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HOLOMORPHIC EQUIVALENCE PROBLEM FOR A CERTAIN
CLASS OF UNBOUNDED REINHARDT DOMAINS IN C?, II

By SATORU SHIMIZU

Introduction.

For a pair (a, b) of real constants with (a, b)#(0, 0) and a positive constant
r, we define an unbounded Reinhardt domain D¥ ,(») in (C*)* by

D (n={(z, w)e(C*? | |z|*|w|*<r}.

Also, for a pair (a, b) of non-negative constants with (a, b)#(0, 0) and a posi-
tive constant », we define an unbounded Reinhardt domain D, ,() in C? by

Do y(r)=1{(z, w)eC*? | |z|*|w|°<r}.
Here, when ab=0, for example, when b=0, the domain D, () is understood as
Do, o(r)={(z, w)eC* | |z|*<r}.

In our previous paper [3], we investigated the holomorphic automorphisms
and the equivalence of the domains D, ,(r) with (a, b)=Z* as well as those of
the domains D¥ ,(r) with (a, b)=Z*. The purpose of the present paper is to
continue our study in the case where a and b are arbitrary real constants.

Our main results of this paper are as follows (see Section 1 for ter-

minologies).

Main THEOREM 1. If D¥ ,(») and D% (s) are holomorphically equivalent,
then they are algebraically equivalent.

Main THEOREM 2. If D, ,(r) and D, .(s) are holomorphically equivalent,
then they are algebraically equivalent under a transformation given by

C*>3(z, w)— (az, Pw)=C?
or
C*2(z, w)— (Yw, 02)=C?,

where a, B, 7, 8 are non-zero complex constants.
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This paper is organized as follows. In Section 1, we recall basic concepts
and results on Reinhardt domains. In Section 2, we discuss a correspondence
between Reinhardt domains and tube domains, which is needed later. Section
3 is devoted to the study of the holomorphic automorphisms of domains D¥ ,(»).
In Section 4, we first introduce the notion of a plurisubharmonic Liouville folia-
tion, and then apply this to the study of the holomorphic automorphisms of
domains D, »(r). The results of Sections 3 and 4 are used in Section 5 to
prove Main Theorems 1 and 2 stated above. In Section 6, we give a conclud-
ing remark on our results.

1. Basic concepts on Reinhardt domains.

We first recall notation and terminologies. The set of non-zero complex
numbers is denoted by C*. The multiplicative group of complex numbers of
absolute value 1 is denoted by U(1). An automorphism of a complex manifold
M means a biholomorphic mapping of M onto itself. The group of all auto-
morphisms of M is denoted by Aut(M). Two complex manifolds are said to
be holomorphically equivalent if there is a biholomorphic mapping between
them.

We now recall some basic concepts and results on Reinhardt domains (cf.
[2, Section 2]). Write T=U(1))". The group T acts as a group of automor-
phisms on C™ by

(ay, =, an) (21, -, Za)=(a12,, =+, AnZy)
for (ay, -+, a,)eT and (z,, ---, z,)=C™.

By definition, a Reinhardt domain D in C™ is a domain in C™ which is stable
under the action of T'; thatis, a-DCD for all acT. The subgroup of Aut(D)
induced by T is denoted by T(D).

An automorphism ¢ of (C*)" is called an algebraic automorphism of (C*)"
if the components of ¢ are given by Laurent monomials; that is, ¢ is of the
form

@ (CH)3(zy, o, 2a) = (Wy, -+, wa)E(CH),

wizatzla“ Znanl ) Z.=11 e, n,

where (a,;)€GL(n, Z) and (a,)=(C*)". The set Auta((C*)™) of all algebraic
automorphisms of (C*)® forms a subgroup of Aut((C*)"). The group
Aut,;,((C*™) is a Lie group with respect to the compact-open topology.

Let ¢ be an algebraic automorphism of (C*)" and write ¢(2)=(¢.(z), -,
¢a(2)). In general, the components ¢,, ---, ¢, have zero or poles along each
coordinate hyperplane. Let D and D’ be domains in C", not necessarily con-
tained in (C*)"*. If ¢,, -, ¢, have no poles on D and ¢:D—C™ maps D
biholomorphically onto D’, then we say that ¢ induces a biholomorphic mapping
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of D onto D’.

