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ON HOMOTOPY INVARIANCE OF THE SOLVABILITY OF
NONLINEAR VARIATIONAL INEQUALITIES
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§1. Introduction

Let E be a Banach space and 2% the space of subsets of the dual space E*
of E. Let A be an operator from F into 2%*. A is said to be monotone if

{Y1—Y2, X1— %2020

for y;€ Ax;(G(=1, 2). Let H be a nonempty closed convex subset of £ and p be
an element of E*. An element x, in E is said to be a solution of the varia-
tional inequality with respect to p if there exists y,& Ax, such that

(1.1) {Yo—Dp, x—x0=0 for all xeH.

The variational inequalities of the form (1.1) has been studied by many
authors with applications to convex programming and a large class of free-
boundary problems. The existence of solutions for the variational inequality
(1.1) was investigated by Browder [2], Rockaffeler [7], Stampacchia [8], Taka-
hashi [9] and others.

Our purpose in this paper is to consider invariance of the solvability of the
variational inequality (1.1) under a homotopy of monotone operators. Recently
Browder established a degree theory for a class of monotone type operators.
In [4], he defined a homotopy of maximal monotone operators and proved
homotopy invariance of the degree. In this paper we concern a homotopy of
monotone operators in the sense of Browder. Our method is based on the method
employed in [4] and [6].

§2. Perliminaries and statement of the main result.

Let E be a reflexive Banach space and C, K be nonempty closed convex
subsets of E. Then we denote by d¢K the set of ze K such that Uz)N(C—K)
¢ for every nighborhood of U(z) of z and by /¢K the set of z K such that
URN(C—K)=¢ for some neighborhood U(z) of z. We also denote by ci/(C) the
closure of C. Let T be a mapping from E into 2%. Then we denote by G(T)
the graph G(T)={(y, x)€E*XE: yTx} of T and by R(T) the range of T, i.e.,
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R(T)={y=E*: yeTx for some x=E}. Let A be a monotone operator from E
into 2%, A is said to be maximal monotone if its graph G(A) is not properly
contained in any other graph of monotone operator from E into 2%°. Let f:FE—
RU {400} be a proper lower semicontinuous convex function. The subdifferen-
tial df of f is the mapping defined by

of(x)={x*€E*: f(x)<f(uw)+<{x*, x—up, for all ucE}.

It is well known that df is maximal monotone. Let K be a nonempty closed
convex subset of E. Then the indicator function Iy : E-R\U {+oo} is defined by

0 if xeK

IK(X)={ .
+oo if xe&K.

The indicator function Ix is a proper lower semicontinuous convex function and
x*€0lxx if and only if

2.1) xeK and (&*, x—up=0 for all ueK.

By using the subdifferential of the indicator function I, the variational in-
equality (1.1) can be rewritten as

2.2) e Axo+0lyx,.

Let A be a mapping from H into 2%, where E* is endowed with its weak
topology. A is said to be upper semicontinuous from H into 2%, if for each
x€H and each neighborhood V of Ax, there exists a nighborbood U of x such
that AuCV for all u€UNH. Suppose that A maps bounded sets of H into
bounded sets of E* and Ax is closed convex subset of E* for each xH. Then
A is upper semicontiuous if and only if the graph G(A) of A is a closed subset
of E*x H (cf. [3]). Let {A(t):t<[0, 1]} be a family of monotone operators from
H into 2%'. Then {A(): t€[0, 1]} is said to be a pseudo-monotone homotopy of
monotone operators from H into 2% if {A(f): t<[0, 1]} satisfies the following
condition (cf. Browder [4]):

(*) Let {t;} [0, 1] be a sequence converging to ¢ and {(z,, x,)} CE*XH be
a sequence such that z;€ A(t,)x, for each /=1, x;—x weakly in E, and z;—z
weakly in E*. Suppose that
(2.3) lim <z, x,)<(z, .

100

Then ze A(t)x and <z,, x.>—<z, x.

