ON THE GROWTH OF MEROMORPHIC FUNCTIONS OF ORDER LESS THAN $1 / 2$; IV

By Hideharu Ueda

Introduction. This note is a continuation of [10]. The notational conventions of [10] are adopted without modifications and strictly adhered to. We supplement Theorems 1, 2 and 3 of [10] by the information contained in the theorems of the present note.

In everything that follows
(i) ρ and δ are numbers such that $0<\rho<1 / 2$ and $1-\cos \pi \rho<\delta \leqq 1$;
(ii) $\alpha(f)=\lim _{r \rightarrow \infty} \sup T(r, f) / r^{\rho}, \beta(f)=\liminf _{r \rightarrow \infty} T(r, f) / r^{\rho}$, where $f(z)$ is a meromorphic function of order ρ.

We first prove in $\S 1$
Theorem 6. Let $f(z) \in \mathscr{M}_{\rho, \dot{\delta}}$ be of minimal type. Then there is an $h(r) \in S_{2}$ such that

$$
\begin{equation*}
\log m^{*}(r, f)>\frac{\pi \rho}{\sin \pi \rho}(\cos \pi \rho-1+\delta)(1+h(r)) T(r, f) \tag{1}
\end{equation*}
$$

for certain arbitrarily large values of r.
Our second result, which is proved in $\S 2$, is the following
Theorem 7. Let $h(r) \in S_{1}$ be given. If $f(z) \in \mathscr{M}_{\rho, \delta}$ satisfies $\beta(f)=0$, then the estimate (1) holds for a sequence of $r \rightarrow \infty$.

Remarks. (i) Theorem 3 of [10] is contained in the above Theorem 7. (ii) Modifying a part of the proof of Theorem 7, we are able to show the following

THEOREM 8. Let $k=k(\rho)$ and $K_{1}=K_{1}(\rho)$ be positive constants which appear in Lemma 13 and (2.14), respectively. If $f(z) \in \mathscr{M}_{\rho, \delta}$ satisfies $0<\beta(f)<\left(k / K_{1}\right) \alpha(f)$ $\leqq+\infty$, then the estimate (1) holds with any $h(r) \in S_{1}$ on an unbounded sequence of r.

In $\S 3$, we use our results stated above and in [10] to refine the estimate

[^0]\[

$$
\begin{equation*}
\log m^{*}(r, f)>\frac{\pi \rho}{\sin \pi \rho}(\cos \pi \rho-1+\delta)(1-\varepsilon) T(r, f) \quad\left(\varepsilon>0, r=r_{n} \rightarrow \infty\right) \tag{2}
\end{equation*}
$$

\]

for all $f(z) \in \mathscr{M}_{\rho, \delta}$ whose characteristics vary regularly with order ρ. It was this refinement that provided the impetus for the previous and the present works. We say, according to Baernstein [2], that the function $\phi(r)$ varies regularly with order ρ if $\phi(r) \sim r^{\rho} L(r)(r \rightarrow \infty)$ for some slowly varying function $L(r)$.

1. We start by showing the following

Lemma 12. Given $G(r)$ positive and continuous for $r \geqq r_{0}, G(r) \rightarrow \infty(r \rightarrow \infty)$, there exists a function $h(r) \in S_{2}$ such that

$$
\begin{equation*}
\int_{1}^{r} \frac{h(t)}{t} d t \leqq G(r)+C \quad(r \geqq 1), \tag{1.1}
\end{equation*}
$$

where C is a positive constant depending only on $G(r)$.
Proof. By assumptions on $G(r)$, we find a positive integer n_{0} and an increasing unbounded sequence $\left\{r_{n}\right\}_{n_{0}}^{\infty}$ with the property that $G(r)>G\left(r_{n}\right)=n\left(r>r_{n}\right)$. Choose $\left\{R_{n}\right\}_{n_{0}}^{\infty}$ such that

$$
\begin{aligned}
& R_{n_{0}}=r_{n_{0}}, \quad R_{n_{0}+1}=r_{n_{0}+1} \\
& R_{n} \geqq r_{n} \quad\left(n \geqq n_{0}+2\right), \\
& R_{n+2} / R_{n+1} \geqq\left(R_{n+1} / R_{n}\right)^{2} \quad\left(n \geqq n_{0}\right) .
\end{aligned}
$$

Define a function $h_{1}(r)\left(r \geqq r_{n_{0}}\right)$ by

$$
h_{1}(r)=\left\{\log \left(R_{n+1} / R_{n}\right)\right\}^{-1} \quad\left(R_{n} \leqq r<R_{n+1}, n \geqq n_{0}\right) .
$$

Then $h_{1}(r)$ is positive, decreasing, and tends to 0 as $r \rightarrow \infty$. We define

$$
H_{1}(r)=n_{0}-1+\int_{r_{n_{0}}}^{r} h_{1}(t) t^{-1} d t
$$

Then if $R_{n} \leqq r<R_{n+1}\left(n \geqq n_{0}\right)$,

$$
H_{1}(r) \leqq H_{1}\left(R_{n+1}\right)=n_{0}-1+\left(n-n_{0}+1\right)=n=G\left(r_{n}\right) \leqq G(r) .
$$

