HOLOMORPHIC EQUIVALENCE PROBLEM FOR A CERTAIN CLASS OF UNBOUNDED REINHARDT DOMAINS IN C^2 , II

BY SATORU SHIMIZU

Introduction.

For a pair (a, b) of real constants with $(a, b) \neq (0, 0)$ and a positive constant r, we define an unbounded Reinhardt domain $D_{a,b}^*(r)$ in $(C^*)^2$ by

$$D_{a,b}^*(r) = \{(z, w) \in (C^*)^2 \mid |z|^a |w|^b < r\}.$$

Also, for a pair (a, b) of non-negative constants with $(a, b) \neq (0, 0)$ and a positive constant r, we define an unbounded Reinhardt domain $D_{a,b}(r)$ in C^2 by

$$D_{a,b}(r) = \{(z, w) \in \mathbb{C}^2 \mid |z|^a |w|^b < r\}.$$

Here, when ab=0, for example, when b=0, the domain $D_{a,0}(r)$ is understood as

$$D_{a,0}(r) = \{(z, w) \in \mathbb{C}^2 \mid |z|^a < r\}.$$

In our previous paper [3], we investigated the holomorphic automorphisms and the equivalence of the domains $D_{a,b}(r)$ with $(a,b) \in \mathbb{Z}^2$ as well as those of the domains $D_{a,b}^*(r)$ with $(a,b) \in \mathbb{Z}^2$. The purpose of the present paper is to continue our study in the case where a and b are arbitrary real constants.

Our main results of this paper are as follows (see Section 1 for terminologies).

Main THEOREM 1. If $D_{a,b}^*(r)$ and $D_{u,v}^*(s)$ are holomorphically equivalent, then they are algebraically equivalent.

Main THEOREM 2. If $D_{a,b}(r)$ and $D_{u,v}(s)$ are holomorphically equivalent, then they are algebraically equivalent under a transformation given by

$$C^2 \ni (z, w) \longmapsto (\alpha z, \beta w) \in C^2$$

or

$$C^2 \ni (z, w) \longmapsto (\gamma w, \delta z) \in C^2$$
,

where α , β , γ , δ are non-zero complex constants.

Received October 29, 1991; revised April 7, 1992.

This paper is organized as follows. In Section 1, we recall basic concepts and results on Reinhardt domains. In Section 2, we discuss a correspondence between Reinhardt domains and tube domains, which is needed later. Section 3 is devoted to the study of the holomorphic automorphisms of domains $D_{a,b}^*(r)$. In Section 4, we first introduce the notion of a plurisubharmonic Liouville foliation, and then apply this to the study of the holomorphic automorphisms of domains $D_{a,b}(r)$. The results of Sections 3 and 4 are used in Section 5 to prove Main Theorems 1 and 2 stated above. In Section 6, we give a concluding remark on our results.

1. Basic concepts on Reinhardt domains.

We first recall notation and terminologies. The set of non-zero complex numbers is denoted by C^* . The multiplicative group of complex numbers of absolute value 1 is denoted by U(1). An automorphism of a complex manifold M means a biholomorphic mapping of M onto itself. The group of all automorphisms of M is denoted by $\operatorname{Aut}(M)$. Two complex manifolds are said to be holomorphically equivalent if there is a biholomorphic mapping between them.

We now recall some basic concepts and results on Reinhardt domains (cf. [2, Section 2]). Write $T=(U(1))^n$. The group T acts as a group of automorphisms on C^n by

$$(\alpha_1, \cdots, \alpha_n) \cdot (z_1, \cdots, z_n) = (\alpha_1 z_1, \cdots, \alpha_n z_n)$$

for $(\alpha_1, \cdots, \alpha_n) \in T$ and $(z_1, \cdots, z_n) \in C^n$.

By definition, a Reinhardt domain D in C^n is a domain in C^n which is stable under the action of T; that is, $\alpha \cdot D \subset D$ for all $\alpha \in T$. The subgroup of $\operatorname{Aut}(D)$ induced by T is denoted by T(D).

An automorphism φ of $(C^*)^n$ is called an algebraic automorphism of $(C^*)^n$ if the components of φ are given by Laurent monomials; that is, φ is of the form

$$\varphi: (C^*)^n \ni (z_1, \dots, z_n) \longmapsto (w_1, \dots, w_n) \in (C^*)^n,$$

$$w_i = \alpha_i z_1^{a_{1i}} \cdots z_n^{a_{ni}}, \quad i=1, \dots, n,$$

where $(a_{ij}) \in GL(n, \mathbb{Z})$ and $(\alpha_i) \in (\mathbb{C}^*)^n$. The set $\operatorname{Aut}_{\operatorname{alg}}((\mathbb{C}^*)^n)$ of all algebraic automorphisms of $(\mathbb{C}^*)^n$ forms a subgroup of $\operatorname{Aut}((\mathbb{C}^*)^n)$. The group $\operatorname{Aut}_{\operatorname{alg}}((\mathbb{C}^*)^n)$ is a Lie group with respect to the compact-open topology.

Let φ be an algebraic automorphism of $(C^*)^n$ and write $\varphi(z) = (\varphi_1(z), \dots, \varphi_n(z))$. In general, the components $\varphi_1, \dots, \varphi_n$ have zero or poles along each coordinate hyperplane. Let D and D' be domains in C^n , not necessarily contained in $(C^*)^n$. If $\varphi_1, \dots, \varphi_n$ have no poles on D and $\varphi: D \to C^n$ maps D biholomorphically onto D', then we say that φ induces a biholomorphic mapping

of D onto D'.

Two Reinhardt domains in C^n are said to be algebraically equivalent if there is a biholomorphic mapping between them induced by an algebraic automorphism of $(C^*)^n$.

PROPOSITION 1.1 ([2, Section 2, Proposition 1]). Let $\varphi: D \to D'$ be a biholomorphic mapping between two Reinhardt domains D and D' in \mathbb{C}^n . If $\varphi T(D)\varphi^{-1} = T(D')$, then φ is induced by an algebraic automorphism of $(\mathbb{C}^*)^n$.