Remark. To add to (*¥), Browder [4] assumed that 0 A(¢#)0 and A(t) is
maximal monotone for each t<[0, 1].

From the definition of the homotopy {A(?):t<[0, 1]} of monotone operators,
we see that for each t<[0, 1], A(¢) is upper-semitinuous from H into 2%°. Let



ON HOMOTOPY INVARIANCE OF THE SOLVABILITY 279

{A(t): t<[0, 1]} be a pseudo-monotone homotopy of monotone operators from
H into E*. Then the pseudo-monotone homotopy {A(t): [0, 1]} is said to be
bounded if for each bounded subset G of H, the set \U{A@{)(G): t<[0, 1]} is
bounded.

The duality mapping J of E into 2% is given by

J)={x*eE*: ¥, o=|x*|x|=]x]%

for each xeE. It is well known that J is a maximal monotone operator from
E into 2%, It is also known that every reflexive Banach space E can be re-
normed so that £ and E* are both locally uniformly convex (cf. Diestel [5]).
Let J be the duality mapping corresponding to the locally uniformly convex norm
of E. Then J has the following property (see proposition 8 of [4]);

(2.4) if x;—x weakly in E and lim {J(x,), x;—x)=0, then x,— x strongly
in E and J(x,)—J(x) weakly in E*,

We now state our main result.

THEOREM 1. Let H be a closed convex subset of a reflexive Banach space E
and C be a bounded closed convex subset of H with 15C#¢. Let {A(t):t<[0, 1]}
be a bounded pseudo-monotone homotopy of monotone operators from H into 2F
and pEE*  Suppose that pe(A0)+0l4)inC) and pecl(\J{(AQ+0I)@,C): te
[0, 11}). Then p=(A@)+0Iy)(C), for all t<[0, 1].

As a direct consequence of Theorem 1, we have the following result which
is due to Browder [4] in case when 0= A(#)0 for all t=[0, 1].

COROLLARY. Let G be a bounded convex and open subset of a reflexive Banach
space E and {A@t):t<[0, 1]} be a bounded pseudo-monotone homotopy of maximal
monotone operators from E into 2. Let pE*. Suppose that p= A0)G) and
pecl(J{A@)@G): t<[0, 11}. Then p= AWt)(G) for all t<[0, 1].

§3. Proofs.

In this section, we first state a necessary and sufficient condition for the
variational inequality (1.1) to have a solution in H.

THEOREM 2(cf. [6]). Let H be a closed convex subset of a reflexive Banach
space E and A be a monotone and upper-semicontinuous mapping from H into 2%,
where E* is endowed with its weak topology. Then the follow:ng conditions are
equivalent

(i) There exist x,H and y,= Ax, such that

(o, x—x40 20, for all x<H,;
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(ii) there exists a bounded closed convex subset K of H such that for each z&
0nK and we Az, there exists x€igK which satisfies that <w, x—2)=0.

Remark. Sufficient conditions for the existence of solutions of (1.1) were
studied by several authors (cf. Browder [2], Stampacchia [8]). Theorem 2 is a
version of Theorem 1 of [6] for multivalued monotone operators. The proof of
Theorem 1 of [6] is still valid for Theorem 2. Then we omit the proof.

Throughout the rest of this section, we suppose that E, H,C, and {A(t):te
[0, 17} satisfy the assumption in Theorem 1. For each operator A:E—2% and
each 1>0, we denote by A; the operator from E into 2% given by A;=A+1/2)],
where J is the duality mapping from E into E* corresponding to a norm on E
in which E and E* are locally uniformly convex. In the followings, we suppose
that A:H—2F is a monotone operator satisfying the following condition :

(*y Let {(z,, x,)} CG(A) be a sequence such that x;—x weakly in E, z;—z
weakly in E* and o
lim <z,, x,) =<z, x).
100

Then ze Ax and <{x,, z,0—<{x, 2).

