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SOME RESULTS IN GEOMETRY OF HYPERSURFACES

BY TAKASHI OKAYASU

0. Introduction.

In this paper we get several theorems about hypersurfaces in space forms.
In section 1, we show that if x : Mn-*En+1 is an isometric immersion of an

n-dimensional complete non-compact Riemannian manifold whose sectional cur-
vatures are greater than or equal to 0, then x(M) is unbounded in En+1. We
can prove this using Sacksteder theorem [12] which states that under the above
condition x(M) is the boundary of a convex body in En+1. But his proof is
rather long and his theorem is more than what we need. do. Carmo and Lima
[3] gave an independent proof of Sacksteder theorem, but it is also long. So
we give a direct and easy proof using so-called Beltrami maps which are defined
in do. Carmo and Warner [4].

In section 2, we show that if x : Mn—>Sn+1(l) is an isometric immersion of
an n-dimensional complete Riemannian manifold whose sectional curvatures are
less than or equal to 1 and n is greater than 3, then x(M) is totally geodesic.
Ferus almost proved this result in [6], [7]. We consider higher codimensional
cases.

All manifolds we consider in this paper are class C°°, connected and have
dimensions greater than or equal to 2. All immersions and vector fields are C°°.

The author would like to express his hearty thanks to Professor S. Tanno
for constant encouragement and advice.

1. Unboundedness of hypersurfaces.

The Beltrami maps are defined in M. do Carmo and F. Warner [2], and
their properties are discussed fully.

Let V G 5 W + 1 ( 1 ) (dEn+2)f and let Hv denote the open hemisphere of Sn+ί(l)
centered at v. The Beltrami map βv is the diffeomorphism of Hv onto the
hyperplane SvdEn+z tangent to Sn+1(l) at v obtained by central projection. We
consider Sv to be equipped with the canonical Riemannian structure induced
from En+2. βv map great spheres of the sphere onto planes of Sv, and vice
versa. We call this Beltrami map as spherical Beltrami map.
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The following proposition is in [4].

PROPOSITION 1. Let ve5 B + 1 (l), let XaHv be a hyper surface, and let X
denote the hypersurface βv(X) in Sv. Then Kx^l everywhere if and only if
Kjt^O everywhere.

Now we get the following.

THEOREM 1. Let Mn be a complete non-compact Riemannian manifold, and
suppose that there is a compact subset C such that KM^0 on M\C. If x : Mn->
En+1 is an isometric immersion, then x(M) ts unbounded in En+1.

Proof. Suppose x{M) is bounded in En+1. We regard En+1 as Sv. We
consider another Riemannian structure on M with respect to which

x: Mn-+Sn+1(l)

is an isometric immersion. We denote M with this Riemannian structure by M.
It isjsasy to see that M is complete. It follows from Proposition 1 that KM^1
on M\C. Using the same argument as in Bonnet theorem (cf. [2]), we conclude
that M is compact. This is a contradiction. (q. e. d.)

We define hyperbolic Beltrami map βa. Put

where Rn+2 is endowed with indefinite metric (dx1)2-^ ••• +(dxn+1)2—(dxn+2)2.
For a>0, we define the open cap Ca as

Ca^={x£EHn+\-l); xn+2<a}

Let Ta be the 0+l)-dimensional plane which is perpendicular to the xn+2-axis
and contains (0, - , 0, a). The Beltrami map βa is the diffeomorphism of Ca

into the hyperplane Ta obtained by the projection from the center (0, - , 0, -1) .
For this Beltrami map, we have a proposition similar to Proposition 1.
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THEOREM 2. Let Mn be a complete non-compact Riemannian manifold, and
suppose there is a compact subset C such that KM^ — l on M^C. If x : Mn-+
Hn+1(—1) is an isometric immersion, then x(M) is unbounded in Hn+1(—1).