LEMMA 1.1 (cf. [1, Section 4]). Let φ be a biholomorphic mapping between two domains in \mathbb{C}^n both containing the origin. If the components of φ are given by Laurent monomials, then φ is induced by an algebraic automorphism of $(\mathbb{C}^*)^n$ of the form

$$(C^*)^n \ni (z_1, \cdots, z_n) \longmapsto (w_1, \cdots, w_n) \in (C^*)^n$$
,
$$w_i = \alpha_i z_{\sigma(i)}, \qquad i = 1, \cdots, n$$
,

where σ is a permutation of $\{1, \dots, n\}$ and $(\alpha_1, \dots, \alpha_n) \in (\mathbb{C}^*)^n$.

The concept of an algebraic automorphism of a Reinhardt domain will be needed later. An automorphism of a Reinhardt domain D in \mathbb{C}^n is called an algebraic automorphism of D if it is induced by an algebraic automorphism of $(\mathbb{C}^*)^n$. The set $\operatorname{Aut}_{\operatorname{alg}}(D)$ of all algebraic automorphisms of D forms a subgroup of $\operatorname{Aut}(D)$. The group $\operatorname{Aut}_{\operatorname{alg}}(D)$ may be viewed as a subgroup of $\operatorname{Aut}_{\operatorname{alg}}((\mathbb{C}^*)^n)$. It then follows that $\operatorname{Aut}_{\operatorname{alg}}(D)$ is closed in $\operatorname{Aut}_{\operatorname{alg}}((\mathbb{C}^*)^n)$, and therefore that $\operatorname{Aut}_{\operatorname{alg}}(D)$ is a Lie group with respect to the compact-open topology. We observe that the identity component of $\operatorname{Aut}_{\operatorname{alg}}(D)$ is given by that of the subgroup of $\operatorname{Aut}_{\operatorname{alg}}((\mathbb{C}^*)^n)$ consisting of those transformations f which has the form

$$f: \mathbb{C}^n \ni (z_1, \dots, z_n) \longmapsto (\alpha_1 z_1, \dots, \alpha_n z_n) \in \mathbb{C}^n$$

and satisfy f(D)=D, where $(\alpha_1, \dots, \alpha_n) \in (\mathbb{C}^*)^n$.

2. Reinhardt domains and tube domains.

There is a useful correspondence between Reinhardt domains and tube domains (cf. [1, Section 2]). First we recall the definition of a tube domain and fix notation. If Ω is a domain in \mathbf{R}^n , the tube domain $T_{\Omega} = \Omega + \sqrt{-1}\mathbf{R}^n$ over Ω is the domain in C^n consisting of all points $\zeta = \xi + \sqrt{-1}\eta \in C^n = \mathbf{R}^n + \sqrt{-1}\mathbf{R}^n$ (ξ , $\eta \in \mathbf{R}^n$) such that $\xi \in \Omega$. For each element η of \mathbf{R}^n , we set the translation $\sigma_{\eta} \in \operatorname{Aut}(T_{\Omega})$ as

$$\sigma_{\eta}(\zeta) = \zeta + \sqrt{-1}\eta$$
.

Now, we define the mapping ord: $(C^*)^n \rightarrow R^n$ by

ord
$$(z_1, \dots, z_n) = (-(2\pi)^{-1} \log |z_1|, \dots, -(2\pi)^{-1} \log |z_n|)$$
.

Clearly ord is an open mapping. If E is a subset of \mathbb{C}^n , the image of $E^*:=E\cap (\mathbb{C}^*)^n$ under ord is called the logarithmic image of E. To each Reinhardt domain D in $(\mathbb{C}^*)^n$, there is associated a tube domain $T_{\mathcal{Q}}$ for which \mathcal{Q} is the logarithmic image ord (D) of D. The tube domain $T_{\mathcal{Q}}$ naturally becomes a covering manifold of D. Indeed, introduce the covering $\mathfrak{W}: \mathbb{C}^n \to (\mathbb{C}^*)^n$ defined by

$$\tilde{\omega}(\zeta_1, \dots, \zeta_n) = (e^{-2\pi\zeta_1}, \dots, e^{-2\pi\zeta_n})$$
.

Then we have $T_{\mathcal{Q}} = \boldsymbol{\varpi}^{-1}(D)$, and the restriction $\boldsymbol{\varpi}: T_{\mathcal{Q}} \to D$ is a covering projection. The covering transformation group for $\tilde{\boldsymbol{\omega}}$ is given by $\sigma_{\mathbf{Z}^n} := \{\sigma_{\eta} | \eta \in \mathbf{Z}^n\}$. The tube domain $T_{\mathcal{Q}}$ is called the covering tube domain of D and the covering projection $\boldsymbol{\varpi}: T_{\mathcal{Q}} \to D$ is called the canonical covering projection.

Let D be a pseudoconvex Reinhardt domain in $(C^*)^n$ and $T_{\mathcal{Q}}$ the covering tube domain of D. It follows that $T_{\mathcal{Q}}$ is pseudoconvex, and therefore that $T_{\mathcal{Q}}$ is convex. As a consequence, $T_{\mathcal{Q}}$ is simply connected. This implies that the covering $w: T_{\mathcal{Q}} \to D$ is the universal covering of D. Let f be an automorphism of D. Then a lifting \tilde{f} of f is an automorphism of $T_{\mathcal{Q}}$. Note that, since the covering transformation group for w is given by σ_{Z^n} , there exists an element $P \in GL(n, \mathbb{Z})$ such that

$$(2.1) \tilde{f} \circ \sigma_n = \sigma_{nP} \circ \tilde{f} \text{for every } \eta \in \mathbb{Z}^n.$$

The following lemma gives a criterion for f to be an algebraic automorphism of D.

Lemma 2.1. If \tilde{f} is a complex affine transformation, that is, \tilde{f} can be written in the form

$$\hat{f}(\zeta) = \zeta A + \beta$$
 for $\zeta \in T_{\Omega}$,

where $A=(a_{ij})\in GL(n, \mathbb{C})$ and $\beta=(\beta_i)\in \mathbb{C}^n$, then f is an algebraic automorphism of D.

Proof. It follows from the relation (2.1) that A=P, so that $A \in GL(n, \mathbb{Z})$. In view of the definition of the covering projection w, we see that f is given by

$$f: D \ni (z_1, \dots, z_n) \longmapsto (w_1, \dots, w_n) \in D,$$

$$w_i = e^{-2\pi \beta_i} z_1^{a_{1i}} \dots z_n^{a_{ni}}, \qquad i = 1, \dots, n,$$

which implies our assertion.

q.e.d.

We conclude this section with a description of the automorphisms of a two-

(2.2)

dimensional tube domain $T_{\mathcal{Q}}$ for which \mathcal{Q} is a half-plane.

