induced by an algebraic automorphism of (C*)\

LEMMA 1.1 (cf. [1, Section 4]). Let φ be a biholomorphic mapping between
two domains in Cn both containing the origin. If the components of φ are given
by Laurent monomials, then φ is induced by an algebraic automorphism of (C*)TO

of the form

( C * ) B 3 f e , ••• , *„)•—>{wu ••• , u/ n )e(C*)» ,

where a is a permutation of {1, ••• , n\ and ( a u ••• , α n ) e ( C * ) n .

The concept of an algebraic automorphism of a Reinhardt domain will be
needed later. An automorphism of a Reinhardt domain D in Cn is called an
algebraic automorphism of D if it is induced by an algebraic automorphism of
(C*)n. The set Autaig(.D) of all algebraic automorphisms of D forms a sub-
group of Aut(D). The group Autaig(£) may be viewed as a subgroup of
Autaig((C*)n). It then follows that Autaig(/)) is closed in Autaig((C*)n), and
therefore that Autalg(D) is a Lie group with respect to the compact-open
topology. We observe that the identity component of Autaig(D) is given by
that of the subgroup of Autaig((C*)w) consisting of those transformations /
which has the form

f:CnΞ3(zlf ^'^,zn)^—•(«!*!, - , αn

and satisfy f(D)=D, where (αlf ••• , a : 7 l ) e ( C * ) \

2. Reinhardt domains and tube domains.

There is a useful correspondence between Reinhardt domains and tube do-
mains (cf. [1, Section 2]). First we recall the definition of a tube domain and
fix notation. If Ω is a domain in Rn, the tube domain TΩ=Ω+V—lRn over
Ω is the domain in Cn consisting of all points ζ=ξ-\-Vzzϊ'η^Cn=Rn-\-V::::ΪRn

(f, Ύ)^Rn) such that ξ^Ω. For each element rj of Rn, we set the translation
σv^Aut(TΩ) as
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Now, we define the mapping ord: (C*)n->Rn by

orά(zu •"}zn)=(-(2π)-1\og\z1\, ••• , -{2π)~ι \og\zn\).

Clearly ord is an open mapping. If E is a subset of Cn, the image of E* :—
EΓλ(C*)n under ord is called the logarithmic image of E. To each Reinhardt
domain D in (C*)71, there is associated a tube domain TQ for which Ω is the
logarithmic image ovά{D) of D. The tube domain TQ naturally becomes a
covering manifold of D. Indeed, introduce the covering ΌT : Cn->(C*)ra defined
by

a(Ci, - , ζ » ) = ( < r 8 j c ζ l , - ,0- 2 * c »)) .

Then we have TΩ~vf~\D), and the restriction τεr: TQ^D is a covering pro-
jection. The covering transformation group for ω is given by σZn : = {σ^ | η^Zn).
The tube domain TQ is called the covering tube domain of D and the covering
projection TD" : TQ->D is called the canonical covering projection.

Let D be a pseudoconvex Reinhardt domain in (C*)71 and TQ the covering
tube domain of D. It follows that TQ is pseudoconvex, and therefore that TQ
is convex. As a consequence, T& is simply connected. This implies that the
covering τεr: TΩ-*D is the universal covering of D. Let / be an automorphism
of D. Then a lifting / of / is an automorphism of TQ. Note that, since the
covering transformation group for vf is given by σzn, there exists an element
P^GL{n, Z) such that

(2.1) foση=aηpOf for every η(=Zn.

The following lemma gives a criterion for / to be an algebraic automorphism
of D.

LEMMA 2.1. // / is a complex affine transformation, that is, f can be written
in the form

/ ( O W 8 for

where Λ=(aιJ)^GL(n, C) and β~(βι)^Cn, then f is an algebraic automorphism
of D.

Proof. It follows from the relation (2.1) that A=P, so that A<=GL{n, Z).
In view of the definition of the covering projection vf, we see that / is given
by

z u ••• , zn) i — • (wlf •••, wn)

which implies our assertion. q.e.d.

We conclude this section with a description of the automorphisms of a two-
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dimensional tube domain TQ for which Ω is a half-plane.

For convenience we denote by G the right half-plane T«,,oo)={£+V—
C\ζ>0, η^R} in the complex plane C.