Two Reinhardt domains in C” are said to be algebraically equivalent if
there is a biholomorphic mapping between them induced by an algebraic auto-
morphism of (C*)".

ProprosITION 1.1 ([2, Section 2, Proposition 1]). Let ¢: D—D’ be a biholo-
morphic mapping between two Reinhardt domains D and D’ wm C*. If ¢T(D)p™
=T(D’), then ¢ is induced by an algebraic automorphism of (C*).

LEMMA 1.1 (cf. [1, Section 4]). Let ¢ be a biholomorphic mapping between
two domains in C™ both containing the origin. If the components of ¢ are given
by Laurent monomials, then ¢ is induced by an algebraic automorphism of (C*)
of the form

(C*)nB(ZD T Zn) [ (wh ) u’n)E(C*)n ’
Wi=xis ) » Z:]-) cr, N,
where ¢ is a permutation of {1, -, n} and (@, -, a,)S(C*".

The concept of an algebraic automorphism of a Reinhardt domain will be
needed later. An automorphism of a Reinhardt domain D in C” is called an
algebraic automorphism of D if it is induced by an algebraic automorphism of
(C*™. The set Autag (D) of all algebraic automorphisms of D forms a sub-
group of Aut(D). The group Aut,,(D) may be viewed as a subgroup of
Autg ((C*™). It then follows that Auta (D) is closed in Aut, ((C*)"), and
therefore that Aut. (D) is a Lie group with respect to the compact-open
topology. We observe that the identity component of Aut. (D) is given by
that of the subgroup of Aut,((C*)™) consisting of those transformations f
which has the form

f:1C">(zy, -, zp) > (ai2y, =, Ap2,)EC™

and satisfy f(D)=D, where (a,, -, a,)S(C*)".

2. Reinhardt domains and tube domains.

There is a useful correspondence between Reinhardt domains and tube do-
mains (cf. [1, Section 2]). First we recall the definition of a tube domain and

fix notation. If 2 is a domain in R”, the tube domain Tyg=R-++/—IR" over
Q is the domain in C™ consisting of all points {=&++/—1pcC*=R"++/—1R"
(¢, n=R™ such that £€8. For each element n of R, we set the translation
gy,eAut(Tp) as

O'r](C):C‘I' \/-——177 .
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Now, we define the mapping ord: (C*)"—>R™ by
ord(zy, =+, 2o)=(—(@2r) " log|z,|, -+, —(2m) " log|z,]).

Clearly ord is an open mapping. If E is a subset of C*, the image of E*:=
EN(C*™ under ord is called the logarithmic image of E. To each Reinhardt
domain D in (C*)*, there is associated a tube domain Ty for which £ is the
logarithmic image ord(D) of D. The tube domain Tg naturally becomes a
covering manifold of D. Indeed, introduce the covering w : C*—(C*)* defined
by

(D(Cl’ e Cn):(e‘-“s'l’ e e-“(n)) .

Then we have To=w"'(D), and the restriction w : To—D is a covering pro-
jection. The covering transformation group for @ is given by oz :={g,|9p€Z"}.
The tube domain T, is called the covering tube domain of D and the covering
projection w : To—D is called the canonical covering projection.

Let D be a pseudoconvex Reinhardt domain in (C*)* and T, the covering
tube domain of D. It follows that T, is pseudoconvex, and therefore that T
is convex. As a consequence, T is simply connected. This implies that the
covering w : To—D is the universal covering of D. Let f be an automorphism
of D. Then a lifting 7 of f is an automorphism of T,. Note that, since the
covering transformation group for w is given by gz., there exists an element
PeGL(n, Z) such that

2.1 fea,=a,pef  for every neZ™.

The following lemma gives a criterion for f to be an algebraic automorphism
of D.

LEMMA 2.1. If f is a complex affine transformation, that is, f can be written
wn the form

FO=CA+B  jor LTy,

where A=(a,;)€GL(n, C) and B=(B.)=C™, then | is an algebraic automorphism
of D.

Proof. 1t follows from the relation (2.1) that A=P, so that A=GL(n, Z).
In view of the definition of the covering projection @, we see that f is given
by

f:DB(Zl, "‘yzn)'——)(wlx Tty wn)EDy
wizg’zﬂﬁzzlau znant R Z-—_-l, e,n,
which implies our assertion. g.e.d.