For convenience we denote by G the right half-plane $T_{(0,\infty)} = \{\xi + \sqrt{-1}\eta \in C | \xi > 0, \eta \in R\}$ in the complex plane C.

LEMMA 2.2. If $\Omega_0=\{(\xi,\,\rho)\in R^2\,|\,\xi>0\}$, then ${\rm Aut}(T_{\Omega_0})$ consists of all transformations of the form

$$T_{\Omega_0} \ni (\zeta, \omega) \longmapsto (\tau(\zeta), \lambda(\zeta)\omega + \mu(\zeta)) \in T_{\Omega_0}$$

where $\tau \in \operatorname{Aut}(G)$, λ is a nowhere-vanishing holomorphic function on G and μ is a holomorphic function on G.

Proof. Since $T_{\mathcal{Q}_0} = G \times C$ and since G is holomorphically equivalent to the unit disk $\{z \in C \mid |z| < 1\}$, our assertion is an immediate consequence of [3, Theorem 4.1(i)].

PROPOSITION 2.1. If c is a real constant, and if $\Omega_c = \{(\xi, \rho) \in \mathbb{R}^2 | \xi + c\rho > 0\}$, then $\operatorname{Aut}(T_{\Omega_c})$ consists of all transformations of the form

$$T_{\varOmega_c} \ni (\zeta, \omega) \longmapsto (\zeta', \omega') \in T_{\varOmega_c},$$

$$\begin{cases} \zeta' = \zeta'(\zeta, \omega) = \tau(\zeta + c\omega) - c \left\{ \lambda(\zeta + c\omega)\omega + \mu(\zeta + c\omega) \right\}, \\ \omega' = \omega'(\zeta, \omega) = \lambda(\zeta + c\omega)\omega + \mu(\zeta + c\omega), \end{cases}$$

where $\tau \in \text{Aut}(G)$, λ is a nowhere-vanishing holomorphic function on G, and μ is a holomorphic function on G.

Proof. We define a complex linear transformation φ of C^2 by

$$\varphi: C^2 \ni (\zeta, \omega) \longmapsto (\zeta + c\omega, \omega) \in C^2$$
.

Noting that $T_{\mathcal{Q}_c} = \{(\zeta, \omega) \in C^2 | \zeta + c\omega \in G\}$, we see that $\varphi(T_{\mathcal{Q}_c}) = T_{\mathcal{Q}_0}$, and hence that $\operatorname{Aut}(T_{\mathcal{Q}_c}) = \varphi^{-1} \operatorname{Aut}(T_{\mathcal{Q}_0}) \varphi$. Our assertion follows from Lemma 2.2 and a straightforward computation.

3. Automorphisms of domains $D_{a,b}^*$.

We begin with preliminary observations. Firstly, for every positive constant r, the domain $D_{a,b}^*(r)$ is algebraically equivalent to the domain $D_{a,b}^*(1)$ under a suitable transformation of the form

$$C^2 \ni (z, w) \longmapsto (\alpha z, \beta w) \in C^2$$
,

where $(\alpha, \beta) \in (C^*)^2$. Hence, in order to discuss the automorphisms and the equivalence of domains $D^*_{a,b}(r)$, it is sufficient to deal with domains $D^*_{a,b}(1)$.

For brevity, we set $D^*_{a,b} = D^*_{a,b}(1)$. Secondly, if necessary, we may replace $D^*_{a,b}$ by $D^*_{\delta a,\delta b}$, where δ is a positive constant. In fact, we have $D^*_{\delta a,\delta b} = D^*_{a,b}$. Now, we classify the domains $D^*_{a,b}$ into the following three classes:

- (I) ab=0;
- (II) $ab \neq 0$ and $b/a \in \mathbf{Q}$;
- (III) $ab \neq 0$ and $b/a \notin Q$.

If $D_{a,b}^*$ is of class (I) or of class (II), then it is algebraically equivalent to a domain $D_{p,q}^*$ for which $(p,q) \in \mathbb{Z}^2$. Therefore, in this case, a description of the automorphisms of $D_{a,b}^*$ follows from [3, Proposition 3.2]. For domains $D_{a,b}^*$ of class (III), we have the following.

Theorem 3.1. If $D_{a,b}^*$ is of class (III), then $\operatorname{Aut}(D_{a,b}^*) = \operatorname{Aut}_{\operatorname{alg}}(D_{a,b}^*)$. Furthermore, the identity component $G(D_{a,b}^*)$ of $\operatorname{Aut}_{\operatorname{alg}}(D_{a,b}^*)$ consists of all transformations of the form

$$(3.1) D_{a,b}^* \ni (z, w) \longmapsto (\delta^{-b} \alpha z, \delta^a \beta w) \in D_{a,b}^*,$$

where α and β are complex constants of absolute value 1 and δ is a positive constant.

Proof. We begin by proving the first assertion. Put c=b/a. Then $D_{a,b}^*$ is algebraically equivalent to $D_{1,c}^*$. Hence it is sufficient to prove that $\operatorname{Aut}(D_{1,c}^*)$ = $\operatorname{Aut}_{alg}(D_{1,c}^*)$. Note that $c \notin Q$ by assumption.

It is readily verified that the covering tube domain of $D_{1,c}^*$ is given by T_{α_c} . Let $\varpi: T_{\alpha_c} \to D_{1,c}^*$ be the canonical covering projection. Then the covering $\varpi: T_{\alpha_c} \to D_{1,c}^*$ is the universal covering of $D_{1,c}^*$.

