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ON HOMOTOPY INVARIANCE OF THE SOLVABILITY OF

NONLINEAR VARIATIONAL INEQUALITIES

BY NORIMICHI HIRANO

§ 1. Introduction

Let E be a Banach space and 2E* the space of subsets of the dual space
of E. Let A be an operator from E into 2E\ A is said to be monotone if

for yi^AxS—ly 2). Let H be a nonempty closed convex subset of E and p be
an element of E*. An element x0 in £ is said to be a solution of the varia-
tional inequality with respect to p if there exists yo^Axo such that

(1.1) <yo-p, x-xo>^0 for all

The variational inequalities of the form (1.1) has been studied by many
authors with applications to convex programming and a large class of free-
boundary problems. The existence of solutions for the variational inequality
(1.1) was investigated by Browder [2], Rockaffeler [7], Stampacchia [8], Taka-
hashi [9] and others.

Our purpose in this paper is to consider invariance of the solvability of the
variational inequality (1.1) under a homotopy of monotone operators. Recently
Browder established a degree theory for a class of monotone type operators.
In [4], he defined a homotopy of maximal monotone operators and proved
homotopy invariance of the degree. In this paper we concern a homotopy of
monotone operators in the sense of Browder. Our method is based on the method
employed in [4] and [6].

§ 2. Perliminaries and statement of the main result.

Let E be a reflexive Banach space and C, K be nonempty closed convex
subsets of E. Then we denote by dcK the set of Z<ΞK such that U{z)ίΛ{C—K)
^φ for every nighborhood of U(z) of z and by icK the set of z&K such that
U(z)Γ\(C—K)=φ for some neighborhood U(z) of z. We also denote by cl(C) the
closure of C. Let T be a mapping from E into 2E\ Then we denote by G(T)
the graph G(T)={(y, X)<ΞE*XE: y^Tx} of Tand by R(T) the range of T, i.e.,
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R(T)={y^E*: y^Tx for some x e £ } . Let A be a monotone operator from E
into 2E\ A is said to be maximal monotone if its graph G(A) is not properly
contained in any other graph of monotone operator from E into 2E\ Let / : E-+
R\j {+00} be a proper lower semicontinuous convex function. The subdifferen-
tial 9/ of / is the mapping defined by

9/(X)={X*GΞ£*: f{x)ύf{u)+<x*, x-u>, for all UZΞE\.

It is well known that 9/ is maximal monotone. Let i ί be a nonempty closed
convex subset of E. Then the indicator function Iκ : E->R\J{+00} is defined by

O if

+oo if xeκ.

The indicator function Iκ is a proper lower semicontinuous convex function and
x*^dlκx if and only if

(2.1) xe:K and <**, x-u>^0 for all u&K.

By using the subdifferential of the indicator function IH, the variational in-
equality (1.1) can be rewritten as

(2.2) p^Axo+dIHxo.

Let A be a mapping from H into 2E\ where £ * is endowed with its weak
topology. A is said to be upper semicontinuous from H into 2E*, if for each
x^H and each neighborhood V of Ax, there exists a nighborbood ί/ of x such
that AuCZV for all u^UίλH. Suppose that A maps bounded sets of H into
bounded sets of £ * and A% is closed convex subset of £ * for each X G E Then
A is upper semicontiuous if and only if the graph G{A) of A is a closed subset
of E*xH (cf. [3]). Let \A(t): f e[0, 1]} be a family of monotone operators from
H into 2£*. Then {̂ 4(0 : fe[0, 1]} is said to be a pseudo-monotone homotopy of
monotone operators from H into 2** if {A(t): fe[0, 1]} satisfies the following
condition (cf. Browder [4]):

(*) Let {f<}C[0, 1] be a sequence converging to t and {(*», c J J C ^ X / / be
a sequence such that zi^A(tι)xι for each z'^1, Xi—>% weakly in E} and 2̂ —>z
weakly in £*. Suppose that

(2.3) ϊm\<zlf xt>^<z, x).
l - » C X 5

Then z£ΞA{t)x and <zt, xt>-><z, x>.

