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ON THE GROWTH OF MEROMORPHIC FUNCTIONS
OF ORDER LESS THAN 1/2; IV

By HipEHARU UEDA

Introduction. This note is a continuation of [10]. The notational conven-
tions of [10] are adopted without modifications and strictly adhered to. We
supplement Theorems 1, 2 and 3 of [10] by the information contained in the
theorems of the present note.

In everything that follows

(i) p and ¢ are numbers such that 0<p<1/2 and 1—cosTp<d=1;

(ii) a(f):lir? supT(r, f)/r°, ,B(f)zlirp inf T'(r, f)/r?, where f(z) is a mero-

morphic function of order p.
We first prove in §1

THEOREM 6. Let f(z)= M,,s5 be of minimal type. Then thereis an h(r)ES,
such that

(1) log m*(r, f)>—=—(cos mp—1+)L+h(r)T(r, )

TP

for certain arbitrarily large values of r.

si

Our second result, which is proved in § 2, is the following

THEOREM 7. Let h(r)ES, be given. If f(z2)eM, ; satisfies B(f)=0, then
the estimate (1) holds for a sequence of r—oo.

Remarks. (i) Theorem 3 of [10] is contained in the above Theorem 7.
(ii) Modifying a part of the proof of Theorem 7, we are able to show the
following

THEOREM 8. Let k=k(p) and K,=K,(p) be positive constants which appear
in Lemma 13 and (2.14), respectively. If f(z)=M,,s satisfies 0K B(f)<(k/K)a(f)
< +oo, then the estimate (1) holds with any h(r)ES, on an unbounded sequence of r.

In §3, we use our results stated above and in [10] to refine the estimate
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@) log m*(r, f)> ’I’l" (cosmo—1+8)1—e)T(r, f) (£30, r=ry—co)

o

for all f(z)e M, s whose characteristics vary regularly with order p. It was
this refinement that provided the impetus for the previous and the present works.
We say, according to Baernstein [2], that the function ¢(r) varies regularly
with order p if ¢(r)~r?L(r) (r—co) for some slowly varying function L(#).

si

1. We start by showing the following

LEMMA 12. Given G(r) positive and continuous for r=r,, G(r)— oo (r—c0),
there exists a function h(r)eS, such that

(1.1) S:hg—t)dtgG(r)-l-C r=1),

where C is a positive constant depending only on G(r).

Proof. By assumptions on G(r), we find a positive integer n, and an in-
creasing unbounded sequence {r,}%, with the property that G(r)>G(ra)=n (r >r,).
Choose {R.}%, such that

Ruy=ray Rug1=7ng1,
R,=r, (n=n,+2),
Ryss/Rys12(Ryii/R3)? (nzny).
Define a function h,(») (r=7,, by
hy(r)={10g(Rn+1/Ra)} ™ (RaSr<Rpsy, nZmo).

Then h,(r) is positive, decreasing, and tends to 0 as r—oo. We define

Hr=n—1+|" m@ear.

Then if R,<r<Rn,+ (n=ny), )
H(N=H\(Rps)=n,—1+(n—n,+1)=n=Gr)=G().

Now, define A(») (r=0) by
h()={10g(Ryy+1/Ra} ™" (O0=r<vRy Rup),
h(r)={10g(Rn+;/Rn)} " (RaSr<~/RuRosy, n2Zn,+1),

and by linear interpolation otherwise. Clearly h(r)eS,, and.if we. put

H(r):no—l—}—g: ROt
Ty
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then HN=H,(r)=G)r=r,,). Thus, with a suitable positive constant C
(gS:"°h(t)t-ldt~no+1), we obtain (1.1).
The proof of Theorem 6 is a combination of Lemma 12 and Theorem 2 in
[10].
Proof of Theorem 6. Let f(z)=M,,s be of minimal type, and set
1.2) Gr)=log(r?/T(, ) (r>0).