LEMMA 2.2. // βo={(£, ρ)^R2\ξ>0}, then Aut(T^0) consists of all trans-
formations of the form

TfloΞ3(ζ, ω) i—• (r(ζ), « ζ ) ΰ ) + M O ) e ^ 0 ,

where reAut(6r), Λ 2s α nowhere-vanishing holomorphic function on G and μ zs
a holomorphic function on G.

Proof. Since TQO=GXC and since G is holomorphically equivalent to the
unit disk {z^C\\z\<l}, our assertion is an immediate consequence of [3,
Theorem 4.1(i)]. q.e.d.

PROPOSITION 2.1. // c is a real constant, and if Ωc—{{ξ, ρ)^R2\ξ+cp>0\,
then Aut (TQC) consists of all transformations of the form

(2.2)

where τ^Aut(G), λ is a nowhere-vanishing holomorphic function on G, and μ is
a holomorphic function on G.

Proof. We define a complex linear transformation φ of C2 by

ψ : C2Ξ>(ζ, ω) •

Noting that T ^ K ζ , ω)GC 2 |ζ+cωeG r }, we see that φ{TΩc)~TΩ{), and hence
that A\xt(TΩc)=φ-1 Aut(TΩo)φ. Our assertion follows from Lemma 2.2 and a
straightforward computation. q.e.d.

3. Automorphisms of domains D%ιb.

We begin with preliminary observations. Firstly, for every positive con-
stant r, the domain D%tb{r) is algebraically equivalent to the domain D%ιb(l)
under a suitable transformation of the form

C2Ξ>(^, w) 1—• (az, βw)<=ΞC2,

where (α, /3)e(C*)2. Hence, in order to discuss the automorphisms and the
equivalence of domains D%>b(r), it is sufficient to deal with domains D%tb{l).
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For brevity, we set Dtib=D%tb(l). Secondly, if necessary, we may replace
D%,b by Dfaiδb, where δ is a positive constant. In fact, we have Dfa>δb—Dt,b'

Now, we classify the domains Dt>b into the following three classes:

( I ) ab=0;
(Π) abΦO and b/a^Q;
(ΠI) abΦO and b/aφQ.

If Dt,b is of class ( I ) or of class (Π), then it is algebraically equivalent
to a domain D%>q for which (p, q)^Z2. Therefore, in this case, a description
of the automorphisms of D£ib follows from [3, Proposition 3.2]. For domains
D%b of class (IΠ), we have the following.

THEOREM 3.1. // D*tb is of class (ΠI), then Aut(£ί,6)=Autaig(#ί,δ). Further-
more, the identity component G(D%tb) of Autaig(£>ί,δ) consists of all transforma-
tions of the form

(3.1) D*tbΞ*(z, w) i—> (δ~baz, δaβw)£ΞD*>b,

where a and β are complex constants of absolute value 1 and δ is a positive con-
stant.

Proof. We begin by proving the first assertion. Put c—b/a. Then Dt,b

is algebraically equivalent to D?tC. Hence it is sufficient to prove that Aut(DftC)
=AutaigCD*c). Note that c£Q by assumption.

It is readily verified that the covering tube domain of Df>c is given by
TQC. Let vf: Toc~>DftC be the canonical covering projection. Then the cover-
ing vf: TQc~^Df>c is the universal covering of D?>c.

Let / be any element of Aut(DftC) and let / be an element of Aut(T^c)
given as a lifting of /. By Lemma 2.1, to see that /eAutaig(/)*c), it suffices
to show that / is a complex affine transformation. According to Proposition
2.1, we write / in the form (2.2), and put

P=IP

in (2.1). Then (2.1) implies that

(3.2) C'ίζ+V^Ift, o)+V=I/)=C(C,

(3.3) ω'iζ+y/^Λk, ω+V-ll)=ω/(ζ> ω)+V:zI(gk-\-sl),

for all (ζ, ω)(EΞTΩc and all (k, l)e=Z2. Set Z=ζ+cω. Then (3.2) and (3.3) are
written as
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(3.4) μ