Remark. To add to (*), Browder [4] assumed that 0&A(t)0 and A{t) is
maximal monotone for each ίe [0 , 1],

From the definition of the homotopy {^4(ί): ί e [0 , 1]} of monotone operators,
we see that for each fe[0, 1], ̂ 4(ί) is upper-semitinuous from // into 2̂ *. Let
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\Λ(t): ί e [ 0 , 1]} be a pseudo-monotone homotopy of monotone operators from
H into E*. Then the pseudo-monotone homotopy {A(t): ί e [0 , 1]} is said to be
bounded if for each bounded subset G of H, the set \j{A(t)(G): ί e [0, 1]} is
bounded.

The duality mapping J of E into 2E* is given by

/(%)={%*££*: <** * > = | x * | | x | = |x|2}

for each x^E. It is well known that / is a maximal monotone operator from
E into 2E\ It is also known that every reflexive Banach space E can be re-
normed so that E and £ * are both locally uniformly convex (cf. Diestel [5]).
Let / be the duality mapping corresponding to the locally uniformly convex norm
of E. Then / has the following property (see proposition 8 of [4])

(2.4) if Xi-*x weakly in E and lim (J(xτ), Xi—x)^0, then xx->x strongly
in E and J(xt)^J{x) weakly in E*.

We now state our main result.

THEOREM 1. Let H be a closed convex subset of a reflexive Banach space E
and C be a bounded closed convex subset of H with ιHCφφ. Let {A(t): ί^[0, 1]}
be a bounded pseudo-monotone homotopy of monotone operators from H into 2E*
and ptΞE*. Suppose that pe=(A(0)+dIH)(iHC) and p$cl(\J{(A(t)+dIu)(duC): ί e
[0, 1]}). Then p^(A(t)+dIH)(C), for all fe=[O, 1].

As a direct consequence of Theorem 1, we have the following result which
is due to Browder [4] in case when 0<=A(t)Q for all ί e [0 , 1].

COROLLARY. Let G be a bounded convex and open subset of a reflexive Banach
space E and \A(t): fe[0, 1]} be a bounded pseudo-monotone homotopy of maximal
monotone operators from E into 2E\ Let p^E*. Suppose that p^A(0)(G) and
p&cl(\J{A(t)(dG): ί€=[0, 1]}. Then p<=A(t)(G) for all ί e [0 , 1].

§ 3. Proofs.

In this section, we first state a necessary and sufficient condition for the
variational inequality (1.1) to have a solution in H.

THEOREM 2(cf. [6]). Let H be a closed convex subset of a reflexive Banach
space E and A be a monotone and upper--semicontinuous mapping from H into 2E\
where E* is endowed with its weak topology. Then the following conditions are
equivalent

(i) There exist xo^H and yo<=Axo such that

(y0, x— xo>^O, for all
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(ii) there exists a bounded closed convex subset K of H such that for each ? G
dHK and w^Az, there exists x&HK which satisfies that (w, x—z}<L0.

Remark. Sufficient conditions for the existence of solutions of (1.1) were
studied by several authors (cf. Browder [2], Stampacchia [8]). Theorem 2 is a
version of Theorem 1 of [6] for multivalued monotone operators. The proof of
Theorem 1 of [6] is still valid for Theorem 2. Then we omit the proof.

Throughout the rest of this section, we suppose that E,H,C, and {A(t): ί e
[0, 1]} satisfy the assumption in Theorem 1. For each operator A:E->2E* and
each λ>0, we denote by Ax the operator from E into 2E* given by Aχ=A+(l/λ)J,
where / is the duality mapping from E into £ * corresponding to a norm on E
in which E and £ * are locally uniformly convex. In the followings, we suppose
that A: H-+2E* is a monotone operator satisfying the following condition:

(*)' Let {(zlf xτ)} dG(A) be a sequence such that xt-*x weakly in E, zt-^z
weakly in £* and

lim <zr, Xι)^(z, x).

Then Z<ΞAX and (xly zι

y>-*(x, z>.

Remark. The condition (*)' is the case when A(t)=A in (*). It is obvious
from the condition (*) that each A{t) satisfies the condition (*)'.

LEMMA 1. Let λ>0. Let {^}cz[0, 1] be a sequence converging to t0 and
{{y%y Xι)}aE*xE be a sequence such that yi^A(tι)χxι for each i^l, Xi—>x weakly
in E and yt—>y weakly in E*. Suppose further that

lim iyly xι}^(y, *>.

Then Xi-*x strongly in E, (yτy xt}—>(y, x} and y^Aχx.