We conclude this section with a description of the automorphisms of a two-
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dimensional tube domain T, for which £ is a half-plane.

For convenience we denote by G the right half-plane T (o .,={f++v—1pc
C|£>0, nR} in the complex plane C.

LEMMA 2.2. If 2,={¢, p)=R*|§>0}, then Aut(Tyg) consists of all trans-
formations of the form

To,2(&, 0)— (), iQow+u@)eTy,,
where t=Aut(G), 2 is a nowhere-vanishing holomorphic function on G and p s

a holomorphic function on G.

Proof. Since To=GXC and since G is holomorphically equivalent to the
unit disk {z&C||z|<1}, our assertion is an immediate consequence of [3,
Theorem 4.1(1)]. q.e.d.

PROPOSITION 2.1. If ¢ is a real constant, and if Q.={¢&, p)=R?|E+cp>0},
then Aut(Tg,) consists of all transformations of the form
To2E 0)— €, 0)<Ty,,
2.2 { U= o)=t€+cw)—c{AC+cw)o+pl+co)},
o'=0'{, 0)=A{+cw)o+pul+co),

where t€Aut (@), A is a nowhere-vanishing holomorphic function on G, and p s
a holomorphic function on G.
Proof. We define a complex linear transformation ¢ of C* by
¢:C*2(&, w)— (+co, 0)=C?.

Noting that To,={({, ®)=C?|{+cwc=G}, we see that ¢(Tg)=Tge, and hence
that Aut(Te)=¢ ' Aut(Tg)e. Our assertion follows from Lemma 2.2 and a
straightforward computation. qg.e.d.

3. Automorphisms of domains D} ,.

We begin with preliminary observations. Firstly, for every positive con-
stant 7, the domain D% ,(») is algebraically equivalent to the domain D¥ ,(1)
under a suitable transformation of the form

C*s(z, w)— (az, Bw)eC?,

where (a, B)=(C*)?. Hence, in order to discuss the automorphisms and the
equivalence of domains D¥ ,(r), it is sufficient to deal with domains D¥ ,(1).
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For brevity, we set D¥,=D% ,(1). Secondly, if necessary, we may replace
D¥% . by D¥, 5, where § is a positive constant. In fact, we have D} 5=D%¥ ,.
Now, we classify the domains D¥ , into the following three classes:

(I) ab=0;
(II) ab+0 and b/a=Q;
(M) ab+0 and b/a Q.

If D¥, is of class (1) or of class (II), then it is algebraically equivalent
to a domain D3 , for which (p, ¢9)=Z*. Therefore, in this case, a description
of the automorphisms of D¥ , follows from [3, Proposition 3.2]. For domains
D¥ , of class (), we have the following.

THEOREM 3.1. If D%, is of class (I0), then Aut(D¥ ,)=Auta (D% ;). Further-
more, the identity component G(D% ;) of Autag(D¥ ) consists of all transforma-
tions of the form

(3.1 D¥ »2(z, w)— (67%az, 6“Bw)eD¥ ,,

where a and B are complex constants of absolute value 1 and 0 is a positwe con-
stant.

Proof. We begin by proving the first assertion. Put ¢=b/a. Then D¥,
is algebraically equivalent to D¥,.. ience it is sufficient to prove that Aut(D¥.)
=Auta(D¥.). Note that c#£@Q by assumption.

It is readily verified that the covering tube domain of Df¥, is given by
Tg,. Let w:To—D¥. be the canonical covering projection. Then the cover-
ing w: To,—D¥. is the universal covering of D¥..

Let f be any element of Aut(D¥,) and let f be an element of Aut(T 2,
given as a lifting of f. By Lemma 2.1, to see that feAuta(DF,), it suffices
to show that 7 is a complex affine transformation. According to Proposition
2.1, we write 7 in the form (2.2), and put

P:(p q)eGL(Z, Z)
ros

in (2.1). Then (2.1) implies that
(3.2) CCHV=1k, 0+vV—=10)=C &, w)+~—=1(pk+rl),
(3.3) o' C+V =1k, 04+vV—=1)=w'€, 0)+~v—1(gk+sl),

for all (§, w)Tp, and all (k, H)cZ*. Set Z={+cw. Then (3.2) and (3.3) are
written as
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o(Z+~—1(k+cl))