=τ(Z)-c{λ(Z)ω+μ(Z)}+y/=ϊ(pk+rl),

and

(3.5)

for all (ζ, ω)GT β c and all {k,
We show that λ is a constant function. Fix a point Z o of G and consider

the complex affine line

L={(-cW+Z0, W)(ΞC2\WΪΞC}

contained in TQC. The restriction to L of the left hand side of (3.5) is a com-
plex affine function of W whose linear part is given by λ(Z0+V—l(k+ cl)),
while the restriction to L of the right hand side of (3.5) is a complex affine
function of W whose linear part is given by λ(Z0). Since these two complex
affine functions of W must coincide, it follows that

(3.6) λ(Z0+ V^ϊ (k+cl))=λ(Z0).

We recall here that cψQ. This relation implies that the set {Zo+V^-ίik+cl)
^G\(k, ί)^Z2} has an accumulation point in G. Since (3.6) holds for all (k, I)
G Z 2 , we see by a uniqueness theorem for holomorphic functions that λ(Z)=λ0

for a constant λ0.
We show that μ is a complex affine function. By the result of the preced-

ing paragraph, (3.5) becomes

for all Z(ΞG and all (k, i)^Z2. Differentiating the both sides of this equation
with respect to the variable Z, we obtain

(3.7) μ'(Z + V=l(k + cl))=μ'(Z)

for all Z^G. If we ήx a point Z^G, then the right hand side of (3.7) is a
constant. Since (3.7) holds for all (k, / ) e Z 2 , it follows from the same argu-
ment as in the preceding paragraph that μ' is a constant, and therefore that
μ(Z)=μίZ-{-μQ for constants μ0 and μx.

We show that τ is a complex affine function. Substituting X(Z)=λ0 and
μ(Z)=μίZ+μ0 into (3.4) yields that
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for all Z G G and all (k, l)^Z2. Differentiating the both sides of this equation
with respect to the variable Z, we obtain

(3.8) τ'(Z + */=ί{k + cl))=τ'(Z)

for all Z^G. If we fix a point Z(=G, then the right hand side of (3.8) is a
constant. Since (3.8) holds for all (k, / ) G Z 2 , it follows from the same argu-
ment as in the preceding paragraphs that τr is a constant, and therefore that
τ(Z)=TiZ+iΌ for constants τ 0 and τx.

Since λ(Z)=λ0, μ(Z)=μ1Z+μ0 and τ{Z)=τ1Z+τOf it follows from (2.2) that
both ζ'(ζ, ω) and ω'(ζ, ω) are complex affine functions of ζ, ω, so that / is a
complex affine transformation. This proves the first assertion.

By the observation made in Section 1, G(D£tb) is given by the identity
component of the subgroup H of Autaig((C*)2) consisting of those transforma-
tions / which has the form

/ : C 23(z, w) i—> {γz, θw)(Ξ:C2

and satisfy f{D*>b)=.D*>b, where (γ, Θ)(EΞ(C*)\ It is readily verified that
f(D*tb)=D*tb precisely when \γ\a\d\b=l. This implies that H consists of all
transformations of the form (3.1). Since, in particular, H is connected, we
have G(Dtth)=Hf and the second assertion is proved. q.e.d.

4. Plurisubharmonic Liouville foliation and
the automorphisms of domains Dab

We first introduce the notion of a plurisubharmonic Liouville foliation.
Let M be a complex manifold. A collection {Σa}a(ΞA of subsets Σa,

of M is called a plurisubharmonic Liouville foliation on M if the following four
conditions are satisfied:

(51) If au a2^Λ and a^a^ then Σai

n\Σa2=0 ;
(52) U^α-M;

a&A

(53) For each subset Σa, any bounded plurisubharmonic function on M
takes a constant value on Σa

(54) For every au a2^A with a^a2, there exists a bounded plurisubhar-
monic function ψ on M such that the constant values of ψ on Σaι and Σa2 are
different.

If there exists a plurisubharmonic Liouville foliation on M, then we say
that M has a plurisubharmonic Liouville foliation. The following lemma shows
that M has at most one plurisubharmonic Liouville foliation.