Proof. Let {zJaE* be a sequence such that zi^A(tι)xι and yt=zι+(l/λ)Jxt

for each z^l . Since {zt} is bounded, we may suppose that zt-+z weakly in E*.
Then from the assumption, we have that

(3.1) Πϊn <zi+(l/λ)Jxι> xι>=\mϊ (yl} xt>^<y, x> = <z, x>+im <(l/λ)Jxt> x>.

Then since lim (Jxlf Xj>=lim |x % \ 2 ^ |x\2, the inequality (3.1) implies that lim(zlf xt}
^(z, x}. Then from the condition (*) we have that z^A(to)x and (zιy xτ>-+(z, x}.
Then again by (3.1), it follows that Ur | 2 ->|x | 2 , or equivalently lim (Jxlt Xi—x)
^0. Then by (2.4), we have that x^x strongly in E. This completes the proof.

LEMMA 2. Let λ>0 and p(ΞE*. Suppose that p&cl((Aλ+dIH)(dHQ). Then
the following conditions are equivalent;

(a) pe=(Ax+dIH)(iHQ;
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(b) there exists δ>0 such that

(3.2) inf <z—p, y-xy<-δ, for all x^dHC and Z<EAXX.
y<ΞC

Proof. Suppose that (b) holds. Then it is easy to see that for each x^dHC
and z<=Aχx, there exists y^iHC such that <z—p, y—x}^0. Then by Theorem
2, we have that (a) holds. We next suppese that (a) holds. For the sake of
simplicity of the proof, we assume that p=0, 0^iHC and 0^Λλ0+dIH0. We
first show that

(3.3) inf (z, y-x><Q for all x^dHC and z^Aλx.

Suppose that (3.3) is false, i.e., there exist xQ(ΞdHC and zQ^AλxQ such that

Oo, y-Xo>^O for all

Then since OeC, we have that <z0, *o><O Suppose that (z0, x0)—0. Let y be
an arbitrary element of H. Then since Q^tHC, there exists t>0 such that ty^C.
Then we have that

<z0, y>=θ /t)<zo, ty>^a/tKz0, xo>=<zo, *o>=O.

Hence from the observation above, we obtain that ζz0, y—xo>^O for all
i.e., Q<^(Aχ+dIH)(dHC). This contradicts the assumption. Therefore we find
that <Zo, XoXO. On the other hand, we have, from the assumption, that there
exists w^Aλ0 such that <w/, ̂ >^0 for all y^C. Then from the monotonicity of
Ax and the observation above, we find

0^<zo—w, Xo>=<zo, xo)—(w, *o><O.

This is a contradiction. Thus we obtain that (3.3) holds. We now show that
(3.2) holds for some <5>0. Suppose that (3.2) does not hold for any δ>0 Then
there exist sequences {xi}ddHC and {zJclE* such that zi^Axxl for each i^l
and

(3.4) liminf <zlf y-xl>^0.

We may suppose that Xi-*x0 weakly in E and zt—>z0 weakly in £*. By putting
y=x0 in (3.4), we have that Πm (z%f xQ—xt}^0. Then by applying Lemma 1 in
case when A(t)—A for £<Ξ[0, 1], we have that Xi->xQ strongly in E and zo^Aχxo.
Then (3.4) implies that inf <z0, y—xo>^O. While we have by (3.3) that inf <z0,

yEC &C

y—x0}<0. This is a contradiction. Thus we have shown that (3.2) holds.

LEMMA 3. Let p<=E* and n o = l Let {pn<^E*: n^n0} be a sequence such
that \\mpn=p and pn(={An+dIH)(C) for each n^n0. Then pίΞ(A+dIH){C).
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Proof. From the assumption, we have that for each n^n0, there exists
(zn, xn)CZG(A) such that

(3.5) (zn+-~JXn-pn, y~Xn)^0 forall

Since {xn} and {zn} are bounded, we may assume that xn—>x0 weakly in E and
zn-+z0 weakly in E*. Then since pn-+p strongly in E and (l/n)/*n->0 strongly
in £*, (3.5) implies that lim (zn, #n>^Ξ<z0, xo> Then from the definition of A,
it follows that (zn, xn}->(z0, xo> and zo<^Axo. Then again by (3.5), we have that

<*<>—p, y—xo>^0 forall

i.e., />G(i4+3/jy)(C). This completes the proof.