Then G(r) satisfies the assumptions of Lemma 12, so we find a function h(r)eS,
satisfying (1.1) with a suitable positive constant C. Now, choose a positive
number K<C(p, 0) arbitrarily, where C(p, 8) is defined by (5) in [10], and put
h(r)=Kh(r)=S,. Then in view of (1.2)

T(r, f)=r°expl—G(r)} <ere exp{——K“S:hl(t)t“dt}.

Hence from Theorem 2 we deduce (1) with A(r) replaced by h,(r) for certain
arbitrarily large values of 7.

2. Let f(z)eM, ; be given, and let a be a complex number satisfying
f(0)==a and

2.1 N(r, oo, /)<(A—=8N(r, a, ))+0(1) (r—co).

We set

. L, Hd—z/ay) P
(2.2) Fi@)=f(z)—a=cz ”——————H(l_z/bn) =cz? 0@

=cz ?Fy(2),

where ¢ is a nonzero constant and p is a-nonnegative integer. It is convenient
to introduce the notation

2.3) P@=1(14z/1a.]), Q@=I1—z/|b.]), Fi(2)=P(2)/Q@).

Our proofs of Theorems 7 and 8 make use of the following

LEMMA 13. (See [1, Lemma 1].) Let F\(z) be defined by (2.2). Then there
exist constants K=K(p), k="Fk(p) depending only on p satisfying 0<k<K<4mw+
2rn?/log 2, such that for any r,>r,>0,

S”{npN(t, oo, By)+sinzplogm*(t, £)—rpcoszoNG, 0, B)}i-1-0dt
71
>kT(r,, Fl)rIP—KT(ng, F‘l)rgp-

Now choose R sufficiently large so that F,(z) has N zeros and M poles in
|z| <R, where max(M, N)>0. Let
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N

N

II(1—-z/a,) (I+z/]aal)
=, fa= L@

IL(1—2/ba) IL(—z/1bal) 9@

and define f5(z) by Fi(2)=f.(2)fs(z). Using a result of Edrei [4, Lemma A] we
have for r<R/2

@4) T(r, F)ST(r, fO+T(r, ST, fo+ - T@R, ).

Here we apply Lemma 13 to f,(z) to obtain for any 7, s, 0<#,<r,<R

(2 5) Srz{ﬂpN(t) o, 1 1) 'Sin T p 10 *(t} fz) n_p COS”pN(t, 0’ Fl)}t_l_p !t
. 71 gm —
>kT(ry, fz)T’I"—KT(ZrZ, fg)rgp.

Proof of Theorem 7. Suppose that f(z)EM,,; satisfies 0=L(f)<a(f)<+co
and

woN(r, oo, F)+sinwp logm*(r, F)—mpcoswtpN(r, 0, F)
(2.6)
Smp(cosmp—14+0)h()T(r, F)+Klogr  (r=re=ro(K,)),

where F(z) is defined by (2.2) and K, is any fixed positive number. By (2.2)
and (2.3) we have

N(@r, oo, F)=N(r, oo, F)+plogr,
2.7 logm*(r, F)=log|c|—plogr+logm*(r, Fy),
N(r, 0, F)=N(, 0, F,).
Substituting (2.7) into (2.6), we obtain
roN(r, oo, F))+sinzplogm*(r, F,)—npcosmpoN(r, 0, F,)
2.8) srp(costo—1+0)h()T(r, F)+{K,— p(xp—sinzp)}logr
—sinzwploglc| (r=r,).

Hence from (2.5) and (2.8) it follows that for any 7, s, ro<r;<r.<R

mp(cos mo—1+)| “hOT(t, Pr-t=rdi+ K| "(logty--edt
T1 1

@9) +sinp| {logmt, fo)—logm¥(t, Fjt-i=rdt
1

>kT(ry, f)r1°—KT 2rs, fo)r3’,

where K;(=K,) is a suitable constant. Usng a result of Edrei [4, Lemma A]
again, we have for 0<t<R/2
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log m*(t, F)=logm*(t, f,)+log m*@, fs)

(2.10) 2
=log m*(t, f.)—14T (2R, F))t/R.
By (2.4)
(2.11) T(ry, fri*2T(r,, F)rif—14-2¢(r/R)}*TQ2R, F)2R)™".