Proof. Suppose x{M) is bounded in Hn+\—1). We can assume x(M) is
contained in Cα. We define another Riemannian structure on M with respect
to which

βaoχ: Mn->Ta

is an isometric immersion. We denote M with this Riemannian structure by M.
Then M is complete and Ka^O on M\C, and M is bounded in En+\ This
contradicts theorem 1. (q. e. d.)

Next we turn to the negative curvature case.
Let x : Mn-*Nm(c) be an isometric immersion of an n-dimensional Riemannian

manifold M in an m-dimensional Riemannian manifold N with constant sectional
curvature c. Let h denote the second fundamental form. For x^M, define

T0(x)={X^TxM; h(X, Y)=0 for all Y<ΞTXM\

T0(x) is called the space of relative nullity at x, and its dimension v(x) is called
the index of relative nullity at x. The minimal value vQ of v on M is called
the index of relative nullity of M. v is upper-semicontinuous, and so the set
G where v=v0 holds is open. The following theorem is well-known.

THEOREM 3 ([5], [9]). To is integrable on G, and its integral manifolds are
totally geodesic submanifolds of M. They are totally geodesically immersed in
Nm(c) by x. If M is complete, then the maximal integral manifolds of T0\G are
also complete.

Now we show the following.

THEOREM 4. Let Mn be a non-compact complete n-dimensional Riemannian
manifold, and suppose there is a compact subset C such that KM^0 on M^C. If x :
Mn->En+1 is an isometric immersion and n^3, then x(M) is unbounded in En+1.
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Proof. It follows from the curvature hypothesis that v(x)^n—2 at every
XZΞM\C. Put

Suppose Go (the closure of Go) is not compact. Since Go is open, we can
choose pk^Go for any integer k>0 such that dM(Pk> Q^k. It follows from
theorem 3 that the (n—2)-dimensional totally geodesic manifold in M through
pk can be extended so far as it meets C. This totally geodesic submanifold
is also totally geodesic in En+1, and so M is not bounded in En+1. If Go is
compact, put

G ! = ^ e M \ ( C u G 0 ) ; v(x)=n-l\

Suppose Gi is not compact. Since Gλ is open, the same argument as above
holds good, and Mis not bounded in En+1. If Gx is compact, then M\(CuG0WGi)
is non-compact and v=n there. So we ,see that M is not bounded in En+1.

(q. e. d.)

We can show the following theorem in the same way.

THEOREM 5. Let Mn be a non-compact complete n-dimensional Riemannian
manifold, and suppose there is a compact subset C such that KM^~l on M^C.
If x : Mn->Hn+1(—l) is an isometric immersion and n^3, then x(M) is unbounded in

2. Submanifold with KM^l in Sπ+ί?(l).

Consider the following question.

Let x : Mn-*Sn+p(l) be an isometric immersion of a complete n-dimensional
Riemannian manifold M with KM^1 in Sn+P(l). Is x{M) totally geodesic?

Of course if p^n — 1 the flat torus gives negative answer to this question.
In low codimension we can give a partial positive answer. First we consider
the case p = L

THEOREM 6. // n ^ 4 and p — l, then x{M) is totally geodesic.

Proof. Assume rcΞ>5. It is easily proved that the index of relative nullity
2^o^n-2. If Vo^n—1, then KM=1 and according to O'Neill and Stiel [10], we
can conclude that x(M) is totally geodesic. So we suppose vo=n—2. Choose a
point x e M which satisfies v(x)=n— 2. The maximal integral manifold Li of
To through x is mapped to a (n—2)-dimensional great sphere in S71+1(l) Choose
another point 3/εM which is not on Lx and sufficiently near x. The maximal
integral manifold L2 of To through y is also mapped to a (n— 2)-great sphere
in Sn+\1). We consider Snηrl(l) as the unit hypersphere in En+2. Since L1 and
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L2 do not intersect and Llt L2 are respectively on some in — l)-planes through
the origin in En+2,

holds; that is n^4, this is a contradiction.
If n=4, we need the following theorem due to Ferus [7].
Let p{t) denote the largest integer such that the flbration

of Stiefel manifolds has a global cross section (the points in V'tiT are the ordered
r-tuples of linearly independent vectors in Rι). For every integer n define vn

to be the largest integer such that pin—vn)^vn-\-l.