(3.4) —c{AZ +v =1k + Do+~ =11+ Z +~ =1Lk +cl))}
=t(Z)—c{AZ)w+p(Z)} +~ =1 (pk+ri),
and
AZ 4+~ =1(k+cD)w+~v—=10)+uZ +~=1(k+cl))
(3.5

=AZ)o+p(Z)+~~1(gk+sl),

for all ({, w)=Ty, and all (k, )=Z*.
We show that A is a constant function. Fix a point Z, of G and consider
the complex affine line

L={(—cW+Z,, W)eC*|WeC}

contained in Ty, The restriction to L of the left hand side of (3.5) is a com-
plex affine function of W whose linear part is given by A(Z,++v—1(k+ cl)),
while the restriction to L of the right hand side of (3.5) is a complex affine
function of W whose linear part is given by A(Z,). Since these two complex
affine functions of W must coincide, it follows that

3.6) NZ o+~ =1 (k+c)=AZ,).

We recall here that ¢ Q. This relation implies that the set {Z,++—1(k+cl)
cG|(k, )eZ?} has an accumulation point in G. Since (3.6) holds for all (%, /)
=Z?, we see by a uniqueness theorem for holomorphic functions that A(Z)=4,

for a constant 2,.
We show that g is a complex affine function. By the result of the preced-

ing paragraph, (3.5) becomes
UZ A+~ =T (k+cl)+~=12l=p(Z)+~—1(gk+sl)

for all Z&6 and all (%, [)eZ?. Differentiating the both sides of this equation
with respect to the variable Z, we obtain

3.7) p(Z A+~ =1 (k+cl)=p'(2)

for all Z=G. If we fix a point Z&G, then the right hand side of (3.7) is a
constant. Since (3.7) holds for all (k, [)eZ?, it follows from the same argu-
ment as in the preceding paragraph that g’ is a constant, and therefore that
W Z)=p.Z +p, for constants y, and p;.

We show that ¢ is a complex affine function. Substituting A(Z)=4, and
W Z)y=pu,Z +p, into (3.4) yields that



HOLOMORPHIC EQUIVALENCE PROBLEM 437
t(Z+~v=1(k+cl))—~v—Ledd—~—Lep(k+cl)
=2(Z)+~—1(pk+rl)

for all Z<G and all (%, [)eZ®. Differentiating the both sides of this equation
with respect to the variable Z, we obtain

3.8 o' (Z+~—=1(k+cl)=1"(Z)

for all Z=G. If we fix a point Z&G, then the right hand side of (3.8) is a
constant. Since (3.8) holds for all (k, [)eZ?, it follows from the same argu-
ment as in the preceding paragraphs that ¢’ is a constant, and therefore that
©(Z)=7r,Z +t, for constants r, and z,.

Since A(Z)=2, W Z)=mZ 4y, and t(Z)=1,Z+7,, it follows from (2.2) that
both (¢, ») and w’({, w) are complex affine functions of {, w, so that 7 is a
complex affine transformation. This proves the first assertion.

By the observation made in Section 1, G(D¥%,) is given by the identity
component of the subgroup H of Aut.((C*)*) consisting of those transforma-
tions f which has the form

f:C*>2(z, w)—> (rz, Ow)=C?

and satisfy f(D¥,)=D%, where (7, 8)e(C*? It is readily verified that
f(D¥ ,)=D¥ , precisely when |7|*|6|°=1. This implies that H consists of all
transformations of the form (3.1). Since, in particular, H is connected, we
have G(D¥ ,)=H, and the second assertion is proved. q.e.d.

4. Plurisubharmonic Liouville foliation and
the automorphisms of domains D, ,

We first introduce the notion of a plurisubharmonic Liouville foliation.

Let M be a complex manifold. A collection {X.}.ca Of subsets Y,, ac A4,
of M is called a plurisubharmonic Liouville foliation on M if the following four
conditions are satisfied :

(S1) If ay, a;=A and a,#a,, then 3o N3a, =3 ;

(82) agAZa:M;

(S3) For each subset 2Y,, any bounded plurisubharmonic function on M
takes a constant value on 2 ;

(S4) For every a;, a,=A with a,+a,, there exists a bounded plurisubhar-
monic function ¢ on M such that the constant values of ¢ on 3, and X,, are
different.