Now, define $h(r)(r \geqq 0)$ by

$$
\begin{aligned}
& h(r)=\left\{\log \left(R_{n_{0}+1} / R_{n_{0}}\right)\right\}^{-1} \quad\left(0 \leqq r \leqq \sqrt{R_{n_{0}} R_{n_{0}+1}}\right), \\
& h(r)=\left\{\log \left(R_{n+1} / R_{n}\right)\right\}^{-1} \quad\left(R_{n} \leqq r \leqq \sqrt{R_{n} R_{n+1}}, n \geqq n_{0}+1\right),
\end{aligned}
$$

and by linear interpolation otherwise. Clearly $h(r) \in S_{2}$, and if we put

$$
H(r)=n_{0}-1+\int_{r_{n_{0}}}^{r} h(t) t^{-1} d t,
$$

then $H(r) \leqq H_{1}(r) \leqq G(r)\left(r \geqq r_{n_{0}}\right)$. Thus, with a suitable positive constant C $\left(\geqq \int_{1}^{r_{n_{0}}} h(t) t^{-1} d t-n_{0}+1\right)$, we obtain (1.1).

The proof of Theorem 6 is a combination of Lemma 12 and Theorem 2 in [10].

Proof of Theorem 6. Let $f(z) \in \mathscr{M}_{\rho, \delta}$ be of minimal type, and set

$$
\begin{equation*}
G(r)=\log \left(r^{\rho} / T(r, f)\right) \quad(r>0) . \tag{1.2}
\end{equation*}
$$

Then $G(r)$ satisfies the assumptions of Lemma 12 , so we find a function $h(r) \in S_{2}$ satisfying (1.1) with a suitable positive constant C. Now, choose a positive number $K<C(\rho, \delta)$ arbitrarily, where $C(\rho, \delta)$ is defined by (5) in [10], and put $h_{1}(r)=K h(r) \in S_{2}$. Then in view of (1.2)

$$
T(r, f)=r^{\rho} \exp \{-G(r)\} \leqq e^{c} r^{\rho} \exp \left\{-K^{-1} \int_{1}^{r} h_{1}(t) t^{-1} d t\right\}
$$

Hence from Theorem 2 we deduce (1) with $h(r)$ replaced by $h_{1}(r)$ for certain arbitrarily large values of r.
2. Let $f(z) \in \mathscr{M}_{\rho, \delta}$ be given, and let a be a complex number satisfying $f(0) \neq a$ and

$$
\begin{equation*}
N(r, \infty, f)<(1-\delta) N(r, a, f)+O(1) \quad(r \rightarrow \infty) \tag{2.1}
\end{equation*}
$$

We set

$$
\begin{equation*}
F(z)=f(z)-a=c z^{-p} \frac{\Pi\left(1-z / a_{n}\right)}{\Pi\left(1-z / b_{n}\right)}=c z^{-p} \frac{P(z)}{Q(z)}=c z^{-p} F_{1}(z), \tag{2.2}
\end{equation*}
$$

where c is a nonzero constant and p is a nonnegative integer. It is convenient to introduce the notation

$$
\begin{equation*}
\hat{P}(z)=\Pi\left(1+z /\left|a_{n}\right|\right), \quad \hat{Q}(z)=\Pi\left(1-z /\left|b_{n}\right|\right), \quad \hat{F}_{1}(z)=\hat{P}(z) / \hat{Q}(z) . \tag{2.3}
\end{equation*}
$$

Our proofs of Theorems 7 and 8 make use of the following
Lemma 13. (See [1, Lemma 1].) Let $F_{1}(z)$ be defined by (2.2). Then there exist constants $K=K(\rho), k=k(\rho)$ depending only on ρ satisfying $0<k<K<4 \pi+$ $2 \pi^{2} / \log 2$, such that for any $r_{2}>r_{1}>0$,

$$
\begin{gathered}
\int_{r_{1}}^{r_{2}}\left\{\pi \rho N\left(t, \infty, \hat{F}_{1}\right)+\sin \pi \rho \log m^{*}\left(t, \hat{F}_{1}\right)-\pi \rho \cos \pi \rho N\left(t, 0, \hat{F}_{1}\right)\right\} t^{t^{-1-\rho}} d t \\
>k T\left(r_{1}, \hat{F}_{1}\right) r_{1}^{-\rho}-K T\left(2 r_{2}, \hat{F}_{1}\right) r_{2}^{-\rho} .
\end{gathered}
$$

Now choose R sufficiently large so that $F_{1}(z)$ has N zeros and M poles in $|z|<R$, where $\max (M, N)>0$. Let

$$
f_{2}(z)=\frac{\prod_{n=1}^{N}\left(1-z / a_{n}\right)}{\prod_{m=1}^{M}\left(1-z / b_{m}\right)}, \quad \hat{f}_{2}(z)=\frac{\prod_{n=1}^{N}\left(1+z /\left|a_{n}\right|\right)}{\prod_{m=1}^{M}\left(1-z /\left|b_{m}\right|\right)}=\frac{\hat{P}_{2}(z)}{\hat{Q}_{2}(z)}
$$

and define $f_{3}(z)$ by $F_{1}(z)=f_{2}(z) f_{3}(z)$. Using a result of Edrei [4, Lemma A] we have for $r<R / 2$

$$
\begin{equation*}
T\left(r, F_{1}\right) \leqq T\left(r, f_{2}\right)+T\left(r, f_{3}\right) \leqq T\left(r, \hat{f}_{2}\right)+\frac{14 r}{R} T\left(2 R, F_{1}\right) \tag{2.4}
\end{equation*}
$$

