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ON THE GROWTH OF MEROMORPHIC FUNCTIONS

OF ORDER LESS THAN 1/2; IV

BY HIDEHARU UEDA

Introduction. This note is a continuation of [10]. The notational conven-
tions of [10] are adopted without modifications and strictly adhered to. We
supplement Theorems 1, 2 and 3 of [10] by the information contained in the
theorems of the present note.

In everything that follows
( i ) p and δ are numbers such that 0<p<l/2 and 1—cosπρ<δ^l
(ϋ) <*(/)=lim sup T(r, f)/rp, S(/)=lim inf T(r, f)/rp, where f(z) is a mero-

r-»oo r-»oo

morphic function of order p.
We first prove in § 1

THEOREM 6. Let f{z)^3ip>δ be of minimal type. Then there is an
such that

(1) logm*(r, / ) > - J ί £ _
smπp

for certain arbitrarily large values of r.

Our second result, which is proved in § 2, is the following

THEOREM 7. Let A(r)eSi be given. If f(z)^<3ip>δ satisfies β(f)=O, then
the estimate (1) holds for a sequence of r—>oo.

Remarks. ( i ) Theorem 3 of [10] is contained in the above Theorem 7.
(ii) Modifying a part of the proof of Theorem 7, we are able to show the
following

THEOREM 8. Let k — k(ρ) and K1=K1(p) be positive constants which appear
in Lemma 13 and (2.14), respectively. If f(z)^3ip>δ satisfies 0<β(f)<(k/Kx)a{f)
ίg+oo, then the estimate (1) holds with any h(r)^Si on an unbounded sequence of r.

In § 3, we use our results stated above and in [10] to refine the estimate
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(2) logm*(r,f)>--^—(cosπp-l+δ)a-s)T(r,f) (e>0, r=rn-+c»)
S1Π 7Z u

for all f(z)^3ίp,δ whose characteristics vary regularly with order p. It was
this refinement that provided the impetus for the previous and the present works.
We say, according to Baernstein [2], that the function φ(r) varies regularly
with order p if φ{r)^rpL{r) (r—>oo) for some slowly varying function Lif).

1. We start by showing the following

LEMMA 12. Given G(r) positive and continuous for r^r0, G(r)—>oo (r—»oo),
there exists a function h(r)^S2 such that

(1.1) \[^f-dt<G(r)+C (r^l),

where C is a positive constant depending only on G(r).

Proof. By assumptions on G(r), we find a positive integer n0 and an in-
creasing unbounded sequence {rn}n0 with the property that G(r)>G(rn)—n (r>rn).
Choose {Rn}n0 such that

Define a function hx{r) {r>,rn^ by

Then hχ(r) is positive, decreasing, and tends to 0 as r—>co. We define

Hι(r)=nΰ-l+[r hmrιdt.

Then if Rπ£r<Rn+ι(n^n0),

Now, define h(r) (r^O) by

Λ(r)={log(i?7i0+1//?r>0)}-1

h(r)=\[og(Rn+ι/Rn)}-1

and by linear interpolation otherwise. Clearly h(r)^S2, and if. we-put

H(r)=nΛ-l+[r h{t)Γιdt,
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then H(r)^Hι(r)^G(r)(r^rno). Thus, with a suitable positive constant C

, we obtain (1.1).

The proof of Theorem 6 is a combination of Lemma 12 and Theorem 2 in

[10].

Proof of Theorem 6. Let f{z)^3ίp,s be of minimal type, and set

(1.2) G(r)=log(r<7T(r, /))

Then G{r) satisfies the assumptions of Lemma 12, so we find a function h(r)(=S2

satisfying (1.1) with a suitable positive constant C. Now, choose a positive
number K<C(p, δ) arbitrarily, where C(p, δ) is defined by (5) in [10], and put
h1(r)=Kh(r)^S2. Then in view of (1.2)

T(r, f)=rPexp{-G(r)}<ecr?exp{-R

Hence from Theorem 2 we deduce (1) with h(r) replaced by hx(r) for certain
arbitrarily large values of r.

2. Let f{z)^3ίp,8 be given, and let a be a complex number satisfying
fφ)Φa and

(2.1) N(r,oo,f)<(X-δ)N(r,a,f)+θa) (r-*oo).