If there exists a plurisubharmonic Liouville foliation on M, then we say
that M has a plurisubharmonic Liouville foliation. The following lemma shows
that M has at most one plurisubharmonic Liouville foliation.

LEMMA 4.1. If {X.}aca and {24} aca are two plurisubharmonic Liouville
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foliations on a complex manifold M, then they coincide, that is, there exists a
bijective correspondence v: A— A’ between the index sets A and A’ such that X,
=23, for every acA.

Proof. We first show that if 2, N2, #@, say pX,N2,, then X ,=2".
Suppose contrarily that X,#27.. Then there exists a point ¢gM such that
geX Y, or g, ~\2,, where the notation X,\Y, stands for the intersec-
tion of Y, and the complement of Y, in M. We may assume without loss of
generality that g3, \2,. Since pe2, and ¢#2%,, it follows from (S4) that
there exists a bounded plurisubharmonic function ¢ on M such that ¢(p)=+¢(g).
But, since peX’. and g2, this contradicts (S3).

Now, it follows from (S1), (S2) and what we have shown above that, for
each element a=A, there is a unique element r(a)e A’ with ¥,=27,,. The
required correspondence is given by Asa—r(a)cA’. qg.e.d.

The next proposition is useful in the investigation of the automorphisms
of domains D, (7).

PROPOSITION 4.1. If ¢: M—M’ is a biholomorphic mapping between two
complex manifolds M and M’, and if M and M’ have plurisubharmonic Liouville
foliations {3} aca and {3, }arcq, respectively, then there exists a bijective cor-
respondence t: A—A’ between the index sets A and A’ such that (2 ,)=2}w> for
every ac A.

Proof. 1t is readily verified that {¢(Xs)} e is a plurisubharmonic Liouville
foliation on M’. We have only to apply Lemma 4.1 to the plurisubharmonic
Liouville foliations {¢p(3.)}seq and {25 }arear on M. q.e.d.

Now, before discussing the automorphisms of domains D, ,(r), we make
some preparations.

We set D, =D, ,(1). As in the preceding section, in order to discuss the
automorphisms and the equivalence of domains D, ,(r), it is sufficient to deal
with the domains D, , Also, if necessary, we may replace D, , by Dsqa. s,
where 0 is a positive constant.

In a manner similar to the case of domains D¥ ,, we classify the domains
D, into the following three classes:

(I) ab=0;
() ab+#0 and b/ac=Q;
() ab=+0 and b/a&Q.

A description of the automorphisms of domains D, , follows from the above
classification. In fact, if D, , is of class (1), then it is algebraically equivalent
to the domain D, ,; if D, , is of class (II), then it is algebraically equivalent
to a domain D, , with (p, 9)=Z? and (p, ¢)+(0, 0). Therefore, in these cases,
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the description of automorphisms of D, , is a consequence of [3, Theorem 4.17.
To describe automorphisms of domains D, , of class (), we first prove the
following lemma, which is basic in an application of the notion of a plurisub-
harmonic Liouville foliation to our investigation.

LEMMA 4.2. Let ¢ be a real constant with ¢£Q and Z be a point of C.
Then the image of the complex affine line

(4.1) L={¢ 0)=C*|{+co=2Z}CC*

under the covering projection w : C*—(C*)* given in Section 2 1s a dense subset
of the set

2={(z, w)eC® | |z| lw|*=e*"*}C(C*)?,
where Z=X++—1Y (X, Y =R).
Proof. The set w(Lj,) is given by
(L= {(e 50+ D, gbm0) (| weC)
={(re?=coye’"12ren, o 0TI N =02 o, pE R},

where r=¢%% and y=e¢’"'%**"> while if, for each §>0, we set

I={(ro~‘a, 08)=C? | (a, H=T=UD))?},
then Z=6L>jo]7(;. As a consequence, we have w(L,)C2. To prove that w(L,)

is dense in X, it is sufficient to show that, for every 6>0, the set w(L,)NII;
is dense in I1; For this, fix § >0 and consider the mappings ¢: R—T, h: T—T
and g: T—Il; given by

(p)=(e’~12xen, o=i2m)  for y=R,
e, B)=(ra, B) for (a, BT,
gla, By=(ard=c, Bo) for (a, BT .