Let f be any element of $\operatorname{Aut}(D_{1,c}^*)$ and let \tilde{f} be an element of $\operatorname{Aut}(T_{\Omega_c})$ given as a lifting of f. By Lemma 2.1, to see that $f \in \operatorname{Aut}_{\operatorname{alg}}(D_{1,c}^*)$, it suffices to show that \tilde{f} is a complex affine transformation. According to Proposition 2.1, we write \tilde{f} in the form (2.2), and put

$$P = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in GL(2, \mathbf{Z})$$

in (2.1). Then (2.1) implies that

(3.2)
$$\zeta'(\zeta+\sqrt{-1}k, \omega+\sqrt{-1}l) = \zeta'(\zeta, \omega) + \sqrt{-1}(pk+rl),$$

(3.3)
$$\omega'(\zeta + \sqrt{-1}k, \omega + \sqrt{-1}l) = \omega'(\zeta, \omega) + \sqrt{-1}(qk + sl),$$

for all $(\zeta, \omega) \in T_{\Omega_c}$ and all $(k, l) \in \mathbb{Z}^2$. Set $Z = \zeta + c\omega$. Then (3.2) and (3.3) are written as

$$\tau(Z+\sqrt{-1}(k+cl))$$

$$(3.4) -c \{\lambda(Z+\sqrt{-1}(k+cl))(\omega+\sqrt{-1}l)+\mu(Z+\sqrt{-1}(k+cl))\}$$

=\tau(Z)-c\{\lambda(Z)\omega+\mu(Z)\}+\sqrt{-1}(\rho k+rl),

and

(3.5)
$$\lambda(Z+\sqrt{-1}(k+cl))(\omega+\sqrt{-1}l)+\mu(Z+\sqrt{-1}(k+cl))$$
$$=\lambda(Z)\omega+\mu(Z)+\sqrt{-1}(qk+sl),$$

for all $(\zeta, \omega) \in T_{\Omega_c}$ and all $(k, l) \in \mathbb{Z}^2$.

We show that λ is a constant function. Fix a point $Z_{\mathfrak{o}}$ of G and consider the complex affine line

$$L = \{(-cW + Z_0, W) \in \mathbb{C}^2 | W \in \mathbb{C}\}$$

contained in $T_{\mathcal{Q}_c}$. The restriction to L of the left hand side of (3.5) is a complex affine function of W whose linear part is given by $\lambda(Z_0 + \sqrt{-1}(k+cl))$, while the restriction to L of the right hand side of (3.5) is a complex affine function of W whose linear part is given by $\lambda(Z_0)$. Since these two complex affine functions of W must coincide, it follows that

(3.6)
$$\lambda(Z_0 + \sqrt{-1}(k+cl)) = \lambda(Z_0).$$

We recall here that $c \notin Q$. This relation implies that the set $\{Z_0 + \sqrt{-1}(k+cl)\}$ $\in G \mid (k, l) \in \mathbb{Z}^2\}$ has an accumulation point in G. Since (3.6) holds for all (k, l) $\in \mathbb{Z}^2$, we see by a uniqueness theorem for holomorphic functions that $\lambda(Z) = \lambda_0$ for a constant λ_0 .

We show that μ is a complex affine function. By the result of the preceding paragraph, (3.5) becomes

$$\mu(Z+\sqrt{-1}(k+cl))+\sqrt{-1}\lambda_0 l = \mu(Z)+\sqrt{-1}(qk+sl)$$

for all $Z \in G$ and all $(k, l) \in \mathbb{Z}^2$. Differentiating the both sides of this equation with respect to the variable \mathbb{Z} , we obtain

(3.7)
$$\mu'(Z + \sqrt{-1}(k+cl)) = \mu'(Z)$$

for all $Z \in G$. If we fix a point $Z \in G$, then the right hand side of (3.7) is a constant. Since (3.7) holds for all $(k, l) \in \mathbb{Z}^2$, it follows from the same argument as in the preceding paragraph that μ' is a constant, and therefore that $\mu(Z) = \mu_1 Z + \mu_0$ for constants μ_0 and μ_1 .

We show that τ is a complex affine function. Substituting $\lambda(Z) = \lambda_0$ and $\mu(Z) = \mu_1 Z + \mu_0$ into (3.4) yields that

$$\tau(Z+\sqrt{-1}(k+cl))-\sqrt{-1}c\lambda_0l-\sqrt{-1}c\mu_1(k+cl)$$
$$=\tau(Z)+\sqrt{-1}(pk+rl)$$

for all $Z \in G$ and all $(k, l) \in \mathbb{Z}^2$. Differentiating the both sides of this equation with respect to the variable Z, we obtain

(3.8)
$$\tau'(Z+\sqrt{-1}(k+cl))=\tau'(Z)$$

for all $Z \in G$. If we fix a point $Z \in G$, then the right hand side of (3.8) is a constant. Since (3.8) holds for all $(k, l) \in \mathbb{Z}^2$, it follows from the same argument as in the preceding paragraphs that τ' is a constant, and therefore that $\tau(Z) = \tau_1 Z + \tau_0$ for constants τ_0 and τ_1 .

Since $\lambda(Z)=\lambda_0$, $\mu(Z)=\mu_1Z+\mu_0$ and $\tau(Z)=\tau_1Z+\tau_0$, it follows from (2.2) that both $\zeta'(\zeta,\omega)$ and $\omega'(\zeta,\omega)$ are complex affine functions of ζ,ω , so that \tilde{f} is a complex affine transformation. This proves the first assertion.

By the observation made in Section 1, $G(D_{a,b}^*)$ is given by the identity component of the subgroup H of $\operatorname{Aut}_{\operatorname{alg}}((C^*)^2)$ consisting of those transformations f which has the form

$$f: \mathbb{C}^2 \ni (z, w) \longmapsto (\gamma z, \theta w) \in \mathbb{C}^2$$

and satisfy $f(D_{a,b}^*)=D_{a,b}^*$, where $(\gamma,\theta)\in (C^*)^2$. It is readily verified that $f(D_{a,b}^*)=D_{a,b}^*$ precisely when $|\gamma|^a|\theta|^b=1$. This implies that H consists of all transformations of the form (3.1). Since, in particular, H is connected, we have $G(D_{a,b}^*)=H$, and the second assertion is proved. q.e.d.

4. Plurisubharmonic Liouville foliation and the automorphisms of domains $D_{a,b}$

We first introduce the notion of a plurisubharmonic Liouville foliation.

Let M be a complex manifold. A collection $\{\Sigma_{\alpha}\}_{\alpha\in A}$ of subsets Σ_{α} , $\alpha\in A$, of M is called a *plurisubharmonic Liouville foliation* on M if the following four conditions are satisfied:

- (S1) If α_1 , $\alpha_2 \in A$ and $\alpha_1 \neq \alpha_2$, then $\Sigma_{\alpha_1} \cap \Sigma_{\alpha_2} = \emptyset$;
- (S2) $\bigcup_{\alpha \in A} \Sigma_{\alpha} = M$;
- (S3) For each subset Σ_{α} , any bounded plurisubharmonic function on M takes a constant value on Σ_{α} ;
- (S4) For every α_1 , $\alpha_2 \in A$ with $\alpha_1 \neq \alpha_2$, there exists a bounded plurisubharmonic function ψ on M such that the constant values of ψ on Σ_{α_1} and Σ_{α_2} are different.