LEMMA 4.1. // {Σa}aeA and {Σr

a'}a'^A' &re two plurisubharmonic Liouville



438 SATORU SHIMIZU

foliations on a complex manifold M, then they coincide, that is, there exists a
bijective correspondence τ: A-*A' between the index sets A and A' such that Σa

=2'ί(α) for every a^A.

Proof. We first show that if ΣaΓ\Σf

a>Φ0, say p^ΣaΓ\Σ'a', then Σa=Σ'a'.
Suppose contrarily that ΣaΦΣ'a>. Then there exists a point q^M such that
q^Σa\Σ'a> or q^Σf

a'\Σa, where the notation Σa\Σ'a> stands for the intersec-
tion of Σa and the complement of Σ'a< in M. We may assume without loss of
generality that q^Σ'a>\Σa. Since p^Σa and qψΣa, it follows from (S4) that
there exists a bounded plurisubharmonic function ψ on M such that ψ(p)Φψ(q).
But, since p^.Σ'a< and q^Σ'a , this contradicts (S3).

Now, it follows from (SI), (S2) and what we have shown above that, for
each element a^A, there is a unique element τ{a)^Af with Σa=Στw The
required correspondence is given by A^a^τ{a)^Af. q.e.d.

The next proposition is useful in the investigation of the automorphisms
of domains Daιb(r).

PROPOSITION 4.1. // φ\M->Mf is a biholomorphic mapping between two
complex manifolds M and M', and if M and M' have plurisubharmonic Liouville
foliations {Σa}a&A and {Σ'a>} a'^A1, respectively, then there exists a bijective cor-
respondence τ: A-+A' between the index sets A and Af such that φ{Σa)—Σr

τia^ for
every a^A.

Proof. It is readily verified that \φ(Σa)} a^A is a plurisubharmonic Liouville
foliation on M'. We have only to apply Lemma 4.1 to the plurisubharmonic
Liouville foliations {φ(Σa)}a^A and {Σf

a'}a'^A' on M'. q.e.d.

Now, before discussing the automorphisms of domains Da,b(r), we make
some preparations.

We set Da,b=Datb(l). As in the preceding section, in order to discuss the
automorphisms and the equivalence of domains Da,b(r), it is sufficient to deal
with the domains Da>b. Also, if necessary, we may replace Da>b by Dδa>δb,
where δ is a positive constant.

In a manner similar to the case of domains Dttb, we classify the domains
Da,b into the following three classes:

( I ) ab=0;

(Π) abΦΰ and b/a<=Q;

(ΠI) abΦO and b/a<£Q.

A description of the automorphisms of domains Da<b follows from the above
classification. In fact, if Da,b is of class ( I ) , then it is algebraically equivalent
to the domain DltQ; if Da>b is of class (Π), then it is algebraically equivalent
to a domain DPtQ with (p, q)^Z2 and (p, q)Φ(0, 0). Therefore, in these cases,
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the description of automorphisms of Da,b is a consequence of [3, Theorem 4.1].
To describe automorphisms of domains Dab of class (IΠ), we first prove the
following lemma, which is basic in an application of the notion of a plurisub-
harmonic Liouville foliation to our investigation.

LEMMA 4.2. Let c be a real constant with cψQ and Z be a point of C.
Then the image of the complex affine line

(4.1) Lz=\(ζ, ω)£ΞC2\ζ+cω=Z\(ZC2

under the covering projection vf: C2—>(C*)2 given in Section 2 is a dense subset
of the set

\z\\w\c=e-2πX}C(C*)2,

where Z^X + V^Y (X,Yt=R).

Proof. The set vf(Lz) is given by

where r=e~27:X and r ^ ^ ^ " 2 ' ^ , while if, for each <5>0, we set

Πδ={(rδ-ea, δβ)^C2 I (a, β){ΞT=(U(l))2},

then Σ= U Πδ. As a consequence, we have vf(Lz)cΣ. To prove that vf(Lz)

is dense in Σ, it is sufficient to show that, for every d>0, the set W(Lz)fΛΠδ

is dense in Πδ. For this, fix <5>0 and consider the mappings c: R^T, h : T->T
and g: T~^Πδ given by

c(η)=(eVZΊ2πc\ e^
H-2π^) for η^R ,

h(a, β)=(T<x, β) for (a,

g(a, β)=(arδ~c, βδ) for (a,

Clearly, h is a homeomorphism of T onto itself, and g is a homeomorphism of
T onto Πδ. On the other hand, it is well-known that, since (2πc)/(—2π)——c
φQ, the set c{R) is dense in T. Therefore we see that (g°h°c)(R) is dense in
Πδ. Since vf(Lz)ΓΛΠδ={g°h°c){R), this proves our assertion, and the proof of
•the lemma is complete. q.e.d.