Clearly, 4 is a homeomorphism of T onto itself, and g is a homeomorphism of
T onto I7;. On the other hand, it is well-known that, since (2rc¢)/(—2r)=—¢
&Q, the set ¢(R) is dense in T. Therefore we see that (goh-¢)(R) is dense in
IT;. Since w(LyNIl;=(g-h-¢)(R), this proves our assertion, and the proof of
the lemma is complete. q.e.d.

As a consequence of this lemma, we obtain the following result.

LEMMA 4.3. Every domain D, , of class (I) has a plurisubharmonic Liouville
foliation.
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Proof. We may assume without loss of generality that D, ,=D,. Then
c£Q. For each rel:={{eR|0t<]}, set X,={(z, w)eD,.||z||w|‘=r}.
Clearly, the collection {2',},c; of the subsets XY,, r<l, of D, . satisfies (S1)
and (S2).

To see (S3), we need Liouville’s theorem of the following type:

Liouville’s Theorem. If a subharmonic function defined on the whole com-
plex plane is bounded above, then it is constant.

Let u be any bounded plurisubharmonic function on D, .. Since 2,={(z, w)
cC?|zw=0}, the fact that u takes a constant value on 2, is an immediate
consequence of Liouville’s theorem. Consider the case of the subset X, for
which ##0. Then we have Y,C D} .CD,. Aswesaw in the proof of Theo-
rem 3.1, the covering tube domain of Df. is given by Tg,. Let w:To—Df,
be the canonical covering projection. Now, take two points p and ¢ of X ,.
Then we can find a complex affine line LzCTyg, of the form (4.1) such that p&
w(Lz)C2,. Since the restriction to Lz of the function u-w gives a bounded
subharmonic function on the whole complex plane, it follows from Liouville’s
theorem that u-& takes a constant value on L, so that u takes a constant value
on w(Lz). Since, by Lemma 4.2, w(L;) is a dense subset of X, containing p,
and since u is upper semicontinuous, we see that u(p)<u(g). A similar argu-
ment shows that u(q)<u(p). Therefore we obtain u(p)=u(g). This implies
that u takes a constant value on X,, and (S3) is verified.

It remains to see (S54). Consider the function ¢ on D, . given by ¢(z, w)
=|z||wl|¢ It is readily verified that ¢ is a bounded plurisubharmonic function
on D, . For every rel, we have 3, ={(z, w)€D, |{(z, w)=r}. This implies
that if 7, 7'l and r#r’, then the constant values of ¢ on 2, and X, are
different, and (S4) is verified. q.e.d.

For automorphisms of domains D, , of class (1), we have the following.

THEOREM 4.1. If Dg 4 is of class (1), then Aut(Dg,,)=Autag(Da ). Further-
more, Autag(Da ) consists of all transformations of the form

D..»=(z, w)— (07 %az, 6*Bw)e D, ,,

where a and B are complex constants of absolute value 1 and & is a positive con-
stant.

Proof. To prove the first assertion, we may assume without loss of gener-
ality that D, ,=D, .. Let {¥,},e; be the plurisubharmonic Liouville foliation
on D, . given in Lemma 4.3. If f is an element of Aut(D,.), then, by Pro-
position 4.1, there exists a bijective mapping z: I—[ such that f(X,)=2..,
for r<I. As a consequence, Y, and Y., are homeomorphic. Clearly, if r+0,
then %, is not homeomorphic to Y, Therefore we must have X =25, so
that f(X,)=2, Since D, . is the disjoint union of D¥, and X, this implies



HOLOMORPHIC EQUIVALENCE PROBLEM 441

that f(D¥.=D¥., and hence that the restriction f* of f to Df. gives an auto-
morphism of Df¥,. By Theorem 3.1, we have Aut(D¥.)=Aut,;(Df¥.). Using
this fact, we see that f* is induced by an algebraic automorphism of (C*)?,
which shows that feAuta (D, ). Thus we obtain Aut(D, )=Autag(D;,).

To prove the second assertion, we take an element f of Auty;,(Dg. ;).
Note that D, , contains the origin and that a+b by the assumption that D, ,
is of class (I). Hence, using Lemma 1.1, we see that f can be written in the
form

f: Da.ba(z! w) ’_"(7’2; 0w)EDa,b s

where (7, )=(C*)*. 1t is readily verified that (7, #) satisfies |7|®|6|°=1, and
this implies the second assertion. q.e.d.