Also, if we choose »,=R/2, we have
T(2r2, f)=T(R, f)SN(R, 0, P)+N(R, 0, Q)+log Po(R)+log Qo(—R)
<2T(R, F)+n(R, 0, P,)log2+N(R, 0, P,)+n(R, 0, Q,)log2+N(R, 0, Q,)
<2T(R, F,)+2T@2R, F)+T(R, F,))S6T(2R, F,),

so that

(2.12) T(2rs, fo)r;<6-4°T(2R, F,)(2R) " .

Further, with »,=R/2 (>1) we have

T2
log)t=1-rdt=—p(1 20+ p(log ) )rif
213 Srl(og) o '(logra)rz?+p " (logry)ry
—o7 4o 1P <p *plogr,+1rie.
Incorporating (2.10)-(2.13) into (2.9), it follows that for »,<r,<R/2
mpcosmp—1+3)|" AT, Ft-=rdi+Kyp=ogrris+Kp ri?
71
+14(1—p)'22e~sinw T (2R, F)(2R)=*>kT(r,, F\)r1°
—7-4°kT(2R, F)2R) °—6-4°KT(2R, F)2R)™", i.e.,
o1 np(cosnp—1+5)§R’2h<t)T(t, F)t-edt+Kyp-(log r)rio+ Koo~
. T1

>kT(ry, F)ri°— K, T@2R, F)(2R)"*
with a suitable positive constant K,=K,(p).

Case 1. Assume first that a(f)=0. Let R—oo in (2.14) to get

np(cosnp—l—}—a)rh(t)T(t, Pyt-1-0dt+ K, p~'(log r1)ri°
(2.15) 1
+ Ko 1P = kT(ry, F)ri’.
Choose a sequence {(r;),}—oo such that
T, Ft7*<T((rv)n, F)r)n?  E>@0n).

Then we deduce from (2.15) and (2.2) that for n=n,
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—_— i -1 -1
216 ro(cos Tp 1+5)S(T1)nh(t)t dt4-K,p 1og(r)n/T(rdn, F)

+ K07/ T (1), FYZRT((r)n, FO)/T(7)n, F)>k/2.

Since A(r)eS,, the left hand side of (2.16)—0 (n—o0). This is a contradiction.

Case 2. Next we consider the case a=a(f)s(Q, +o0). Given >0, there
is a number R,(=7,) such that =R, implies T(t, F)t"?<a-+e. Hence by (2.14)
we have for R,<r,<R/2
/
o ro(cosmp—145) (a—l—e)SR ROt di4Kop-log rr o+ Kp~tri?
. 71

>kT(ry, Fri?—K,T(@2R, F)2R)*.

Choose {(r)),}—o0, {2R,}—c0 such that R, <(r,),<R,/2 (n=1, 2, ---) and T((r),,
F)r)at—a, TQR,, F)2R,)*—0 (n—). Then from (2.17) it follows that for
n=ne="ny(e)

xp(cosnp—1+a)(a+e)gf"’2h(z)z-*dt+e><a—e)k-eK,.

1)

Now, let n—oo to get e=(a—e)k—eK,. Since e(>0) was arbitrary, this implies
k<0, a contradiction.

Case 3. It remains to consider the case a(f)=+oco. First, choose {2R,}—
oo such that R,>2, and

(2.18) T@2R,, F))2R,)*—0  (n—oo).
Next, define {(r)n} (1=(r)a=Ra/2) by

(2.19) max T@, F)X =T, F)r)z’.
1St<Rp/2

Then the fact that a(f)=-+4oco and (2.19) give

(2.20) T((#1)n, F)r)at—00 (n—o0),

which, in particular, implies {(r;)»}—c0. Further, in view of (2.18) and (2.20)
we see that (7).<R./2(n=n,). Now, we use (2.14) with r,=(r,), and R=R,
(n=n,). Taking (2.19) into consideration, we have

70(c0s 7o —1+8)(T((r ), F><n>zp§"’”2 ()t dt+ Ky (10g(r )a)r)®
(2.21) (ron

+K3P—2(7’1);P>kT((7’1)n; F)(r)a?—K.TQ2R,, F)2R,)".
Since h(r)eS,, we deduce from (2.21), (2.18) and (2.2) that
T((#Dn, F)r)a—0  (n—o0),
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which contradicts (2.20).