Proof of Theorem 1. By Lemma 3, it is sufficient to show that there exists
a positive integer n0 and a sequence {pn} n^nύ(ZE* such that lim/>„=/> and for

n*oo

^tto, Pn^(A(t)n+dIH)(C) for all £ G [ 0 , 1], From the assumption, we have
that there exists r > 0 such that B(p, r)Γ\(A(t)+dIH)(dHQ=φ, for all * G [ 0 , 1],
where J3(/>, r)dE* denotes the open ball about p with radius r. Hence we choose
tto^l such that (l/no)J(dHC)c:B(O, r/2). Then we have that β(/>, r/2)Γ\(A(t)n+
dlH){dHC)~φy for all n ^ n 0 and ίG[0, 1]. Let x0 be an element of C such that
p£Ξ(A(0)+dIH)x0. We put pn=P+(l/n)J(x0)t for each M^n0. Then pn£Ξ(A(0)n+
dIH)(C) for each 72^n0. Also we have that for each n^n0, pn&((A(t)n+dIH)(dHC))
for all * G [ 0 , 1]. We now fix n^n0 and show that ί n e( i4( ί ) n +3^)(C) for all
* G [ 0 , 1]. Put ifo=sup{ίe[O, 1] : j&nG(i4(ί)n+3/^)(C)}. Then there exist a se-
quence {ίi}C[0, ί0] and a sequence fezJlcExP such that lim £*=£<>,
^Wn^t for each i}>l and

(3.6) Pn^A(tι)nxi+dIHxι forall f^l.

The equation (3.6) can be rewritten as

(3.7) for each / ^ 0 , <Zi~ίn, y-Xz>^0 for all

Since {xt} and {zj are bounded, we may assume without any loss of generality
that Xi-^Xo weakly in E and Zi->z0 weakly in E*. Then from the definition of
pseudo-monotone homotopy, we find that zo<^A(to)nxo and (zlf * t>-Kz0,

 χo> Then
again by (3.7), we obtain that <zo—pn, y—Xo>^O for all yeH, i.e., pn(=A(t0)nx0

+dIHXo- Thus we have that pn^(A(t0)n+dIH)(C). Hence we claim that ί o = l
Suppose that to<l. Since pn(B(A(t0)n-}-dIH)(C), we have by Lemma 2 that there
exists δ>0 such that

(3.8) mf<z-pn,y-x><-δ

for all x&dπC and z^A(to)nx. Then we show that there exists ίG(ί0, 1] such
that for some δ'>0,
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(3.9) mf<.z-pn,y-x><-δ', for x^dHC and zt=A(t)nx.
ye.C

Suppose that (3.9) does not hold for any <5'>0. Then there exist a sequence
{ίjc(ί o, 1] converging to t0 and a sequence {(xt, zι)\(ZHxE* such that Xi<=dHC,
zί^A(tι)nxι for each z ^ l and

(3.10) lim inf <*<-/>„, y-

Since {xj and {zt} are bounded, we may assume that Xi->x0 weakly in E and
Zi^z0 weakly in £*. Then by putting y=x0 in (3.10), it follows that zo<^A(to)nxo,
(zιy xt}—><^0, *o> and ;*;*-> JC0 strongly in E. Then xo

e3;yC. Also we have by
(3.10) that

(3.11) inf <zo-pn, y-xo>^O.
y&c

Since xQ^dHC, this contradicts (3.8). Thus we obtain that there exists ίe(f0, 1]
such that (3.9) holds for some <5'>0. Then by Lemma 2, we have that />ne
(i4(ί)n+3/ff)(Q. This contradicts the definition of t0. Thus we have shown
that ί o = l , i.e., pn<Ξ(Aa)n+dIH)(C).

Let se(0, 1). We put As(t)=-A(st) for each ίe [0 , 1]. Then {As(0 : ίe [0 , 1]}
is also a pseudo-monotone homotopy of monotone operators. It is easy to see
that our argument above is still valid for {A(f): fe[0, 1]} replaced by {A*(t):
fe[0, 1]}. Thus we have that pn^(A9(l)n+dIH)(C) for each se=(0, 1). This
implies that ίne(i4(ί)n+3/^)(C) for all fe[0, 1]. This completes the proof.

Acknowledgement. The author wishes his heartly thanks to Professor W.
Takahashi for his suggestions and advice in the course of preparing this paper.
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