5. Proof of Main Theorems 1 and 2.

We begin with a lemma concerning a domain of class (II).

LEMMA 5.1. [If D%, 1s of class (), then any bounded holomorphic function
on D¥ , is constant. Consequently, if D, , 1s of class (), then any bounded holo-
morphic function on D, , is constant.

Proof. Since D%, is an open subset of D, ,, the second assertion is an
immediate consequence of the first assertion. To prove the first assertion, we
may assume without loss of generality that D¥ ,=D¥.. Let h be a bounded
holomorphic function on D¥,.. Fix a constant » with 0<r<1 and set 2=
{(z, w)eD¥.||z||lw|°=r}. Then h takes a constant value a« on Y. Indeed, as
in the proof of Lemma 4.3, consider the covering tube domain T, of D¥, and
let w : To,—~Df. be the canonical covering projection. If L is a complex affine
line in C* given by (4.1) and if Z=—(2z) ' log r&G, then L,CTyg, Since the
restriction to Lz of the function h-w gives a bounded holomorphic function on
the whole complex plane, it follows from usual Liouville’s theorem that u-w
takes a constant value on L, so that h takes a constant value on w(Ly).
Since, by Lemma 4.2, w(Lz) is a dense subset of 2, we see that & takes a
constant value a on Y, as desired. Now suppose that i is not constant and
write V=/{(z, w)eD¥ ;| h(z, w)—a=0}. Then V is a proper analytic subset of
D¥,, and hence D% ,—V={(z, w)eD¥,|(z, w)¢&V} is connected. But, since
D* ,—2% is disconnected, the relation VOJX implies that D¥ ,—V is disconnected.
This is a contradiction, and we conclude that 2 is constant. q.e.d.

COROLLARY. If D%, is of class (1) or of class (1) and :f D¥ , is of class
(), then D¥ , and D¥ , are not holomorphically equivalent. Similarly, if D, ,
is of class (1) or of class () and if D, , s of class (), then D, , and D, ,
are not holomorphically equivalent.
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Proof. By assumption, the domain D¥ , is algebraically equivalent to a
domain D} , for which (p, 9g=Z* Since h(z, w)=2z"w? gives a non-constant
bounded holomorphic function on D3, there exists a non-constant bounded
holomorphic function on D¥,. On the other hand, Lemma 5.1 asserts that any
bounded holomorphic function on the domain D¥ , of class (1) is constant.
Thus D¥ , and D¥ , are not holomorphically equivalent. A similar argument
shows that the domains D, , and D, , are not holomorphically equivalent.

q.e.d.

We now prove Main Theorem 1. It is sufficient to deal with the case
where D} ,(r)=D¥ , and D¥ (s)=D% ..

If D¥, is of class (I) or of class (II), then, by the above corollary, so is
D% .. In this case, since D¥ , and D} , are algebraically equivalent (see [3,
Proposition 3.1]), there is nothing to prove.

Suppose that D¥ , is of class (II). Then, again by the above corollary,
D¥ , is of class (I). Let ¢: D¥ ,—D% , be a biholomorphic mapping between
D%, and D¥ ,. We show that ¢ is induced by an algebraic automorphism of
(C*)?. By Proposition 1.1, it is sufficient to show that ¢T(D¥ ;)¢ '=T(D} .).

As in Theorem 3.1, let G(D% ,) and G(D¥ ,) denote the identity components
of the Lie groups Autag(D¥,) and Auta. (D% ,), respectively. Then T(D¥,)
(resp. T(D%.,)) is a two-dimensional compact subgroup of G(D%¥ ;) (resp. G(D¥ ).
On the other hand, we have ¢G(D¥ )¢ '=G(D¥,). Indeed, it is clear that
¢ Aut(D¥ e '=Aut(Df,). Since Aut(D¥,)=Autag(D%¥,) and Aut(D¥,) =
Autag(D%,) by the first assertion of Theorem 3.1, it follows that
¢ Autag(D¥ ) ' =Autaig(D% ). By the definition of G(D¥, and G(D%,), we
have ¢oG(D¥ ) '=G(D% ,).