If there exists a plurisubharmonic Liouville foliation on M, then we say that M has a plurisubharmonic Liouville foliation. The following lemma shows that M has at most one plurisubharmonic Liouville foliation.

LEMMA 4.1. If $\{\Sigma_{\alpha}\}_{\alpha\in A}$ and $\{\Sigma'_{\alpha'}\}_{\alpha'\in A'}$ are two plurisubharmonic Liouville

foliations on a complex manifold M, then they coincide, that is, there exists a bijective correspondence $\tau: A \to A'$ between the index sets A and A' such that $\Sigma_{\alpha} = \Sigma'_{\tau(\alpha)}$ for every $\alpha \in A$.

Proof. We first show that if $\Sigma_{\alpha} \cap \Sigma'_{\alpha'} \neq \emptyset$, say $p \in \Sigma_{\alpha} \cap \Sigma'_{\alpha'}$, then $\Sigma_{\alpha} = \Sigma'_{\alpha'}$. Suppose contrarily that $\Sigma_{\alpha} \neq \Sigma'_{\alpha'}$. Then there exists a point $q \in M$ such that $q \in \Sigma_{\alpha} \setminus \Sigma'_{\alpha'}$ or $q \in \Sigma'_{\alpha'} \setminus \Sigma_{\alpha}$, where the notation $\Sigma_{\alpha} \setminus \Sigma'_{\alpha'}$ stands for the intersection of Σ_{α} and the complement of $\Sigma'_{\alpha'}$ in M. We may assume without loss of generality that $q \in \Sigma'_{\alpha'} \setminus \Sigma_{\alpha}$. Since $p \in \Sigma_{\alpha}$ and $q \notin \Sigma_{\alpha}$, it follows from (S4) that there exists a bounded plurisubharmonic function ϕ on M such that $\phi(p) \neq \phi(q)$. But, since $p \in \Sigma'_{\alpha'}$ and $q \in \Sigma'_{\alpha'}$, this contradicts (S3).

Now, it follows from (S1), (S2) and what we have shown above that, for each element $\alpha \in A$, there is a unique element $\tau(\alpha) \in A'$ with $\Sigma_{\alpha} = \Sigma'_{\tau(\alpha)}$. The required correspondence is given by $A \ni \alpha \mapsto \tau(\alpha) \in A'$.

The next proposition is useful in the investigation of the automorphisms of domains $D_{a,b}(r)$.

PROPOSITION 4.1. If $\varphi: M \rightarrow M'$ is a biholomorphic mapping between two complex manifolds M and M', and if M and M' have plurisubharmonic Liouville foliations $\{\Sigma_{\alpha}\}_{\alpha \in A}$ and $\{\Sigma'_{\alpha'}\}_{\alpha' \in A'}$, respectively, then there exists a bijective correspondence $\tau: A \rightarrow A'$ between the index sets A and A' such that $\varphi(\Sigma_{\alpha}) = \Sigma'_{\tau(\alpha)}$ for every $\alpha \in A$.

Proof. It is readily verified that $\{\varphi(\Sigma_{\alpha})\}_{\alpha\in A}$ is a plurisubharmonic Liouville foliation on M'. We have only to apply Lemma 4.1 to the plurisubharmonic Liouville foliations $\{\varphi(\Sigma_{\alpha})\}_{\alpha\in A}$ and $\{\Sigma'_{\alpha'}\}_{\alpha'\in A'}$ on M'. q.e.d.

Now, before discussing the automorphisms of domains $D_{a,b}(r)$, we make some preparations.

We set $D_{a,b}=D_{a,b}(1)$. As in the preceding section, in order to discuss the automorphisms and the equivalence of domains $D_{a,b}(r)$, it is sufficient to deal with the domains $D_{a,b}$. Also, if necessary, we may replace $D_{a,b}$ by $D_{\delta a,\delta b}$, where δ is a positive constant.

In a manner similar to the case of domains $D_{a,b}^*$, we classify the domains $D_{a,b}$ into the following three classes:

- (I) ab=0;
- (II) $ab\neq 0$ and $b/a\in Q$;
- (III) $ab \neq 0$ and $b/a \notin Q$.

A description of the automorphisms of domains $D_{a,b}$ follows from the above classification. In fact, if $D_{a,b}$ is of class (I), then it is algebraically equivalent to the domain $D_{1,0}$; if $D_{a,b}$ is of class (II), then it is algebraically equivalent to a domain $D_{p,q}$ with $(p,q) \in \mathbb{Z}^2$ and $(p,q) \neq (0,0)$. Therefore, in these cases,

the description of automorphisms of $D_{a,b}$ is a consequence of [3, Theorem 4.1]. To describe automorphisms of domains $D_{a,b}$ of class (III), we first prove the following lemma, which is basic in an application of the notion of a plurisubharmonic Liouville foliation to our investigation.

LEMMA 4.2. Let c be a real constant with $c \notin Q$ and Z be a point of C. Then the image of the complex affine line

$$(4.1) L_z = \{(\zeta, \omega) \in \mathbb{C}^2 \mid \zeta + c\omega = Z\} \subset \mathbb{C}^2$$

under the covering projection $w: C^2 \rightarrow (C^*)^2$ given in Section 2 is a dense subset of the set

$$\Sigma = \{(z, w) \in \mathbb{C}^2 \mid |z| |w|^c = e^{-2\pi X}\} \subset (\mathbb{C}^*)^2,$$

where $Z=X+\sqrt{-1}Y$ $(X, Y \in \mathbb{R})$.