Here we apply Lemma 13 to $\hat{f}_{2}(z)$ to obtain for any $r_{1}, r_{2}, 0<r_{1}<r_{2}<R$

$$
\begin{align*}
& \int_{r_{1}}^{r_{2}}\left\{\pi \rho N\left(t, \infty, \hat{F}_{1}\right)+\sin \pi \rho \log m^{*}\left(t, \hat{f}_{2}\right)-\pi \rho \cos \pi \rho N\left(t, 0, \hat{F}_{1}\right)\right\} t^{-1-\rho} d t \tag{2.5}\\
& \quad>k T\left(r_{1}, \hat{f}_{2}\right) r_{1}^{-\rho}-K T\left(2 r_{2}, \hat{f}_{2}\right) r_{2}^{-\rho} .
\end{align*}
$$

Proof of Theorem 7. Suppose that $f(z) \in \mathscr{M}_{\rho, \delta}$ satisfies $0=\beta(f) \leqq \alpha(f) \leqq+\infty$ and

$$
\begin{align*}
& \pi \rho N(r, \infty, F)+\sin \pi \rho \log m^{*}(r, F)-\pi \rho \cos \pi \rho N(r, 0, F) \\
& \leqq \pi \rho(\cos \pi \rho-1+\delta) h(r) T(r, F)+K_{2} \log r \quad\left(r \geqq r_{0}=r_{0}\left(K_{2}\right)\right), \tag{2.6}
\end{align*}
$$

where $F(z)$ is defined by (2.2) and K_{2} is any fixed positive number. By (2.2) and (2.3) we have

$$
\left\{\begin{array}{l}
N(r, \infty, F)=N\left(r, \infty, \hat{F}_{1}\right)+p \log r \tag{2.7}\\
\log m^{*}(r, F)=\log |c|-p \log r+\log m^{*}\left(r, F_{1}\right) \\
N(r, 0, F)=N\left(r, 0, \hat{F}_{1}\right)
\end{array}\right.
$$

Substituting (2.7) into (2.6), we obtain

$$
\begin{gather*}
\pi \rho N\left(r, \infty, \hat{F}_{1}\right)+\sin \pi \rho \log m^{*}\left(r, F_{1}\right)-\pi \rho \cos \pi \rho N\left(r, 0, \hat{F}_{1}\right) \\
\leqq \pi \rho(\cos \pi \rho-1+\delta) h(r) T(r, F)+\left\{K_{2}-p(\pi \rho-\sin \pi \rho)\right\} \log r \tag{2.8}\\
-\sin \pi \rho \log |c| \quad\left(r \geqq r_{0}\right) .
\end{gather*}
$$

Hence from (2.5) and (2.8) it follows that for any $r_{1}, r_{2}, r_{0}<r_{1}<r_{2}<R$

$$
\pi \rho(\cos \pi \rho-1+\delta) \int_{r_{1}}^{r_{2}} h(t) T(t, F) t^{-1-\rho} d t+K_{3} \int_{r_{1}}^{r_{2}}(\log t) t^{-1-\rho} d t
$$

$$
\begin{align*}
& +\sin \pi \rho \int_{r_{1}}^{r_{2}}\left\{\log m^{*}\left(t, \hat{f}_{2}\right)-\log m^{*}\left(t, F_{1}\right)\right\} t^{-1-\rho} d t \tag{2.9}\\
& >k T\left(r_{1}, \hat{f}_{2}\right) r_{1}^{-\rho}-K T\left(2 r_{2}, \hat{f}_{2}\right) r_{2}^{-\rho},
\end{align*}
$$

where $K_{3}\left(\geqq K_{2}\right)$ is a suitable constant. Us.ng a result of Edrei [4, Lemma A] again, we have for $0<t<R / 2$

$$
\begin{align*}
\log m^{*}\left(t, F_{1}\right) & \geqq \log m^{*}\left(t, f_{2}\right)+\log m^{*}\left(t, f_{3}\right) \\
& \geqq \log m^{*}\left(t, \hat{f}_{2}\right)-14 T\left(2 R, F_{1}\right) t / R \tag{2.10}
\end{align*}
$$

By (2.4)

$$
\begin{equation*}
T\left(r_{1}, \hat{f}_{2}\right) r_{1}^{-\rho} \geqq T\left(r_{1}, F_{1}\right) r_{1}^{-\rho}-14 \cdot 2^{\rho}\left(r_{1} / R\right)^{1-\rho} T\left(2 R, F_{1}\right)(2 R)^{-\rho} \tag{2.11}
\end{equation*}
$$