As a consequence of this lemma, we obtain the following result.

LEMMA 4.3. Every domain Da,b of class (IΠ) has a plurisubharmonic LiouviίU
foliation.
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Proof. We may assume without loss of generality that Da<b—D1>c. Then
cψQ. For each Γ G / : = {t^R\O£t<l}, set Σr={(z, w)^DltC\ \z\\w\c=r\.
Clearly, the collection {Σr}r&1 of the subsets Σr, r^I, of D1>c satisfies (SI)
and (S2).

To see (S3), we need Liouville's theorem of the following type:

Liouville's Theorem. If a subharmonic function defined on the whole com-
plex plane is bounded above, then it is constant.

Let u be any bounded plurisubharmonic function on D1>c. Since Σ0={(z, w)
^C2\zw=0}, the fact that u takes a constant value on Σo is an immediate
consequence of Liouville's theorem. Consider the case of the subset Σr for
which rφO. Then we have ΣraD*cclDuc. As we saw in the proof of Theo-
rem 3.1, the covering tube domain of DftC is given by TQC. Let tεr: TQc~^DftC

be the canonical covering projection. Now, take two points p and q of Σr.
Then we can find a complex afϊine line LZCTQC of the form (4.1) such that />e
vf(Lz)aΣr Since the restriction to Lz of the function u°vf gives a bounded
subharmonic function on the whole complex plane, it follows from Liouville's
theorem that u°ω takes a constant value on Lz, so that u takes a constant value
on τrf(Lz). Since, by Lemma 4.2, vf(Lz) is a dense subset of Σr containing p,
and since u is upper semicontinuous, we see that u{p)^u{q). A similar argu-
ment shows that u(q)^u(p). Therefore we obtain u(p)=u(q). This implies
that u takes a constant value on 2V, and (S3) is verified.

It remains to see (S4). Consider the function φ on DltC given by ψ(z, w)
— \z\ \w\c. It is readily verified that φ is a bounded plurisubharmonic function
on Dlc. For every r<=/, we have Σr={(z, w)^DliC\φ(z, w)—r). This implies
that if r, rf^.I and rφr', then the constant values of ψ on Σr and Σr' are
different, and (S4) is verified. q.e.d.

For automorphisms of domains Da,b of class (IΠ), we have the following.

THEOREM 4.1. // Da.b is of class (IΠ), then Aut(Datb)=Autaιs(Da,b)' Further-
more, Autaig(Dα,b) consists of all transformations of the form

Da,b^{z, w) > (δ~baz, δaβw)£ΞDatb,

where a and β are complex constants of absolute value 1 and δ is a positive con-
stant.

Proof. To prove the first assertion, we may assume without loss of gener-
ality that Da,b—Di,c Let {Σr}rξΞI be the plurisubharmonic Liouville foliation
on Dί>c given in Lemma 4.3. If / is an element of Aut(D1>c), then, by Pro-
position 4.1, there exists a bijective mapping τ : / - > / such that f(Σr)=ΣτCr^
for r e / . As a consequence, Σo and ΣτC<» are homeomorphic. Clearly, if rφO,
then Σr is not homeomorphic to Σo. Therefore we must have Στa»=Σ0, so
that f(Σ0)=Σ0. Since Dλ c is the disjoint union of DftC and ΣQ, this implies
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that f(DftC)=DftC, and hence that the restriction /* of / to Df>c gives an auto-
morphism of DftC. By Theorem 3.1, we have Aut(Dfte)=Autaig(DftC). Using
this fact, we see that /* is induced by an algebraic automorphism of (C*)2,
which shows that /GAutaig(i)i l C). Thus we obtain Aut (Zλ,c)=Autaig(DilC).

