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§ 1. In 1912 Montel [10] proved a result which may be formulated as follows.
Let f(z), z=x+iy, be regular and bounded in a half-strip: a<x<b, y>0 and let
f(ξ+iy) have a limit as y tends to infinity for a fixed ξ, a<ξ<b. Then/Cx+ry)
has the same limit as y tends to infinity for each x in (a, b), uniformly on any
closed subinterval of (α, b). In 1915 Lindelof [9] showed that the same result
follows from the assumption that the limit exists on a more general path. Hardy,
Ingham and Pόlya [5] considered in the formulation of Montel the problem for
\f{x+iy)\ rather than f(x+iy) and found that the existence of the limit for the
modulus for one ξ was not enough but that if lim \f{x+iy)\ existed for x=a, β

y-*°°

with a<a<β<b and β—a<(b—a)/2 conclusions analogous to MonteΓs are ob-
tained. They gave also some extensions and embellishments were made by
Miss Cartwright [2], Hay man [6] and Bowen [1]. We will study a similar
problem for the class of functions such that the Riemann image given by the
mapping has finite spherical area and will find that then the existence of the
limit for the modulus on one line implies a situation analogous to MonteΓs result.
It turns out that results of this sort can be most appropriately formulated in
terms of cluster sets. Also we can substantially weaken the requirements on
the set of approach. Finally even in the family of bounded functions the cluster
set interpretation provides new insights.

§2. Our results are most conveniently stated in terms of a half-strip for
approach to its boundary point at infinity so we indicate briefly our terminology.

DEFINITION 1. Let S denote the half-strip a<x<b, y>0. Let T be a subset
of S, Tλ its subset on which y^λ. For / defined on S the cluster set C(f, T, σ)
of / on T at σ, the boundary point of S at the point at infinity, is defined to be
ΠC1 f(Tχ) where Cl denotes closure on the sphere.

DEFINITION 2. £F(S) denotes the family of functions meromorphic on S for
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which the Riemann image of S has finite spherical area.

THEOREM 1. Let f<B${S). Let T be a closed subset of S such that for fixed
L (>0) every rectangle a<x<b, Yζ^y^Y+L, Y>0, contains a subcontinuum of
T of diameter at least δ for a certain positive δ. Let U be a subset of a'^x^bf

y

y>0 with a<a'<b'<b. Then C(/, Uy σ)dC((f, T, σ). For x in [α', b'~] the
spherical distance of f(x+iy) from C(f, T, σ) tends to zero uniformly as y tends
to infinity.

We begin by proving the following auxiliary result.

LEMMA. Let K be a continuum of diameter at least δ (>0) in the rectangle
R: a^x^b. —{l/2)L^y^(l/2)L and let P be a point (&K) on the segment a+η
<Lχ<^b—θ, y=0, η, θ>0, η+θ<b—a. Let Γ be the family of open locally rec-
tifiable arcs in R—dR—{P)—K (dR denotes the boundary of R) tending to K in
each sense and separating P from dR—K in R—dR—K. Then the module m of
Γ is bounded from zero by a quantity depending only on b—a, Ly δ, η, θ.

Evidently, we may assume without loss of generality that θ—iη, δ<(\/2)η,
Ύj<{l/2)L. Suppose that K meets one of the sets a^x^a+(l/2)η, —(

—0-/2)L£y^—(l/2)L+(l/2)7}, for example the first one. Let ά=
min siz and let R be the rectangle ά^x^b, ~(l/2)L^y£(l/2)L. Further let
zE:K

in be the module related to R as m is to R. Evidently ih^m. Moreover m is
equal to the triad module [7, 8] m (P, a, D) where D is the component of It—K
containing P and a is the open border arc of D determined by K. Let m be
the triad module m(P, β, D) where β is the open border arc of D complementary
to a. It is well known (and very easy to prove) that mm =4. Also the Eu-
clidean metric provides the upper bound L(b—ά)/δ2 for m. Thus m^WL'Kb—aY1.
The same bound applies similarly in the other cases. Otherwise let Q be a
point of K closest to P. A circle with centre Q of radius (l/2)δ must meet
K. The locus A of points at a constant distance (l/2)δ from the segment s
joining P and Q lies in R—dR and the module of Γ is at least as large as the
module of the doubly-connected domain bounded by A and s. Again the latter
quantity is bounded from zero by a value of the desired sort.