Also, if we choose $r_{2}=R / 2$, we have

$$
\begin{aligned}
& T\left(2 r_{2}, \hat{f}_{2}\right)=T\left(R, \hat{f}_{2}\right) \leqq N(R, 0, \hat{P})+N(R, 0, \hat{Q})+\log \hat{P}_{2}(R)+\log \hat{Q}_{2}(-R) \\
& \leqq 2 T\left(R, F_{1}\right)+n\left(R, 0, \hat{P}_{2}\right) \log 2+N\left(R, 0, \hat{P}_{2}\right)+n\left(R, 0, \hat{Q}_{2}\right) \log 2+N\left(R, 0, \hat{Q}_{2}\right) \\
& \leqq 2 T\left(R, F_{1}\right)+2\left(T\left(2 R, F_{1}\right)+T\left(R, F_{1}\right)\right) \leqq 6 T\left(2 R, F_{1}\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
T\left(2 r_{2}, \hat{f}_{2}\right) r_{2}^{-\rho} \leqq 6 \cdot 4^{\rho} T\left(2 R, F_{1}\right)(2 R)^{-\rho} \tag{2.12}
\end{equation*}
$$

Further, with $r_{2}=R / 2(>1)$ we have

$$
\begin{gather*}
\int_{r_{1}}^{r_{2}}(\log t) t^{-1-\rho} d t=-\rho^{-1}\left(\log r_{2}\right) r_{2}^{-\rho}+\rho^{-1}\left(\log r_{1}\right) r_{1}^{-\rho} \tag{2.13}\\
\quad-\rho^{-2} r_{2}^{-\rho}+\rho^{-2} r_{1}^{-\rho}<\rho^{-2}\left(\rho \log r_{1}+1\right) r_{1}^{-\rho}
\end{gather*}
$$

Incorporating (2.10)-(2.13) into (2.9), it follows that for $r_{0}<r_{1}<R / 2$

$$
\begin{align*}
& \pi \rho(\cos \pi \rho-1+\delta) \int_{r_{1}}^{R / 2} h(t) T(t, F) t^{-1-\rho} d t+K_{3} \rho^{-1}\left(\log r_{1}\right) r_{1}^{-\rho}+K_{3} \rho^{-2} r_{1}^{-\rho} \\
& \quad+14(1-\rho)^{-1} 2^{2 \rho-1} \sin \pi \rho T\left(2 R, F_{1}\right)(2 R)^{-\rho}>k T\left(r_{1}, F_{1}\right) r_{1}^{-\rho} \\
& \quad-7 \cdot 4^{\rho} k T\left(2 R, F_{1}\right)(2 R)^{-\rho}-6 \cdot 4^{\rho} K T\left(2 R, F_{1}\right)(2 R)^{-\rho}, \quad \text { i. e., } \\
& \pi \rho(\cos \pi \rho-1+\delta) \int_{r_{1}}^{R / 2} h(t) T(t, F) t^{-1-\rho} d t+K_{3} \rho^{-1}\left(\log r_{1}\right) r_{1}^{-\rho}+K_{3} \rho^{-2} r_{1}^{-\prime \prime} \tag{2.14}\\
& \quad>k T\left(r_{1}, F_{1}\right) r_{1}^{-\rho}-K_{1} T\left(2 R, F_{1}\right)(2 R)^{-\rho}
\end{align*}
$$

with a suitable positive constant $K_{1}=K_{1}(\rho)$.
Case 1. Assume first that $\alpha(f)=0$. Let $R \rightarrow \infty$ in (2.14) to get

$$
\begin{align*}
& \pi \rho(\cos \pi \rho-1+\delta) \int_{r_{1}}^{\infty} h(t) T(t, F) t^{-1-\rho} d t+K_{3} \rho^{-1}\left(\log r_{1}\right) r_{1}^{-\rho} \tag{2.15}\\
& \quad+K_{3} \rho^{-2} r_{1}^{-\rho} \geqq k T\left(r_{1}, F_{1}\right) r_{1}^{-\rho}
\end{align*}
$$

Choose a sequence $\left\{\left(r_{1}\right)_{n}\right\} \rightarrow \infty$ such that

$$
T(t, F) t^{-\rho}<T\left(\left(r_{1}\right)_{n}, F\right)\left(r_{1}\right)_{n}^{-\rho} \quad\left(t>\left(r_{1}\right)_{n}\right)
$$

Then we deduce from (2.15) and (2.2) that for $n \geqq n_{0}$

$$
\begin{align*}
& \pi \rho(\cos \pi \rho-1+\delta) \int_{\left(r_{1}\right)_{n}}^{\infty} h(t) t^{-1} d t+K_{3} \rho^{-1} \log \left(r_{1}\right)_{n} / T\left(\left(r_{1}\right)_{n}, F\right) \tag{2.16}\\
& \quad+K_{3} \rho^{-2} / T\left(\left(r_{1}\right)_{n}, F\right) \geqq k T\left(\left(r_{1}\right)_{n}, F_{1}\right) / T\left(\left(r_{1}\right)_{n}, F\right)>k / 2
\end{align*}
$$