Proof. The set $\varpi(L_z)$ is given by

$$\varpi(L_Z) = \{ (e^{-2\pi(-c\omega+Z)}, e^{-2\pi\omega}) \in \mathbb{C}^2 | \omega \in \mathbb{C} \}$$

$$= \{ (re^{2\pi c\rho} \gamma e^{\sqrt{-12\pi c} \eta}, e^{-2\pi\rho} e^{\sqrt{-1}(-2\pi\eta)}) \in \mathbb{C}^2 | \rho, \eta \in \mathbb{R} \},$$

where $r=e^{-2\pi X}$ and $\gamma=e^{\sqrt{-1}(-2\pi Y)}$, while if, for each $\delta>0$, we set

$$\Pi_{\delta} = \{ (r\delta^{-c}\alpha, \delta\beta) \in \mathbb{C}^2 \mid (\alpha, \beta) \in T = (U(1))^2 \},$$

then $\Sigma = \bigcup_{\delta>0} \Pi_{\delta}$. As a consequence, we have $\varpi(L_Z) \subset \Sigma$. To prove that $\varpi(L_Z)$ is dense in Σ , it is sufficient to show that, for every $\delta>0$, the set $\varpi(L_Z) \cap \Pi_{\delta}$ is dense in Π_{δ} . For this, fix $\delta>0$ and consider the mappings $\iota: \mathbf{R} \to T$, $h: T \to T$ and $g: T \to \Pi_{\delta}$ given by

$$\begin{split} &\iota(\eta) \!=\! (e^{\sqrt{-1}2\pi\epsilon\eta},\,e^{\sqrt{-1}(-2\pi\eta)}) & \text{for } \eta \!\in\! \! R \;, \\ & h(\alpha,\,\beta) \!=\! (\gamma\alpha,\,\beta) & \text{for } (\alpha,\,\beta) \!\in\! T \;, \\ & g(\alpha,\,\beta) \!=\! (\alpha r \delta^{-c},\,\beta\delta) & \text{for } (\alpha,\,\beta) \!\in\! T \;. \end{split}$$

Clearly, h is a homeomorphism of T onto itself, and g is a homeomorphism of T onto Π_{δ} . On the other hand, it is well-known that, since $(2\pi c)/(-2\pi) = -c \notin \mathbf{Q}$, the set $\iota(\mathbf{R})$ is dense in T. Therefore we see that $(g \circ h \circ \iota)(\mathbf{R})$ is dense in Π_{δ} . Since $\varpi(L_z) \cap \Pi_{\delta} = (g \circ h \circ \iota)(\mathbf{R})$, this proves our assertion, and the proof of the lemma is complete.

As a consequence of this lemma, we obtain the following result.

LEMMA 4.3. Every domain $D_{a,b}$ of class (III) has a plurisubharmonic Liouville foliation.

Proof. We may assume without loss of generality that $D_{a,b} = D_{1,c}$. Then $c \notin \mathbf{Q}$. For each $r \in I := \{t \in \mathbf{R} | 0 \le t < 1\}$, set $\Sigma_r = \{(z, w) \in D_{1,c} | |z| |w|^c = r\}$. Clearly, the collection $\{\Sigma_r\}_{r \in I}$ of the subsets Σ_r , $r \in I$, of $D_{1,c}$ satisfies (S1) and (S2).

To see (S3), we need Liouville's theorem of the following type:

Liouville's Theorem. If a subharmonic function defined on the whole complex plane is bounded above, then it is constant.

Let u be any bounded plurisubharmonic function on $D_{1,c}$. Since $\Sigma_0 = \{(z,w) \in C^2 | zw=0\}$, the fact that u takes a constant value on Σ_0 is an immediate consequence of Liouville's theorem. Consider the case of the subset Σ_r for which $r \neq 0$. Then we have $\Sigma_r \subset D_{1,c}^* \subset D_{1,c}$. As we saw in the proof of Theorem 3.1, the covering tube domain of $D_{1,c}^*$ is given by T_{Ω_c} . Let $\varpi: T_{\Omega_c} \to D_{1,c}^*$ be the canonical covering projection. Now, take two points p and q of Σ_r . Then we can find a complex affine line $L_Z \subset T_{\Omega_c}$ of the form (4.1) such that $p \in \varpi(L_Z) \subset \Sigma_r$. Since the restriction to L_Z of the function $u \circ \varpi$ gives a bounded subharmonic function on the whole complex plane, it follows from Liouville's theorem that $u \circ \widetilde{\omega}$ takes a constant value on L_Z , so that u takes a constant value on $\varpi(L_Z)$. Since, by Lemma 4.2, $\varpi(L_Z)$ is a dense subset of Σ_r containing p, and since u is upper semicontinuous, we see that $u(p) \leq u(q)$. A similar argument shows that $u(q) \leq u(p)$. Therefore we obtain u(p) = u(q). This implies that u takes a constant value on Σ_r , and (S3) is verified.

It remains to see (S4). Consider the function ϕ on $D_{1,c}$ given by $\phi(z,w)=|z|\,|w|^c$. It is readily verified that ϕ is a bounded plurisubharmonic function on $D_{1,c}$. For every $r\!\in\! I$, we have $\Sigma_r\!=\!\{(z,w)\!\in\! D_{1,c}|\,\phi(z,w)\!=\!r\}$. This implies that if $r,r'\!\in\! I$ and $r\!\neq\! r'$, then the constant values of ϕ on Σ_r and $\Sigma_{r'}$ are different, and (S4) is verified.

For automorphisms of domains $D_{a,b}$ of class (III), we have the following.

THEOREM 4.1. If $D_{a,b}$ is of class (III), then $Aut(D_{a,b})=Aut_{alg}(D_{a,b})$. Furthermore, $Aut_{alg}(D_{a,b})$ consists of all transformations of the form

$$D_{a,b} \ni (z, w) \longmapsto (\delta^{-b} \alpha z, \delta^a \beta w) \in D_{a,b}$$

where α and β are complex constants of absolute value 1 and δ is a positive constant.

Proof. To prove the first assertion, we may assume without loss of generality that $D_{a,b} = D_{1,c}$. Let $\{\mathcal{\Sigma}_r\}_{r \in I}$ be the plurisubharmonic Liouville foliation on $D_{1,c}$ given in Lemma 4.3. If f is an element of $\operatorname{Aut}(D_{1,c})$, then, by Proposition 4.1, there exists a bijective mapping $\tau: I \to I$ such that $f(\mathcal{\Sigma}_\tau) = \mathcal{\Sigma}_{\tau(\tau)}$ for $r \in I$. As a consequence, $\mathcal{\Sigma}_0$ and $\mathcal{\Sigma}_{\tau(0)}$ are homeomorphic. Clearly, if $r \neq 0$, then $\mathcal{\Sigma}_\tau$ is not homeomorphic to $\mathcal{\Sigma}_0$. Therefore we must have $\mathcal{\Sigma}_{\tau(0)} = \mathcal{\Sigma}_0$, so that $f(\mathcal{\Sigma}_0) = \mathcal{\Sigma}_0$. Since $D_{1,c}$ is the disjoint union of $D_{1,c}^*$ and $\mathcal{\Sigma}_0$, this implies

that $f(D_{1,c}^*)=D_{1,c}^*$, and hence that the restriction f^* of f to $D_{1,c}^*$ gives an automorphism of $D_{1,c}^*$. By Theorem 3.1, we have $\operatorname{Aut}(D_{1,c}^*)=\operatorname{Aut}_{alg}(D_{1,c}^*)$. Using this fact, we see that f^* is induced by an algebraic automorphism of $(C^*)^2$, which shows that $f \in \operatorname{Aut}_{alg}(D_{1,c})$. Thus we obtain $\operatorname{Aut}(D_{1,c})=\operatorname{Aut}_{alg}(D_{1,c})$.