Now let {zn} be a sequence of points in U—T tending to σ and let C be a
continuum such that C(f, T, σ)(ZC. For v>0 let Cv be the set of points at
spherical distance at most v from C. It is a continuum. Suppose that {f(zn)\
has an accumulation point B at distance 2μ from C (μ>0). Let Δ be the com-
plementary component of Cμ containing B. (Δ is simply-connected.) Let Sy denote
the set a<x<b, y>Y. Let e be prescribed with 0<e<μ. For Y sufficiently
large the Riemann image of Sy under / will have spherical area less than e,
that image will fail to cover some point of Δ which we may assume to be the
point at infinity and f(Tγ)(ZCe. There will be a subsequence {znk} of {zn} with
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Jznk>Y+(l/2)L and /(znjk)e=Δ, all k. The rectangle a^x^b, Jznk~(l/2)L^y
^k<$znk+(\/2)L contains a continuum Kk in T of diameter at least δ. f(znk) can
be joined to the point at infinity by a path τk in Δ. Let JΓ* be the family of
open locally rectifiable arcs in Sγ— {znk} tending in each sense to Kk and separat-
ing znk from dSγ—Kk. If ϊ^Γk it follows from the argument principle that f(γ)
meets τk. Thus the spherical length of f(γ) is at least 2(μ—e). The metric
induced in SY by the spherical metric gives an upper bound for the module of
Γk as e(2(μ—e))~2. This, however, contradicts the result of the Lemma. Thus
any accumulation point of {/(*„)} lies in C and C(/, JJ, σ)(ZC. On the other
hand for any point H not in C(f, T, σ) there is a continuum containing C(f, T, σ)
and not containing H. Thus C(f, U, σ)dC(f, T, σ). The uniformity statement
is immediate.

§ 3. The following corollaries serve to illustrate simple cases of Theorem 1.
Some of them might also be obtained by other techniques and admit considerably
simplified direct proofs by the method of the extremal metric.

COROLLARY 1. Let /e£F(S). Then for each half-line Lx: a<x<b, y>0 the
cluster set C(f, Lx, σ) is the same.

This result is known for univalent functions [3, p. 178; 12, p. 275].

COROLLARY 2. Let / G Ϊ ( S ) . Let lim |/(£+ry)| exist for a certain value ξ,

a<ξ<b, and have the value A. Then lim \f{x+iy)\—Λ for each x in a<x<b,
y~>oo

uniformly on any closed subinterval.

COROLLARY 3. Let / G £F(S). Let \ϊmf(z) exist on a path in S tending to σ.

Then lim/(z) exists on any path in S tending non-tangentially to σ and has the
z-*σ

same value.

COROLLARY 4. Let /e£F(S). Let Mm &f{z)—c on a path in S tending to σ
z-*σ

and Y\mSf{z)=d on a path in S tending to σ, where c, d are real numbers. Then

on any path in S tending non-tangentially to σ either lim/(z) exists and has the
z->σ

value c+id or f(z) tends to the point at infinity. In either case the limit exists
uniformly on the substrip for which ar^x^br, a<a''<b''<b.

This is an analogue of a result due to Gehring and Lohwater [4] for bounded
functions. It is readily seen that both alternatives are possible.

Remark. Evidently all these results extend to the case where / is quasicon-
formal (not necessarily (1,1)) rather than meromorphic. It may be noted that
Vuorinen [13] has studied the extension of Lindelδf s theorem to quasiconformal
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mappings in higher dimensions.

§4. THEOREM 2. Let f be regular and bounded in S and let lim |/(α+ry) |
y-*°°

=lim \f(β+iy)\=A for a<a<β<b. Suppose that V=C(f, La, σ)KJC(f, Lβ, σ) does
T/-»CO

not coincide with {\w\—A}. Then lim \f(xJriy)\=Λ for every x in a<x<b. uni-
y~*°°

formly on any closed subinterval.

Let S denote the set a<x<β, y>0. It follows .from a well-known theorem
[3, p. 91; 11, p. 17] that 3C(/, 5, σ)C.V, thus C(/, .§, σ)dV since / is bounded.
In particular C(f, Lx, σ)(Z{\w\~A) for every x in a<x<β. The theorem then
follows from the original Hardy-Ingham-Pόlya result.
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