We set

(2.2) FfrWW-α-cz-

where c is a nonzero constant and /> is a nonnegative integer. It is convenient
to introduce the notation

(2.3) P(z)=Πa+z/\an\), Q(z)=Πa-z/\bn\), Fι{z)^P{z)/Q{z).

Our proofs of Theorems 7 and 8 make use of the following

LEMMA 13. (See [1, Lemma 1].) Let Fx{z) be defined by (2.2). Then there
exist constants K=K(p), k = k(ρ) depending only on p satisfying 0<k<K<iπ-h
2τr2/log2, such that for any r 2 > r i > 0 ,

[r2{πρN(t, oo, FJ+smπplogm*^, FJ-πpcosπpN(t, 0, Fλ)}Γι-pdt
Jr1

>kT(ru PjrϊP

Now choose R sufficiently large so that Fx(z) has TV zeros and M poles in
\z\<R, where max(M, 7V)>0. Let
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N N

Π^l-z/dn) A Π(l+^/|α»l) pjg)

π α - Λ ) ' 2 τiiί-z/\bm\) Q*W

and define fz(z) by F1(z)=f2(z)fs(z). Using a result of Edrei [4, Lemma A] we
have for r<R/2

14r

(2.4) T(r, Fx)£T{r, f2)+T(r, /,)£T(r, f2)+^T(2Rf Fι).

Here we apply Lemma 13 to /2(z) to obtain for any ru r2, 0<r!<r2<R

[r2{πpN(t, oo, Aj+sinΛΓ/ologm*^, fy-πpcosπpN(t, 0, P^t^'^dt
(2.5) J r i

>^T(rx, f2)r-1P-KT(2r2) ft)r^.

Proof of Theorem 7. Suppose that f{z)^3ίp^ satisfies 0=j8(/)^
and

πρN(r, co, F)+sinπiologm*(r, F)—πp cos πpN(r, 0, F)
(2.6)

where F(z) is defined by (2.2) and K2 is any fixed positive number. By (2.2)
and (2.3) we have

(2.7)

N(r, oo, F)=N(r, oo, A

logτn*(r, F)=log\c\-plogr+\ogm*(r, ίΊ),

Substituting (2.7) into (2.6), we obtain

πpN(r, oo, /Ό+sinπ^logm*(r, Fx)—πpcosπpN(r, 0, Fx)

(2.8) ^ ^ ( c o s ^ - l + d μ M T X r , F)+{/ί2-Xπio-smπ1o)}logr

—sinπ^o logic I (r^rQ).

Hence from (2.5) and (2.8) it follows that for any rlf r2, ro<rί<r2<R

πp(cosπp-l+δ)[r2h(t)T(t, F^-Pdt

(2.9) +sinπoΓ2{logm*α, /a)-logm*(ί, Fx)

where K3(^K2) is a suitable constant. Using a result of Edrei [4, Lemma A]
again, we have for 0<t<R/2
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logm*(t, FJ^logm^t, Λ)+logm*(f, Λ)
(2.10)

^logm*(ί, f2)-UT(2R, FJt/R.
By (2.4)

(2.11) Tfo, h)rV^nr

Also, if we choose r2=R/2, we have

7(2r2, Λ)=T(Λ, ft)£N(R, 0, P)+7V(i?, 0,

, 0, P 2 ) l o g 2 + M # , 0, P2)+n(R, 0, ρ2)log2+ΛΓ(i?, 0,

so that

(2.12) Tβr2, f2)r-2P£6 4PT(2R, F1){2R)-P .

Further, with r2=R/2 (>1) we have

Incorporating (2.10)-(2.13) into (2.9), it follows that for rQ<rλ<R/2

J R/2
hitmt FT'-Pdt+Ksp-WogrJr-^+Ksp-t

+Ua~p)-122^1smπpT(2R, F1)(2R)'p>kT(rl9 Fx)r^

-7-4?kT(2R, Fί)(2R)-f>-6'4f>KT(2Rf FJ&R)'*, i. e.,

S R/2

v-χ-y r i

>kT(ri} Fί)r-ίP-K1T(2R} F1)

with a suitable positive constant K1=K1(p)t

Case 1. Assume first that α(/)=0. Let #->oo in (2.14) to get

πp(cosπp-l+δ)[°h(f)T(tf F^'
(2.15)

Choose a sequence {(ri)n}-^°° such that

T(f, F)rP<T{{rι)

Then we deduce from (2.15) and (2.2) that for n
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πp(cosπp-l+δ)\~' h^r'άt+IUp-'logirX/Tiϋrdn, F)
(2.16) j c r i ^

+Ktp-*/T((rx)n, FfekT&rdn, Fι)/n(r1)n9 F)>k/2.