Since $h(r) \in S_{1}$, the left hand side of $(2.16) \rightarrow 0(n \rightarrow \infty)$. This is a contradiction.
Case 2. Next we consider the case $\alpha=\alpha(f) \in(0,+\infty)$. Given $\varepsilon>0$, there is a number $R_{0}\left(\geqq r_{0}\right)$ such that $t \geqq R_{0}$ implies $T(t, F) t^{-\rho}<\alpha+\varepsilon$. Hence by (2.14) we have for $R_{0}<r_{1}<R / 2$

$$
\begin{gather*}
\pi \rho(\cos \pi \rho-1+\delta)(\alpha+\varepsilon) \int_{r_{1}}^{R / 2} h(t) t^{-1} d t+K_{3} \rho^{-1}\left(\log r_{1}\right) r_{1}^{-\rho}+K_{3} \rho^{-2} r_{1}^{-\rho} \tag{2.17}\\
>k T\left(r_{1}, F_{1}\right) r_{1}^{-\rho}-K_{1} T\left(2 R, F_{1}\right)(2 R)^{-\rho} .
\end{gather*}
$$

Choose $\left\{\left(r_{1}\right)_{n}\right\} \rightarrow \infty,\left\{2 R_{n}\right\} \rightarrow \infty$ such that $R_{0}<\left(r_{1}\right)_{n}<R_{n} / 2(n=1,2, \cdots)$ and $T\left(\left(r_{1}\right)_{n}\right.$, $\left.F_{1}\right)\left(r_{1}\right)_{n}^{-\rho} \rightarrow \alpha, T\left(2 R_{n}, F_{1}\right)\left(2 R_{n}\right)^{-\rho} \rightarrow 0(n \rightarrow \infty)$. Then from (2.17) it follows that for $n \geqq n_{0}=n_{0}(\varepsilon)$

$$
\pi \rho(\cos \pi \rho-1+\delta)(\alpha+\varepsilon) \int_{\left(r_{1}\right) n}^{R_{n / 2}} h(t) t^{-1} d t+\varepsilon>(\alpha-\varepsilon) k-\varepsilon K_{1} .
$$

Now, let $n \rightarrow \infty$ to get $\varepsilon \geqq(\alpha-\varepsilon) k-\varepsilon K_{1}$. Since $\varepsilon(>0)$ was arbitrary, this implies $k \leqq 0$, a contradiction.

Case 3. It remains to consider the case $\alpha(f)=+\infty$. First, choose $\left\{2 R_{n}\right\} \rightarrow$ ∞ such that $R_{1}>2$, and

$$
\begin{equation*}
T\left(2 R_{n}, F_{1}\right)\left(2 R_{n}\right)^{-\rho} \rightarrow 0 \quad(n \rightarrow \infty) . \tag{2.18}
\end{equation*}
$$

Next, define $\left\{\left(r_{1}\right)_{n}\right\}\left(1 \leqq\left(r_{1}\right)_{n} \leqq R_{n} / 2\right)$ by

$$
\begin{equation*}
\max _{1 \leq t \leq R_{n} / 2} T(t, F) t^{-\rho}=T\left(\left(r_{1}\right)_{n}, F\right)\left(r_{1}\right)_{n}^{-\rho} . \tag{2.19}
\end{equation*}
$$

Then the fact that $\alpha(f)=+\infty$ and (2.19) give

$$
\begin{equation*}
T\left(\left(r_{1}\right)_{n}, F\right)\left(r_{1}\right)_{n}^{-\rho} \rightarrow \infty \quad(n \rightarrow \infty) \tag{2.20}
\end{equation*}
$$

which, in particular, implies $\left\{\left(r_{1}\right)_{n}\right\} \rightarrow \infty$. Further, in view of (2.18) and (2.20) we see that $\left(r_{1}\right)_{n}<R_{n} / 2\left(n \geqq n_{0}\right)$. Now, we use (2.14) with $r_{1}=\left(r_{1}\right)_{n}$ and $R=R_{n}$ ($n \geqq n_{0}$). Taking (2.19) into consideration, we have

$$
\begin{align*}
& \pi \rho(\cos \pi \rho-1+\delta)\left(T\left(\left(r_{1}\right)_{n}, F\right)\left(r_{1}\right)_{n}^{-\rho} \int_{\left(r_{1}\right) n}^{R_{n}} h(t) t^{-1} d t+K_{3} \rho^{-1}\left(\log \left(r_{1}\right)_{n}\right)\left(r_{1}\right)_{n}^{-\rho}\right. \tag{2.21}\\
& \quad+K_{3} \rho^{-2}\left(r_{1}\right)_{n}^{-\rho}>k T\left(\left(r_{1}\right)_{n}, F_{1}\right)\left(r_{1}\right)_{n}^{-\rho}-K_{1} T\left(2 R_{n}, F_{1}\right)\left(2 R_{n}\right)^{-\rho} .
\end{align*}
$$