Remark. The condition (*)’ is the case when A(t)=A in (*). It is obvious
from the condition (*) that each A(#) satisfies the condition (¥)’.

LEMMA 1. Let 2>0. Let {t;}C[0, 1] be a sequence converging to t, and
{(y., x)} CTE*XE be a sequence such that y,= A(t,)1x, for each i=1, x;—x weakly
in E and y,—y weakly in E*. Suppose further that

l?ﬁ Yy 1=, XD

Then x;—x strongly mn E, {y,, x,,—=<y, x> and y< A;x.

Proof. Let {z;} CE* be a sequence such that z;€ A(t,)x, and y,=z,+1/2)Jx,
for each 7/=1. Since {z;} is bounded, we may suppose that z,—z weakly in E*.
Then from the assumption, we have that

B E@ (/D] x, xo=lim (y,, x,>=<y, x>={z, x>-l~l:iﬁ /N5, %

Then since Iim (Jx,, x,>=Iim | x,|*=| x|?, the inequality (3.1) implies that [im <{z,, x,>
=<z, x>. Then from the condition (*) we have that z€ A(t,)x and {z,, x,>—<z, xD>.
Then again by (3.1), it follows that |x,|?*—|x|% or equivalently lim <{Jx,, x;—x)
=0. Then by (2.4), we have that x;—x strongly in E. This completes the proof.

LEMMA 2. Let 2>0 and peE*. Suppose that pecl((A1+0I5)(04C)). Then
the following conditions are equivalent;

(@) pe(A;+0lx)0@u0);
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(b) there exists 6>0 such that

(3.2) infy(z—p, y—xy<—0, for all x€04;C and z<A;x.
ye

Proof. Suppose that (b) holds. Then it is easy to see that for each x€95C
and z€ A;x, there exists yei5C such that {z—p, y—x>=0. Then by Theorem
2, we have that (a) holds. We next suppese that (a) holds. For the sake of
simplicity of the proof, we assume that p=0, 0=:,C and 0= A;0+01,0. We
first show that

(3.3) ugg {z, y—x)<0 for all x€0,C and z€A;x.
Y

Suppose that (3.3) is false, i.e., there exist x,€05C and z,= A;x, such that
{zo, y—x»=0  for all yeC.

Then since 0=C, we have that <z, x,>)=0. Suppose that <{z,, x,»=0. Let y be
an arbitrary element of H. Then since 0=74C, there exists :>0 such that ty=C.
Then we have that

$zo, ¥>=(1/1)<20, ty> Z(1/1)<20, x0p=X20, Xo»=0.

Hence from the observation above, we obtain that <z, y—x,>=0 for all y=H,
i.e., 0€(A;+0Ig)(@xC). This contradicts the assumption. Therefore we find
that <z,, xo»<0. On the other hand, we have, from the assumption, that there
exists we A,;0 such that <w, y>=0 for all yC. Then from the monotonicity of
A; and the observation above, we find

0=<2zy—w, xe»=X2y, xop—<w, x> <0.

This is a contradiction. Thus we obtain that (3.3) holds. We now show that
(3.2) holds for some 0>0. Suppose that (3.2) does not hold for any 6>0. Then
there exist sequences {x;} C05C and {z;} CE* such that z;€ A,x, for each /=1
and

(3.4) lim in£ {z,, y—x,0=0.

100 YE
We may suppose that x;—x, weakly in E and z;—z, weakly in E*. By putting
y=x, in (3.4), we have that Iim <{z,, x,—x,>=0. Then by applying Lemma 1 in
case when A(t)=A for t<[0, 1], we have that x;—x, strongly in E and z,€ A;x,.
Then (3.4) implies that ;Ielg {zy, y—2x0y=0. While we have by (3.3) that ing {2y,
ve

y—x,><0. This is a contradiction. Thus we have shown that (3.2) holds.