Since h(r)<=Su the left hand side of (2.16)->0 (n-*oo). This is a contradiction.

Case 2. Next we consider the case α = α ( / ) e ( o , +oo). Given ε>0, there
is a number R0(Zr0) such that f^/?0 implies T(t, F)t'p<a+e. Hence by (2.14)
we have for /

S R/2

>kT(ru Fί)r^-K1

Choose {(rx)n}->cxD, {2i?n}->cχ) such that i? 0<(r 1)w<i?n/2 (n = l, 2, •••) and TCCr̂ n,
FiXrύn9-**, T(2Rn, F1)(2Rn)-f)-^0 (n->oo). Then from (2.17) it follows that for

no(ε)

πp(cosπp-l+δ)(a+ε)\Rnl2h(t)Γ1dt+ε>(a--ε)k-εK1.

Now, let n-^oo to get ε^(α—ε)k—εK u Since e(>0) was arbitrary, this implies
&^0, a contradiction.

Case 3. It remains to consider the case α(/)= + °o. First, choose
oo such that i?i>2, and

(2.18) T{2Rn, Fι)(2Rnyp - 0 (n-co) .

Next, define {(rjn} ( l ^ W . ^ ί n / 2 ) by

(2.19) max T(t, FT^TUrJn, F)(ri)np.

Then the fact that «(/)= +oo and (2.19) give

(2.20) T{{rι)n, FXrOn^oo (n->oo),

which, in particular, implies {(ri)n}—•°°. Further, in view of (2.18) and (2.20)
we see that (rλ)n<Rn/2(n^no). Now, we use (2.14) with r1—{rι)n and R=Rn

(w^n0). Taking (2.19) into consideration, we have

J c r i ^(2.21)

Since h(r)^Su we deduce from (2.21), (2.18) and (2.2) that

T ( W n , FXrOή^O (n-^oo),
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which contradicts (2.20).

Thus we see that (2.6) is not valid. Hence there is a sequence {rn}-»oo
such that

πρN(r, oo, F)+sinπp logm*{y, F)—πρcosπpN(r, 0, F)
(2.22)

>πp(cosπp-l+δ)h(r)T(r, F)+K2\ogr (r=rn),

where K2 is any fixed positive number. As in the proof of Theorem 1 of [9],
we deduce from (2.22) that

sinπplogm*(r, F)>πp(cosπp-l+δ)(l+h(r))T(r, F)+K2\ogr-O(l) (r=rn).

From this and (2.2) it follows that

smπp\ogm*(r, f)>πp(cosπp-l+δ)(l+h(r))T(r, f)+K2\ogr-O(l)

>πp(cosπp-l+δ)a + h(r))T(r, f) (r=rn).

3. Edrei proved the following Theorem A in [5].

THEOREM A. Assume that f{z)^3lp,δ satisfies the relation

logm*(r, /) τr/0 . 1 , s xhm sup * ; / =-7-^-—(cos πp—l+δ).
r-oo * T{r, f) smπp r

Then there exist three positive sequences {rn}-^°°, {rή}~->°°> {r'ή}—>°° having all
the following properties.

( i ) r i < r n < r S < r ; + 1 ( n = l , 2 , 3 , •••).

(ii) r»/

l i m l o g m ^ /) = _ » £ _

w-»oo T(rn, f) smπp r

(iv) Put L(r)=T(r, f)/rp

- 1 (<r>0)

, where a^C is any number satisfying fφ)Φa and (1) of [10].

(v) Let s>0 and ε>0 be given. Consider the annuli An{s)—{z—reiθ *r s

^s}, the sectors Sn(s ψ— ε, <p+ε)={z=reiθ<BAn(s) φ—ε<θ<φ-\-ε), and
let {ωn} be any real sequence defined by the conditions m*(rn, f—a)=\f(rne

ia)n)—a\
(k=l, 2, 3, •••). Let vn{a) be the number of zeros of f(z)—a in the sector An(s)
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—Sn(s; ωn—e, ωn+ε), and vn(oo) the number of poles of f{z) in An(s)—Sn(s;ωn

+π—ε, ωn+π + ε). Then

lim—
T(rn, f)

The above Edrei's result implies that the extremal functions f(z) for the
estimate (2) satisfy the relation T(r, f)^rpL(r) (with slowly varying functions
L(r)) at least locally as r—>oo.