Since $h(r) \in S_{1}$, we deduce from (2.21), (2.18) and (2.2) that

$$
T\left(\left(r_{1}\right)_{n}, F\right)\left(r_{1}\right)_{n}^{-\rho} \rightarrow 0 \quad(n \rightarrow \infty),
$$

which contradicts (2.20).
Thus we see that (2.6) is not valid. Hence there is a sequence $\left\{r_{n}\right\} \rightarrow \infty$ such that

$$
\begin{gather*}
\pi \rho N(r, \infty, F)+\sin \pi \rho \log m^{*}(r, F)-\pi \rho \cos \pi \rho N(r, 0, F) \\
>\pi \rho(\cos \pi \rho-1+\delta) h(r) T(r, F)+K_{2} \log r \quad\left(r=r_{n}\right) \tag{2.22}
\end{gather*}
$$

where K_{2} is any fixed positive number. As in the proof of Theorem 1 of [9], we deduce from (2.22) that

$$
\sin \pi \rho \log m^{*}(r, F)>\pi \rho(\cos \pi \rho-1+\delta)(1+h(r)) T(r, F)+K_{2} \log r-O(1)\left(r=r_{n}\right)
$$

From this and (2.2) it follows that

$$
\begin{aligned}
& \sin \pi \rho \log m^{*}(r, f)>\pi \rho(\cos \pi \rho-1+\delta)(1+h(r)) T(r, f)+K_{2} \log r-O(1) \\
&>\pi \rho(\cos \pi \rho-1+\delta)(1+h(r)) T(r, f) \quad\left(r=r_{n}\right) .
\end{aligned}
$$

3. Edrei proved the following Theorem A in [5].

Theorem A. Assume that $f(z) \in \mathscr{M}_{\rho, \delta}$ satisfies the relation

$$
\limsup _{r \rightarrow \infty} \frac{\log m^{*}(r, f)}{T(r, f)}=\frac{\pi \rho}{\sin \pi \rho}(\cos \pi \rho-1+\delta)
$$

Then there exist three positive sequences $\left\{r_{n}\right\} \rightarrow \infty,\left\{r_{n}^{\prime}\right\} \rightarrow \infty,\left\{r_{n}^{\prime \prime}\right\} \rightarrow \infty$ having all the following properties.
(i) $r_{n}^{\prime}<r_{n}<r_{n}^{\prime \prime}<r_{n+1}^{\prime}(n=1,2,3, \cdots)$.
(ii) $r_{n} / r_{n}^{\prime} \rightarrow \infty, r_{n}^{\prime \prime} / r_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
(iii) $\lim _{n \rightarrow \infty} \frac{\log m^{*}\left(r_{n}, f\right)}{T\left(r_{n}, f\right)}=\frac{\pi \rho}{\sin \pi \rho}(\cos \pi \rho-1+\delta)$.
(iv) Put $L(r)=T(r, f) / r^{\rho}(r>0)$, and let $\Lambda=\bigcup_{n=1}^{\infty}\left(r_{n}^{\prime}, r_{n}^{\prime \prime}\right)$. Then
and

$$
\lim _{\substack{r \rightarrow \infty \\ r, \sigma r \in A}} \frac{L(\sigma r)}{L(r)}=1 \quad(\sigma>0)
$$

$$
\lim _{\substack{r \rightarrow \infty \\ r \in A}} \frac{N(r, \infty, f)}{N(r, a, f)}=1-\delta
$$

hold, where $a \in \boldsymbol{C}$ is any number satisfying $f(0) \neq a$ and (1) of [10].
(v) Let $s>0$ and $\varepsilon>0$ be given. Consider the annuli $A_{n}(s)=\left\{z=r e^{i \theta} ; e^{-s}\right.$ $\left.<r / r_{n}<e^{s}\right\}$, the sectors $S_{n}(s ; \varphi-\varepsilon, \varphi+\varepsilon)=\left\{z=r e^{i \theta} \in A_{n}(s) ; \varphi-\varepsilon<\theta<\varphi+\varepsilon\right\}$, and let $\left\{\omega_{n}\right\}$ be any real sequence defined by the conditions $m^{*}\left(r_{n}, f-a\right)=\left|f\left(r_{n} e^{i \omega_{n}}\right)-a\right|$ $(k=1,2,3, \cdots)$. Let $\nu_{n}(a)$ be the number of zeros of $f(z)-a$ in the sector $A_{n}(s)$
$-S_{n}\left(s ; \omega_{n}-\varepsilon, \omega_{n}+\varepsilon\right)$, and $\nu_{n}(\infty)$ the number of poles of $f(z)$ in $A_{n}(s)-S_{n}\left(s ; \omega_{n}\right.$ $\left.+\pi-\varepsilon, \omega_{n}+\pi+\varepsilon\right)$. Then

$$
\lim _{n \rightarrow \infty} \frac{\nu_{n}(a)+\nu_{n}(\infty)}{T\left(r_{n}, f\right)}=0 .
$$

The above Edrei's result implies that the extremal functions $f(z)$ for the estimate (2) satisfy the relation $T(r, f) \sim r^{\rho} L(r)$ (with slowly varying functions $L(r))$ at least locally as $r \rightarrow \infty$.