We show that ¢T(D¥ )¢ '=T(D%,,). It follows from the second assertion
of Theorem 3.1 that G(D¥ ,) is isomorphic to T(D¥ ,)X R as a Lie group, where
R is regarded as the additive group of real numbers. This implies that if
there is a two-dimensional compact subgroup of G(D%¥ ,), then it coincides with
T(D%,,). Since ¢T(D¥ o' is a two-dimensional compact subgroup of G(D¥ ,)
by the relation ¢G(D¥ o~ '=G(D¥ ), we see that ¢T(D% ) '=T(D%,), and
the proof of Main Theorem 1 is completed.

To prove Main Theorem 2, it is sufficient to show that if D, ,(*)=D,,
and D, (s)=D.. then D, ,(r) and D, ,(s) are algebraically equivalent under
the identity transformation or the transformation of the form

C'=(z, w)— (w, 2)C?.

If D,, is of class (1) or of class (II), then, by the corollary to Lemma
5.1, so is D,.,. In this case, our assertion follows from [3, Theorem 4.2].

Suppose that D, , is of class (I). Then, again by the corollary to Lemma
5.1, D, , is of class (I). Let ¢: Dy s—D, . be a biholomorphic mapping be-
tween D,, and D, .. By using Theorem 4.1 in place of Theorem 3.1, an
application to the mapping ¢ of the same argument as in the proof of Main
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Theorem 1 yields that ¢ is induced by an algebraic automorphism of (C*).
Since both D, , and D, , contain the origin, it follows from Lemma 1.1 that ©
is given by

¢: D4 v2(z, w)—> (az, Bw)eD, ,
or

¢0: Do =2z, w)y—>(Yw, 02)D, ,,

where (a, B)=(C*) and (7, )=(C*)?*. When ¢ is given by the former trans-
formation, (a, B) satisfies |a|*|B|°=1, and

fiDuw>2(z, w)y—> (a™'z, Bw)eD,, ,

is an automorphism of D, ,. Therefore, in this case, there exists a biholo-
morphic mapping between D, , and D, , given by the identity transformation
fe@. On the other hand, when ¢ is given by the latter transformation, a
similar argument shows that there exists a biholomorphic mapping between
D., and D, , given by the transformation of the form

Da,ba(zr w) — (ZL‘, Z)EDu,v .

We thus conclude our assertion, and the proof of Main Theorem 2 is completed.

6. A concluding remark.

For each t=R-,, we write M,=D, ,, where R>, denotes the set of positive
real numbers. The results of this paper together with that of our previous
paper [3] assert that the differentiable family {M.}.cr., of the complex mani-

folds M,, t=R~,, has the following properties:

(i) M, and M, are holomorphically equivalent precisely when #t'=1.
(ii) When t=Q, the group Aut(M,) is infinite-dimensional, while, when
t£Q, the group Aut(M,) is finite-dimensional.

Indeed, recall from the proof of Theorem 2 that if M, and M, are holomor-
phically equivalent, then they are algebraically equivalent under the identity
transformation or the transformation ¢ of the form

0:C*3(z, w)— (w, 2)=C?.

Since M, and M, do not coincide as sets whenever [+t’, we see that M, and
M, are holomorphically equivalent precisely when ¢(M,)=M,.. Since o(M,)=
Di.1=D, ;=M. the property (1) follows. The property (2) is an immediate
consequence of the theorem of Section 4 and [3, Theorem 4.1]. Finally, we
observe that D, , may be viewed as a degeneration of the family {M.} cg,, as

t tends to zero.



444 SATORU SHIMIZU

REFERENCES

[17 S. Suimmizu, Automorphisms and equivalence of bounded Reinhardt domains not
containing the origin, Tohoku Math. J. 40 (1988), 119-152.

[2] S. Suimizu, Automorphisms of bounded Reinhardt domains, Japan. J. Math. 15
(1989), 385-414.

[37 S. Suimizu, Holomorphic equivalence problem for a certain class of unbounded
Reinhardt domains in C?, Osaka J. Math. 28 (1991), 609-621.

DEPARTMENT OF MATHEMATICS
CoLLEGE oF GENERAL EpucaTION
ToHokU UNIVERSITY

KawaucHI, AoBA-KU, SENDAI, 980
Jaran