To prove the second assertion, we take an element f of $\operatorname{Aut}_{atg}(D_{a,b})$. Note that $D_{a,b}$ contains the origin and that $a \neq b$ by the assumption that $D_{a,b}$ is of class (III). Hence, using Lemma 1.1, we see that f can be written in the form

$$f: D_{a,b} \ni (z, w) \longmapsto (\gamma z, \theta w) \in D_{a,b}$$
,

where $(\gamma, \theta) \in (C^*)^2$. It is readily verified that (γ, θ) satisfies $|\gamma|^a |\theta|^b = 1$, and this implies the second assertion.

5. Proof of Main Theorems 1 and 2.

We begin with a lemma concerning a domain of class (III).

LEMMA 5.1. If $D_{a,b}^*$ is of class (III), then any bounded holomorphic function on $D_{a,b}^*$ is constant. Consequently, if $D_{a,b}$ is of class (III), then any bounded holomorphic function on $D_{a,b}$ is constant.

Proof. Since $D_{a,b}^*$ is an open subset of $D_{a,b}$, the second assertion is an immediate consequence of the first assertion. To prove the first assertion, we may assume without loss of generality that $D_{a,b}^* = D_{i,c}^*$. Let h be a bounded holomorphic function on $D_{1,c}^*$. Fix a constant r with 0 < r < 1 and set $\Sigma =$ $\{(z, w) \in D_{1,c}^* | |z| | |w|^c = r\}$. Then h takes a constant value α on Σ . Indeed, as in the proof of Lemma 4.3, consider the covering tube domain $T_{\mathcal{Q}_c}$ of $D_{1,c}^*$ and let $w: T_{\Omega_c} \to D_{1,c}^*$ be the canonical covering projection. If L_Z is a complex affine line in C^2 given by (4.1) and if $Z = -(2\pi)^{-1} \log r \in G$, then $L_Z \subset T_{\Omega_c}$. Since the restriction to L_Z of the function $h \cdot w$ gives a bounded holomorphic function on the whole complex plane, it follows from usual Liouville's theorem that $u \circ w$ takes a constant value on L_z , so that h takes a constant value on $\varpi(L_z)$. Since, by Lemma 4.2, $\varpi(L_z)$ is a dense subset of Σ , we see that h takes a constant value α on Σ , as desired. Now suppose that h is not constant and write $V = \{(z, w) \in D_{a,b}^* | h(z, w) - \alpha = 0\}$. Then V is a proper analytic subset of $D_{a,b}^*$, and hence $D_{a,b}^* - V = \{(z, w) \in D_{a,b}^* | (z, w) \notin V\}$ is connected. But, since $D_{a,b}^* - \Sigma$ is disconnected, the relation $V \supset \Sigma$ implies that $D_{a,b}^* - V$ is disconnected. This is a contradiction, and we conclude that h is constant.

COROLLARY. If $D_{a,b}^*$ is of class (I) or of class (II) and if $D_{u,v}^*$ is of class (II), then $D_{a,b}^*$ and $D_{u,v}^*$ are not holomorphically equivalent. Similarly, if $D_{a,b}$ is of class (I) or of class (II) and if $D_{u,v}$ is of class (III), then $D_{a,b}$ and $D_{u,v}$ are not holomorphically equivalent.

Proof. By assumption, the domain $D_{a,b}^*$ is algebraically equivalent to a domain $D_{p,q}^*$ for which $(p,q) \in \mathbb{Z}^2$. Since $h(z,w) = z^p w^q$ gives a non-constant bounded holomorphic function on $D_{p,q}^*$, there exists a non-constant bounded holomorphic function on $D_{a,b}^*$. On the other hand, Lemma 5.1 asserts that any bounded holomorphic function on the domain $D_{u,v}^*$ of class (III) is constant. Thus $D_{a,b}^*$ and $D_{u,v}^*$ are not holomorphically equivalent. A similar argument shows that the domains $D_{a,b}$ and $D_{u,v}$ are not holomorphically equivalent.

a.e.d.

We now prove Main Theorem 1. It is sufficient to deal with the case where $D_{a,b}^*(r)=D_{a,b}^*$ and $D_{u,v}^*(s)=D_{u,v}^*$.

If $D_{a,b}^*$ is of class (I) or of class (II), then, by the above corollary, so is $D_{u,v}^*$. In this case, since $D_{a,b}^*$ and $D_{u,v}^*$ are algebraically equivalent (see [3, Proposition 3.1]), there is nothing to prove.

Suppose that $D_{a,b}^*$ is of class (III). Then, again by the above corollary, $D_{u,v}^*$ is of class (III). Let $\varphi: D_{a,b}^* \to D_{u,v}^*$ be a biholomorphic mapping between $D_{a,b}^*$ and $D_{u,v}^*$. We show that φ is induced by an algebraic automorphism of $(C^*)^2$. By Proposition 1.1, it is sufficient to show that $\varphi T(D_{a,b}^*)\varphi^{-1}=T(D_{u,v}^*)$.

As in Theorem 3.1, let $G(D_{a,b}^*)$ and $G(D_{u,v}^*)$ denote the identity components of the Lie groups $\operatorname{Aut}_{\operatorname{alg}}(D_{a,b}^*)$ and $\operatorname{Aut}_{\operatorname{alg}}(D_{u,v}^*)$, respectively. Then $T(D_{a,b}^*)$ (resp. $T(D_{u,v}^*)$) is a two-dimensional compact subgroup of $G(D_{a,b}^*)$ (resp. $G(D_{u,v}^*)$). On the other hand, we have $\varphi G(D_{a,b}^*)\varphi^{-1}=G(D_{u,v}^*)$. Indeed, it is clear that $\varphi \operatorname{Aut}(D_{a,b}^*)\varphi^{-1}=\operatorname{Aut}(D_{u,v}^*)$. Since $\operatorname{Aut}(D_{a,b}^*)=\operatorname{Aut}_{\operatorname{alg}}(D_{a,b}^*)$ and $\operatorname{Aut}(D_{u,v}^*)=\operatorname{Aut}_{\operatorname{alg}}(D_{u,v}^*)$ by the first assertion of Theorem 3.1, it follows that $\varphi \operatorname{Aut}_{\operatorname{alg}}(D_{a,b}^*)\varphi^{-1}=\operatorname{Aut}_{\operatorname{alg}}(D_{u,v}^*)$. By the definition of $G(D_{a,b}^*)$ and $G(D_{u,v}^*)$, we have $\varphi G(D_{a,b}^*)\varphi^{-1}=G(D_{u,v}^*)$.