In this section we first prove the following
Theorem 9. Let $f(z)$ be a meromorphic function of the form

$$
f(z)=\frac{\Pi\left(1+z / a_{n}\right)}{\Pi\left(1-z / b_{n}\right)} \equiv \frac{P(z)}{Q(z)} \quad\left(0<a_{n} \leqq a_{n+1}, 0<b_{n} \leqq b_{n+1}\right),
$$

and let $L(r)$ be a slowly varying function. Then

$$
\begin{equation*}
T(r, f) \sim r^{\rho} L(r) \quad(r \rightarrow \infty, 0<\rho<1 / 2) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
N(r, \infty, f) \sim(1-\delta) N(r, 0, f) \quad(r \rightarrow \infty, 1-\cos \pi \rho<\delta<1) \tag{3.2}
\end{equation*}
$$

or

$$
\begin{equation*}
N(r, \infty, f)=0 \quad(r \geqq 0, \delta=1) \tag{3.2}
\end{equation*}
$$

imply that for $\varepsilon>0$
(3.3) $\quad \log m^{*}(r, f)<\frac{\pi \rho}{\sin \pi \rho}(\cos \pi \rho-1+\delta)(1+\varepsilon) T(r, f) \quad\left(r \geqq r_{0}(\varepsilon)\right)$.

Proof. Let $\left\{r_{n}\right\}$ be any positive, increasing, unbounded sequence. Then the hypothesis (3.1) implies that $\left\{r_{n}\right\}$ is a sequence of Pólya peaks of order ρ for $T(r, f)$. (See [2, p 94].) Using the assumption (3.2) or (3.2)', we easily deduce that

$$
\begin{equation*}
\delta(\infty, f) \geqq \delta>1-\cos \pi \rho \tag{3.4}
\end{equation*}
$$

Now, put $J(r)=\left\{\theta \in(-\pi,+\pi] ;\left|f\left(r e^{i \theta}\right)\right| \geqq 1\right\}$. Then the spread relation (See [3].) and (3.4) yield

$$
\begin{align*}
& \liminf _{n \rightarrow \infty} \text { meas } J\left(r_{n}\right) \geqq \min \left\{\frac{4}{\rho} \sin ^{-1} \sqrt{\frac{\delta(\infty, f)}{2}}, 2 \pi\right\}=2 \pi, \text { i. e. } \\
& \quad \lim _{n \rightarrow \infty} \text { meas } J\left(r_{n}\right)=2 \pi \tag{3.5}
\end{align*}
$$

From the first fundamental theorem and the Edrei-Fuchs Lemma (See [6, p 322]), it follows that

$$
\begin{align*}
& T\left(r_{n}, f\right)-N\left(r_{n}, 0, f\right)=m\left(r_{n}, 0, f\right)=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \log ^{+}\left|\frac{1}{f\left(r_{n} e^{2 \theta}\right)}\right| d \theta \\
& \quad=\frac{1}{2 \pi} \int_{J\left(r_{n}\right)^{c}} \log \left|\frac{1}{f\left(r_{n} e^{i \theta}\right)}\right| d \theta \tag{3.6}\\
& \quad \leqq 11 T\left(2 r_{n}, f\right) \text { meas } J\left(r_{n}\right)^{c}\left\{1+\log ^{+}\left(\frac{1}{\text { meas } J\left(r_{n}\right)^{c}}\right)\right\} .
\end{align*}
$$

In view of (3.1) we have

$$
\begin{equation*}
T\left(2 r_{n}, f\right) \sim 2^{\rho} T\left(r_{n}, f\right) \quad(n \rightarrow \infty) \tag{3.7}
\end{equation*}
$$

Substituting (3.5) and (3.7) into (3.6), we deduce that

$$
\begin{equation*}
T\left(r_{n}, f\right)-N\left(r_{n}, 0, f\right)=o\left(T\left(r_{n}, f\right)\right) \quad(n \rightarrow \infty) \tag{3.8}
\end{equation*}
$$

Since the sequence $\left\{r_{n}\right\}$ was arbitrary, (3.8) gives

$$
\begin{equation*}
N(r, 0, f) \sim T(r, f) \quad(r \rightarrow \infty) \tag{3.9}
\end{equation*}
$$

and so by (3.1) and (3.2)

$$
\begin{gather*}
N(r, 0, f) \sim r^{\rho} L(r) \quad(r \rightarrow \infty), \tag{3.10}\\
N(r, \infty, f) \sim(1-\delta) r^{\rho} L(r) \quad(r \rightarrow \infty, 1-\cos \pi \rho<\delta<1) \tag{3.11}
\end{gather*}
$$

Then an abelian argument (See, for example, [7, Theorem 2].) may be used to prove

$$
\begin{equation*}
\log \left|P\left(r e^{i \theta}\right)\right|=\frac{\pi \rho}{\sin \pi \rho}\{\cos \theta \rho+o(1)\} r^{\rho} L(r) \quad(r \rightarrow \infty,|\theta|<\pi) \tag{3.12}
\end{equation*}
$$

and
(3.13) $\quad \log \left|Q\left(r e^{i \theta}\right)\right|=\frac{\pi \rho}{\sin \pi \rho}(1-\delta)\{\cos (\pi-\theta) \rho+o(1)\} r^{\rho} L(r) \quad(r \rightarrow \infty, 0<\theta<2 \pi)$.