THEOREM 7 ([7]). Let Mn be an n-dimensional Riemanman manifold and To

a v-dimensionaly integrable distribution on Mn with the following properties;
(1) the maximal integral manifolds of To are totally geodesic and complete.
(2) the sectional curvature of M has the same positive value k on all planes

spanned by tangent vectors X, Y with I e T 0 and Y^TQ.

then v>vn implies v — n.

We finish the proof of theorem 6. As v4=0 [7] and v^2, the conclusion
follows. (q. e. d.)

If n=2, 3, there are counter-examples.

n=2 f:

72=3

χl+χl+χί+χl+χϊ=l

This is a homogeneous Riemannian manifold SOi3)/Z2xZ2 and its principal

curvatures are equal to VΊΓ, 0, — V T [13].

We consider higher codimentional cases.

LEMMA 1. Let x : Mn->Nn+pic) be an isometric immersion of an n-dimen-
sional Riemannian manifold Mn with KM^c in in + p)-dimensional Riemannian
manifold Nn+Pic) with KN=C. If the normal connection is fiat and n>2p, then
the index of relative nullity v0 satisfies v^n—2p.

Proof. If p~l, lemma is clear. Suppose p~2. Since the normal connection
is flat, there exist orthonormal normal vector fields ξu ξ2 such that Λa ia=l, 2)
is simultaneously diagonalizable where we write Λa—Λξa, the second funda-
mental forms associated with ξa. Let λΛil il^i^n, l ^ α ^ 2 ) be the eigenvalues
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of Λa corresponding to orthonormal eigenvectors Ex. Let p, q, r be the numbers
of positive, zero and negative λlt% (l^i^n). We may assume p^r1 (by the
change of the sign of ξx if neccessary). We may assume λltl>0 (l^tt^pi), and

qi). We have

(1)

From Gauss equation and the curvature assumption, we have

λ1>i'λ1J+λ2>i'λ2,JS0 (l^i<j^pi+qi). (2)

Since λhi^

Then the same arguement of the p — \ case applies, we have pi+qi—2 (>0)
zeros in λ2>3 (1^/^ί i+tf i ) . If ί i ^ l , then q1^=n—p1—r{^n—2. So we may
assume pι>h It follows from (2) that the zeros are in λ2ιJ (
So q^p\Λ-q\—2y that is pi^2. Since pi^rlf we have r^2. Hence

This proves p=2 case. General case can be proved in the same way. (q. e. d.)

THEOREM 8. Let x : Mn->Sn+p(l) be an isometric immersion of an n-dimen-
sional complete Riemannian manifold with KM^X- If the normal connection is
flat and n^2p+1, then x(M) is totally geodesic.

Proof. According to Ferus [7],

On the other hand, from lemma, we have

vo^n-2

The hypothesis n^2p+1 implies

Thus it follows from theorem 7 that vo=n, that is, x(M) is totally geodesic.
(q. e. d.)

3. Remarks.

a) In theorem 1, 2 higher codimensional cases don't hold. It is easy to
construct counter-examples.

b) Using lemma 1, we can slightly extend theorem 3, 4 to higher codimen-
sional cases.
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c) The case n=2 in theorem 4, that is, the existance in Ez of a complete

bounded surface of non-positive curvature, is completely open. A possible

example is constructed by Rozendorn [11] which has a denumerable number of

isolated singular points. Note that in this example inf KM— — °°. This question

is closely related to Jorge and Koutroufiotis [8].

d) When we almost finished this work, we found that Borisenko [1] had

given positive answer to the question posed in section 2 under the condition that

M is compact and />< —l/2+VΪ74+n/2.
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