We show that $\varphi T(D_{u,v}^*)\varphi^{-1}=T(D_{u,v}^*)$. It follows from the second assertion of Theorem 3.1 that $G(D_{u,v}^*)$ is isomorphic to $T(D_{u,v}^*)\times R$ as a Lie group, where R is regarded as the additive group of real numbers. This implies that if there is a two-dimensional compact subgroup of $G(D_{u,v}^*)$, then it coincides with $T(D_{u,v}^*)$. Since $\varphi T(D_{u,v}^*)\varphi^{-1}$ is a two-dimensional compact subgroup of $G(D_{u,v}^*)$ by the relation $\varphi G(D_{u,v}^*)\varphi^{-1}=G(D_{u,v}^*)$, we see that $\varphi T(D_{u,v}^*)\varphi^{-1}=T(D_{u,v}^*)$, and the proof of Main Theorem 1 is completed.

To prove Main Theorem 2, it is sufficient to show that if $D_{a,b}(r)=D_{a,b}$ and $D_{u,v}(s)=D_{u,v}$, then $D_{a,b}(r)$ and $D_{u,v}(s)$ are algebraically equivalent under the identity transformation or the transformation of the form

$$C^2 \ni (z, w) \longmapsto (w, z) \in C^2$$
.

If $D_{a,b}$ is of class (I) or of class (II), then, by the corollary to Lemma 5.1, so is $D_{u,v}$. In this case, our assertion follows from [3, Theorem 4.2].

Suppose that $D_{a,b}$ is of class (III). Then, again by the corollary to Lemma 5.1, $D_{u,v}$ is of class (III). Let $\varphi: D_{a,b} \to D_{u,v}$ be a biholomorphic mapping between $D_{a,b}$ and $D_{u,v}$. By using Theorem 4.1 in place of Theorem 3.1, an application to the mapping φ of the same argument as in the proof of Main

Theorem 1 yields that φ is induced by an algebraic automorphism of $(C^*)^2$. Since both $D_{a,b}$ and $D_{u,v}$ contain the origin, it follows from Lemma 1.1 that φ is given by

$$\varphi: D_{a,b} \ni (z, w) \longmapsto (\alpha z, \beta w) \in D_{u,v}$$

or

$$\varphi: D_{a,b} \ni (z, w) \longmapsto (\gamma w, \theta z) \in D_{u,v}$$

where $(\alpha, \beta) \in (C^*)^2$ and $(\gamma, \theta) \in (C^*)^2$. When φ is given by the former transformation, (α, β) satisfies $|\alpha|^u |\beta|^v = 1$, and

$$f: D_{u,v} \ni (z, w) \longmapsto (\alpha^{-1}z, \beta^{-1}w) \in D_{u,v}$$

is an automorphism of $D_{u,v}$. Therefore, in this case, there exists a biholomorphic mapping between $D_{a,b}$ and $D_{u,v}$ given by the identity transformation $f \circ \varphi$. On the other hand, when φ is given by the latter transformation, a similar argument shows that there exists a biholomorphic mapping between $D_{a,b}$ and $D_{u,v}$ given by the transformation of the form

$$D_{a,b} \ni (z, w) \longmapsto (w, z) \in D_{u,v}$$
.

We thus conclude our assertion, and the proof of Main Theorem 2 is completed.

6. A concluding remark.

For each $t \in \mathbb{R}_{>0}$, we write $M_t = D_{1,t}$, where $\mathbb{R}_{>0}$ denotes the set of positive real numbers. The results of this paper together with that of our previous paper [3] assert that the differentiable family $\{M_t\}_{t \in \mathbb{R}_{>0}}$ of the complex manifolds M_t , $t \in \mathbb{R}_{>0}$, has the following properties:

- (i) M_t and $M_{t'}$ are holomorphically equivalent precisely when tt'=1.
- (ii) When $t \in \mathbf{Q}$, the group $\operatorname{Aut}(M_t)$ is infinite-dimensional, while, when $t \notin \mathbf{Q}$, the group $\operatorname{Aut}(M_t)$ is finite-dimensional.

Indeed, recall from the proof of Theorem 2 that if M_t and $M_{t'}$ are holomorphically equivalent, then they are algebraically equivalent under the identity transformation or the transformation φ of the form

$$\varphi: \mathbb{C}^2 \ni (z, w) \longmapsto (w, z) \in \mathbb{C}^2$$
.

Since M_t and $M_{t'}$ do not coincide as sets whenever $t \neq t'$, we see that M_t and $M_{t'}$ are holomorphically equivalent precisely when $\varphi(M_t) = M_{t'}$. Since $\varphi(M_t) = D_{t,1} = D_{1,1/t} = M_{1/t}$, the property (1) follows. The property (2) is an immediate consequence of the theorem of Section 4 and [3, Theorem 4.1]. Finally, we observe that $D_{1,0}$ may be viewed as a degeneration of the family $\{M_t\}_{t \in R_{>0}}$ as t tends to zero.

REFERENCES

- [1] S. Shimizu, Automorphisms and equivalence of bounded Reinhardt domains not containing the origin, Tohoku Math. J. 40 (1988), 119-152.
- [2] S. Shimizu, Automorphisms of bounded Reinhardt domains, Japan. J. Math. 15 (1989), 385-414.
- [3] S. Shimizu, Holomorphic equivalence problem for a certain class of unbounded Reinhardt domains in C^2 , Osaka J. Math. 28 (1991), 609-621.

DEPARTMENT OF MATHEMATICS COLLEGE OF GENERAL EDUCATION TOHOKU UNIVERSITY KAWAUCHI, AOBA-KU, SENDAI, 980 JAPAN