Thus we see that (2.6) is not valid. Hence there is a sequence {r,}—
such that
TpN(r, co, F)+sinmplogm*(r, F)—zmpcostpoN(r, 0, F)
(2.22)
>rp(costp—1+0)h()T(r, F)+K,logr (r=r,),

where K, is any fixed positive number. As in the proof of Theorem 1 of [9],
we deduce from (2.22) that

sinzp logm*(r, F)>wp(coswtp—14+0)1+hA()T(r, F)4-K.logr—O() (r=r,).
From this and (2.2) it follows that
sinzp logm*(r, f)>=mp(coszp—1+0)1+h(r)T(r, f)+K.logr—0(1)
>rpocoswp—14+0)A+hENT(r, f) (r=ra).
3. Edrei proved the following Theorem A in [5].
THEOREM A. Assume that f(z)EM,,; satisfies the relation

. logm*(r, f) _ _=p _
lm;l_iup T, /)~ smzp (cosTp—1-+9).

Then there exist three positive sequences {r,}—o0, {rp}—co, {rp}—oo having all
the following properties.

(1) 7<r,<ri<rpy, (n=1,2,3, ---).

(ii) 7a/rp—o0, ri/r,— as n—oo,

oy . logm*(ra, ) wp _
(iii) 1‘151” TG /)~ sinzp (cosTp—1+49).

(v) Put L()=T(, f)/r* (>0), and let A=nQ 4, ¥0). Then

L(or) _

lim =1 (¢>0)
ey L

and
lim N ) g5

rze N(r, a, f) -

TE.
hold, where a=C is any number satisfying f(0)#a and (1) of [10].

(v) Let s>0 and >0 be given. Consider the annuli A.(s)={z=re'’; e=*
<r/ra<e’}, the sectors Su(s; o—e, p+e)={z=re'?= A.(s); p—e<O<p-+¢}, and
let {w,} be any real sequence defined by the conditions m*(r,, f—a)=|f(r.e**»)—al
(k=1,2,3, ). Let vy(a) be the number of zeros of f(z)—a in the sector Ax(s)
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—Sau(s; w,—e, wy+e), and v,(c0) the number of poles of f(2) in An(s)—Sa(s; w,
+rn—e, w,+n+e). Then

. va(@)Fva(0)
N T R

The above Edrei’s result implies that the extremal functions f(z) for the
estimate (2) satisfy the relation T'(», f)~r°L(r) (with slowly varying functions
L(r)) at least locally as r—oo,

In this section we first prove the followmg

THEOREM 9. Let f(z) be a meromorphic function of the form

_ II+z/a,) _ P2
f(Z)—— H(l—Z/bn) = Q(Z) (0<an§an+1’ 0<bn§bn+l))

and let L(r) be a slowly varying function. Then

3.1 T(r, f)~r?L()  (r—o0, 0<p<1/2)

and

3.2) NG, 00, F~(A—8N(r, 0, ) (r—ro0, 1—coszp<d<1)
or

3.2y N, o, H=0 (20, 6=1)

imply that for ¢>0

(3.3) logm*(r, )< Slg”p (cosmp—1+0)(1+)T(r, ) (r=roe)).