To prove the second assertion, we take an element / of Autaig(Da,b)'
Note that Da,b contains the origin and that aΦb by the assumption that Da,b
is of class (IΠ). Hence, using Lemma 1.1, we see that / can be written in the
form

/ : D α , 6 9fe w) i—• (γz,

where (γ, 0 ) e ( C * ) 2 . It is readily verified that (γ, θ) satisfies \γ\a\d\b—l, and
this implies the second assertion. q .e .d .

5. Proof of Main Theorems 1 and 2.

We begin with a lemma concerning a domain of class (IΠ).

LEMMA 5.1. // Dttb is of class (ΠI), then any bounded holomorphic function
on D%>b is constant. Consequently, if Da,b zs of class (IΠ), then any bounded holo-
morphic function on Dab is constant.

Proof. Since D£tb is an open subset of Da,b, the second assertion is an
immediate consequence of the first assertion. To prove the first assertion, we
may assume without loss of generality that Dt>b—DftC. Let Λ be a bounded
holomorphic function on D*c Fix a constant r with 0 < r < l and set Σ—
{(z, w)^DftC\ \z\ \w\c—r). Then h takes a constant value a on Σ. Indeed, as
in the proof of Lemma 4.3, consider the covering tube domain TQC of DftC and
let vf : TQC—>D*C be the canonical covering projection. If Lz is a complex aίϊine
line in C2 given by (4.1) and if Z = -(2π)~ι log r e G , then LZCTQC. Since the
restriction to Lz of the function h°vf gives a bounded holomorphic function on
the whole complex plane, it follows from usual Liouville's theorem that U°XLT
takes a constant value on Lz, so that h takes a constant value on τΰ(Lz).
Since, by Lemma 4.2, vf(Lz) is a dense subset of Σ, we see that h takes a
constant value a on Σ, as desired. Now suppose that h is not constant and
write V={(z, w)^Dttb\h(z, w)—a=0}. Then V is a proper analytic subset of
D * δ , and hence Dt,b~V— {(̂ > w)^D%tb\(z, w)φV} is connected. But, since
Da,b^Σ is disconnected, the relation VZ)Σ implies that Dttb—V is disconnected.
This is a contradiction, and we conclude that h is constant. q.e.d.

COROLLARY. // Dttb is of class (I) or of class (Π) and if D*>υ is of class
(IΠ), then D%tb and D%tΌ are not holomorphically equivalent. Similarly, if Dab

is of class ( I ) or of class (Π) and if Duv is of class (IΠ), then Da>b and Duv

are not holomorphically equivalent.
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Proof. By assumption, the domain Dt,b is algebraically equivalent to a
domain D%tQ for which (p, q)^Z2. Since h(z, w)—zvwq gives a non-constant
bounded holomorphic function on D%>q, there exists a non-constant bounded
holomorphic function on D£tb. On the other hand, Lemma 5.1 asserts that any
bounded holomorphic function on the domain Dt,v of class (IΠ) is constant.
Thus D%b and D%>v are not holomorphically equivalent. A similar argument
shows that the domains Da,b and Du>υ are not holomorphically equivalent.

q.e.d.

We now prove Main Theorem 1. It is sufficient to deal with the case
where D*.b(r)=D*,b and D*.υ(s)=D*.v.

If Dt,t is of class ( I ) or of class (Π), then, by the above corollary, so is
D*tV. In this case, since D%ιb and D*>υ are algebraically equivalent (see [3,
Proposition 3.1]), there is nothing to prove.

Suppose that Dt>b is of class (IΠ). Then, again by the above corollary,
DfltV is of class (IΠ). Let φ: Dttb^D*tV be a biholomorphic mapping between
D*,b and D%tV. We show that φ is induced by an algebraic automorphism of
(C*)2. By Proposition 1.1, it is sufficient to show that φT(Dttb)φ-ί = T(Dfί,v).