Given $\varepsilon>0$, choose $\eta>0$ with the property that $\cos (\pi-\eta) \rho-1+\delta<(\cos \pi \rho-1+\delta)$ $(1+\varepsilon / 2)$. Then (3.12), (3.13) and (3.1) give

$$
\begin{aligned}
\log m^{*}(r, f)= & \log |P(-r)|-\log Q(-r)<\log \left|P\left(r e^{i(\pi-\eta)}\right)\right|-\log Q(-r) \\
& <\frac{\pi \rho}{\sin \pi \rho}\{\cos (\pi-\eta) \rho-(1-\delta)+o(1)\} r^{\rho} L(r) \\
& <\frac{\pi \rho}{\sin \pi \rho}(\cos \pi \rho-1+\delta)(1+\varepsilon) T(r, f) \quad\left(r \geqq r_{0}(\varepsilon)\right) .
\end{aligned}
$$

This completes the proof of Theorem 9.
We conclude from Theorems A and 9 that the simplest and the most typical growth of the characteristic functions of $f(z) \in \mathscr{M}_{\rho, \delta}$ satisfying (3.3) is regular variation of order ρ.

Now, we refine the estimate (2) for all $f(z) \in \mathscr{M}_{\rho, \delta}$ whose characteristics vary regularly with order ρ.

Case 1. $\alpha(f)=0$. Choose $h(r) \in S_{2}$ arbitrarily satisfying

$$
T(r, f)=O\left(r^{\rho} \exp \left\{-\frac{1}{(1-\varepsilon) C(\rho, \delta)} \int_{1}^{r} \frac{h(t)}{t} d t\right\}\right) \quad(r \rightarrow \infty)
$$

with some $\varepsilon>0$. Such an $h(r) \in S_{2}$ certainly exists. (See Lemma 12.) Then the estimate (1) holds on an unbounded sequence of r. (See Theorem 2.)

Case 2. $\beta(f)=0$ or $0<\beta(f)<\frac{k}{K_{1}} \alpha(f) \leqq+\infty$. In these cases, for any $h(r)$ $\in S_{1}$, we have the estimate (1) for certain arbitrarily large values of r. (For the proof, see Theorems 7 and 8.)

Case 3. $0<\beta(f) \leqq \alpha(f) \leqq \frac{K_{1}}{k} \beta(f)<+\infty$. Let $h(r) \in S_{2}$ be given. Then the estimate

$$
\begin{equation*}
\log m^{*}(r, f)>\frac{\pi \rho}{\sin \pi \rho}(\cos \pi \rho-1+\delta)(1-h(r)) T(r, f) \tag{3.14}
\end{equation*}
$$

holds for a sequence of $r \rightarrow \infty$. (See Corollary 1 of [10].)
Case 4. $\beta(f)=+\infty$. Choose $h(r) \in S_{2}$ arbitrarily such that

$$
T(r, f)=O\left(r^{\rho} \exp \left\{\frac{1}{(1+\varepsilon) C(\rho, \delta)} \int_{1}^{r} \frac{h(t)}{t} d t\right\}\right) \quad(r \rightarrow \infty)
$$

with some $\varepsilon>0$. To see such a $h(r) \in S_{2}$ exists, we may note that any slowly varying function can be written as

$$
L(r)=c(r) \exp \left(\int_{1}^{r} \varepsilon(t) t^{-1} d t\right)
$$

where $\lim _{r \rightarrow \infty} c(r)=c>0$ and $\lim _{t \rightarrow \infty} \varepsilon(t)=0$. (See [8, p 45].) Then the estimate (3.14) holds for a sequence of $r \rightarrow \infty$. (See [10, Theorem 1].)

References

[1] Anderson, J. M., Regularity criteria for integral and meromorphic functions, J. Analyse Math. 14 (1965), 185-200.
[2] Baernstein II, A., A nonlinear tauberian theorem in function theory, Trans. Amer. Math. Soc. 146 (1969), 87-105.
[3] Baernstein II, A., Proof of Edrei's spread conjecture, Proc. London Math. Soc. (3) 26 (1973), 418-434.
[4] Edrei, A., The deficiences of meromorphic functions of finite lower order, Duke Math. J. 31 (1964), 1-21.
[5] Edrei, A., Extremal problems of the $\cos \pi \rho$ type, J. Analyse Math. 29 (1976),

19-66.

[6] Edrei, A. and Fuchs, W.H.J., Bounds for the number of deficient values of certain classes of meromorphic functions, Proc. London Math. Soc. 12 (1962), 315-344.
[7] Edrei, A. and Fuchs, W. H. J., Tauberian theorems for a class of meromorphic functions with negative zeros and positive poles, Contemporary problems of the theory of analytic functions, "Nauka" Moscow (1966), 339-358.
[8] Karamata, J., Sur un mode de croissance régulière, Mathematica (Cluj) 4 (1930), 38-53.
[9] Ueda, H., On the growth of meromorphic functions of order less than $1 / 2$, Kodai Math. J. 6 (1983), 135-146.
[10] Ueda, H., On the growth of meromorphic functions of order less than $1 / 2$, III, Kodai Math. J. 7 (1984), 153-184.

Department of Mathematics
Daido Institute of Technology
Daido-cho, Minami-ku, Nagoya, Japan

[^0]: Received November 25, 1987