Proof. Let {r,} be any positive, increasing, unbounded sequence. Then
the hypothesis (3.1) implies that {r,} is a sequence of P4lya peaks of order p
for T(r, f). (See [2, p 94].) Using the assumption (3.2) or (3.2)), we easily
deduce that

(GX) 8(c0, f)=8>1—cosmp.
Now, put J(r)={0=(—=, +x]; | f(ret®)|=1}. Then the spread relation (See
[3].) and (3.4) yield

lim inf meas J(r,)=min {% sin"\/(m%ﬁ—, 27:}:27:, i.e.

N —o0

(3.5) '1lzim meas J(r,)=2r.

From the first fundamental theorem and the Edrei-Fuchs Lemma (See [6, p 322]),
it follows that
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T(rn, f)_N(rn; 0: f):m(rn’ 0; f)=2_]7-z_—g-f: 1,0) \dﬁ

(3.6) \do

= e8| T

<11T(2r,, f) meas J(r,)° {1+1°g+<7n€¥1]77>}'

In view of (3.1) we have

3.7 TQ@ra, [)~20T(ra, f)  (n—00).
Substituting (3.5) and (3.7) into (3.6), we deduce that

(3.8 T(rn, )—N(a, 0, N=0(T(ra, f))  (n—c0).
Since the sequence {r,} was arbitrary, (3.8) gives

(3.9) N(r, 0, /)~T(r, f)  (r—o0),

and so by (3.1) and (3.2)

(3.10) N, 0, f)ereL(r)  (r—o0),

(3.11) N@r, oo, f)~1—=0)r*L(r)  (r—oo, l—cosmp<d<]).

Then an abelian argument (See, for example, [7, Theorem 2].) may be used to
prove

=_TP (r—oo
(3.12) log| P(ret?)| = sin7p {cos @p+o(L)}reL(r) (r , 101<x),
and

(3.13)  log|Q(rei?)| = ——t— ”rp (1=0){cos(z—0)p+o(L)}rP L(r) (r—oo, 0<60<2x).

Given >0, choose >0 with the property that cos(z—n)p—1+0<(coswpo—1+9)
(14+¢/2). Then (3.12), (3.13) and (3.1) give

logm*(r, f)=log|P(—r)| —log Q(—r)<log|P(re**~7)| —log Q(—7r)

mo
Sinp (COSE—MP—(1=0)F+oD}r*L(r)

>
sm7r (coswp—140)1+&)T(r, f) (F=rie)).
This completes the proof of Theorem 9.
We conclude from Theorems A and 9 that the simplest and the most typical
growth of the characteristic functions of f(z)eH,,; satisfying (3.3) is regular
variation of order p.
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Now, we refine the estimate (2) for all f(z)eM, s whose characteristics
vary regularly with order p.

Case 1. a(f)=0. Choose h(»)=S, arbitrarily satisfying

T, H=0(rrexp{- (l—s)IC(p, 3 ) e

with some ¢>0. Such an A(»)eS, certainly exists. (See Lemma 12.) Then the
estimate (1) holds on an unbounded sequence of ». (See Theorem 2.)

Case 2. B(f)=0 or 0<ﬁ(f)<KLa(f)§—l—oo. In these cases, for any A(r)
1

€S,, we have the estimate (1) for certain arbitrarily large values of ». (For
the proof, see Theorems 7 and 8.)

Case 3. 0<B(NH=Za(NHE I}(; B(f)<+o. Let h(r)eS, be given. Then the

estimate

(3.14) log m*(r, f)> Siﬁfr 5 (cosmp—1+8)1=h(NT(r, f)

holds for a sequence of r—oo. (See Corollary 1 of [10].)

Case 4. B(f)=+o. Choose h(r)S, arbitrarily such that

T(r, H=0(r* exp{(1+e)é‘(.0, 5>S: hiﬂ dt}) (re).

with some ¢>0. To see such a h(r)ES, exists, we may note that any slowly
varying function can be written as

Li)=c(r) exp(gl’ea)t-*dt),

where limc¢(»)=c>0 and %im et)=0. (See [8, p45].) Then the estimate (3.14)

holds for a sequence of r—oo. (See [10, Theorem 17.)
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