As in Theorem 3.1, let G(Dttb) and G(D%Λ) denote the identity components
of the Lie groups Autaig(Z)£i6) and Autaig(/>*»), respectively. Then T(D%,b)
(resp. T(Dt,υ)) is a two-dimensional compact subgroup of G(D£tb) (resp. G(D$,Ό)).
On the other hand, we have φG{Dt,b)φ~ι=zG{Dt>v). Indeed, it is clear that
φA\xt(D*tb)φ-ι=A\xt(D*tV). Since Aut(£>* 6)=Autaiβ(/>ίl6) and Aut(££„) =
Autaig(^*,t,) by the first assertion of Theorem 3.1, it follows that
ίpAutaigφί.^-^AutaigCDΪ^). By the definition of G(D*>b) and G(D*υ), we
have φG(D*tb)φ-ι=G(D*>v).

We show that φT(Di<b)φ~1 = T(Dt,Ό) It follows from the second assertion
of Theorem 3.1 that G{D%tV) is isomorphic to T(Dt>Ό)χR as a Lie group, where
R is regarded as the additive group of real numbers. This implies that if
there is a two-dimensional compact subgroup of G(DttV), then it coincides with
T(Dt.υ)' Since φT(Dtιb)φ~1 is a two-dimensional compact subgroup of G(Dt,υ)
by the relation φG{Dtb)φ-ι = G{D*tV), we see that φT(Di,b)φ-ι = T(D*tV), and
the proof of Main Theorem 1 is completed.

To prove Main Theorem 2, it is sufficient to show that if Dath(r)=Da,b
and Du,Ό(s)=Du.v, then Da,b(χ) and DUtV(s) are algebraically equivalent under
the identity transformation or the transformation of the form

If Da,b is of class ( I ) or of class (Π), then, by the corollary to Lemma
5.1, so is DUιV. In this case, our assertion follows from [3, Theorem 4.2].

Suppose that Da,b is of class (IΠ). Then, again by the corollary to Lemma
5.1, DUtV is of class (IΠ). Let φ: Da.b-*DUtV be a biholomorphic mapping be-
tween Da,b and Du>v. By using Theorem 4.1 in place of Theorem 3.1, an
application to the mapping φ of the same argument as in the proof of Main
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Theorem 1 yields that φ is induced by an algebraic automorphism of (C*)2.
Since both Dab and Duv contain the origin, it follows from Lemma 1.1 that φ
is given by

φ : Da,b^(z, w) i • (az, βw)^Du>υ

or

φ : Da>b^(z, w) ' • (γw, θz)^DUtV ,

where (α, /3)e(C*) 2 and (γ, #)tΞ(C*)2. When ψ is given by the former trans-
formation, {a, β) satisfies \a\u\β\v=l, and

/ : DUtΌΞ>(z, w) i—• (a~ιz, β~ιw)^Du<v

is an automorphism of Duv. Therefore, in this case, there exists a biholo-
morphic mapping between Όah and Dnυ given by the identity transformation
f°φ. On the other hand, when φ is given by the latter transformation, a
similar argument shows that there exists a biholomorphic mapping between
Da,b and DUιV given by the transformation of the form

DatbΞΞ){z, W) i > (W, z)(=DUiV .

We thus conclude our assertion, and the proof of Main Theorem 2 is completed.

6. A concluding remark.

For each t^R>0, we write Mt=Dίιt, where R>0 denotes the set of positive
real numbers. The results of this paper together with that of our previous
paper [3] assert that the differentiate family {Mt}t&R>0 of the complex mani-
folds Mt, t^R>0, has the following properties:

(i) Mt and Mt< are holomorphically equivalent precisely when tt' — l.
(ii) When ί e Q , the group Aut(Mt) is infinite-dimensional, while, when

tψQ, the group Aut(Mt) is finite-dimensional.

Indeed, recall from the proof of Theorem 2 that if Mt and Mr are holomor-
phically equivalent, then they are algebraically equivalent under the identity
transformation or the transformation φ of the form

φ : C 2 3 ( z , w)'—• (w, Z)<EΞC2 .

Since Mt and Mt> do not coincide as sets whenever ίφf, we see that Mt and
Mt< are holomorphically equivalent precisely when <p(Mt)=Mt>. Since φ(Mt)=
Dtιί=Dltl/t=Mι,t, the property (1) follows. The property (2) is an immediate
consequence of the theorem of Section 4 and [3, Theorem 4.1]. Finally, we
observe that Dι0 may be viewed as a degeneration of the family {Mt}tGR>0 as
t tends to zero.
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