In this section we first prove the following

THEOREM 9. Let f(z) be a meromorphic function of the form

let L(r) be a slowly varying function. Then

(3.1) T(r, f)^rPL(r) (r->oo,

(3.2) N(r, oo, f)~(l-δ)N(r, 0, /) (r->oo, l -

or

(3.2)' iV(r, oo, / ) = 0 (r^O, 3=1)

/mj&/̂  that for e>0

(3.3) logm*(r, * p

s m π jO

Proof. Let {rn} be any positive, increasing, unbounded sequence. Then
the hypothesis (3.1) implies that {rn} is a sequence of Pόlya peaks of order p
for T(ry / ) . (See [2, p 94].) Using the assumption (3.2) or (3.2/, we easily
deduce that

(3.4) 3(oo, /)^<5>l-cosτrp.

Now, put J(r)={θ<=(-π, + τ r ] ; 1/(^^)1^1}. Then the spread relation (See
[3].) and (3.4) yield

liminf meas / ( r j ^ m i n | — sin Λ/ £ , 2π[=2π, i.e.

(3.5) lim meas J(rn)=2π.
n~*oo

From the first fundamental theorem and the Edrei-Fuchs Lemma (See [6, p 322]),
it follows that
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(3.6)

T{rn, f)-N(rn, 0, /)=m(rn, 0, /)=

1

dθ

f{rne
tβ)

meas 7(r,y

dθ

In view of (3.1) we have

(3.7) T(2rn, /)~2'T(r», /) (n->oo).

Substituting (3.5) and (3.7) into (3.6), we deduce that

(3.8) T(rn, f)-N(rn, 0, f)=o{T{rn, /)) (n-oo).

Since the sequence {rn} was arbitrary, (3.8) gives

(3.9) N(r, 0, f)~T(r, f) (r->oo),

and so by (3.1) and (3.2)

(3.10) N(r, 0, f)^rPL{r) (r->oo),

(3.11) Mr, oo, /)~(l-3)r^L(r) (r->oo, l - c

Then an abelian argument (See, for example, [7, Theorem 2].) may be used to
prove

θ\<π),(3.12)

and

(3.13) \og\Q(reiθ)\=
si

(l-δ){cos(π-θ)p+o(ϊ)}rf>L(r)

Given ε>0, choose η>0 with the property that cos(π—η)ρ—l+δ<(cosπp—l-\-δ)
(l+e/2). Then (3.12), (3.13) and (3.1) give

logm*(r, /)=log| P(-r) I -log ρ(~r)<log| P(r \ -log Q(-r)

This completes the proof of Theorem 9.
We conclude from Theorems A and 9 that the simplest and the most typical

growth of the characteristic functions of f(z)^Mp,d satisfying (3.3) is regular
variation of order p.
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Now, we refine the estimate (2) for all f(z)(=Mp,δ whose characteristics
vary regularly with order p.

Case 1. α(/)=0. Choose /z(r)e52 arbitrarily satisfying

with some ε>0. Such an /ι(r)eS2 certainly exists. (See Lemma 12.) Then the
estimate (1) holds on an unbounded sequence of r. (See Theorem 2.)

Case 2. j8(/)=0 or 0</3(/)<-J—α(/)^ + oo. In these cases, for any h(r)

eSi, we have the estimate (1) for certain arbitrarily large values of r. (For
the proof, see Theorems 7 and 8.)

Case 3. 0<β(f)<a(f)^^j-j8(/)< + oo. Let h(r)^S2 be given. Then the

estimate

(3.14) logm*(r, /)> π p (cosπp-l+δXl-KrWir, f)
srnπp

holds for a sequence of r->co. (See Corollary 1 of [10].)

Case 4. β(f)—-\-oo. Choose h(r)^S2 arbitrarily such that

0-co) .

with some ε>0. To see such a /ι(r)e52 exists, we may note that any slowly
varying function can be written as

where \imc(r)=c>0 and lime(ί)=0. (See [8, p45].) Then the estimate (3.14)
r-oo ί-»oo

holds for a sequence of r—>oo. (See [10, Theorem 1].)
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