LEMMA 3. Let pE* and n,=1. Let {p,€E*: n=n,} be a sequence such
that Lifn Pa=p and p,=(A,+0Iy)(C) for each n=n,. Then pc(A+0Iy)(C).
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Proof. From the assumption, we have that for each n=n, there exists
(2n, x,)CG(A) such that

(3.5) <zn+%]xn—pn,y—xn>§0 for all yeH.

Since {x,} and {z,} are bounded, we may assume that x,—x, weakly in E and
z,—2, weakly in E*. Then since p,—p strongly in E and (1/n)/x,—0 strongly
in E*, (3.5) implies that Iim <z,, x,><<%,, xo». Then from the definition of A,
it follows that <{z,, x,>—<z, x,» and z,€ Ax,. Then again by (3.5), we have that

{(zo—p, y—xp=0  for all yeH,
i.e., pe(A+0Ily)(C). This completes the proof.

Proof of Theorem 1. By Lemma 3, it is sufficient to show that there exists
a positive integer n, and a sequence {pn}nzn,CE* such that lim p,=p and for
n -

each n=n,, poE(AW),+0I5)(C) for all 1[0, 1]. From the assumption, we have
that there exists >0 such that B(p, YN(A(t)+01x)(0xC)=¢, for all t<[0, 1],
where B(p, r)C E* denotes the open ball about p with radius ». Hence we choose
no=1 such that (1/n,)J@zC)CB(, r/2). Then we have that B(p, r/2)N(A(),+
0I4)0xC)=¢, for all n=n, and t<[0, 1]. Let x, be an element of C such that
pe(A)+0lx)x,. We put p,=p+(1/n)J(x,), for each n=n,. Then p,=(A0),+
0I)(C) for each n=n,. Also we have that for each n=n,, p,&((A{),+0Ix)(05C))
for all t=[0, 1]. We now fix n=n, and show that p,=(A(),+0[5)(C) for all
te[0, 17. Put t,=sup{t<[0, 1]: p,=(A®),+0I5)(C)}. Then there exist a se-
quence {t;}C[0, t,] and a sequence {(x,, z,)} CEXE* such that lim ¢;=t,, z;€
A(t)nx, for each i=1 and T

(3.6) €AW ) nx;+ 0y, for all =1.
The equation (3.6) can be rewritten as
(3.7 for each /=0, {zi—pn, y—x,0=0 for all yeH.

Since {x;} and {z;} are bounded, we may assume without any loss of generality
that x;—x, weakly in E and z;—z, weakly in E*. Then from the definition of
pseudo-monotone homotopy, we find that z,= A(fy),x, and <z,, x,>—<2,, x,»>. Then
again by (3.7), we obtain that {zy—p,, y—=x,0 =0 for all yeH, i.e., p,=Alo)n%o
+0Ilyx,. Thus we have that p,=(A@t),+0[x)(C). Hence we claim that ¢,=1.
Suppose that t,<1. Since p,E(A(ty),+0I5)(C), we have by Lemma 2 that there
exists >0 such that

(3.8) inf <z—p,, y—x><—0
yel

for all x€0,C and z€ A(t)),x. Then we show that there exists t(t, 1] such
that for some ¢'>0,
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3.9 ixég(z—pn, y—x><—0, for x€0,C and z€A(t),x.

Suppose that (3.9) does not hold for any 6’>0. Then there exist a sequence
{t.;} (¢, 1] converging to ¢, and a sequence {(x,, z,)} CHX E* such that x;€0,C,
z;€ A(t,).x, for each 7=1 and

(3.10) lim inf <z;,—p,, y—x.,>=0.

100 YEC
Since {x;} and {z;} are bounded, we may assume that x;—x, weakly in E and
z;i—2z, weakly in E*. Then by putting y=x, in (3.10), it follows that z,& A(t,), %o,
{2y, Xp—<2,, xo» and x;—x, strongly in E. Then x,€05C. Also we have by
(3.10) that

(3.11) inf <Zo—pa, Y—X0>=20.
yel

Since x,€05C, this contradicts (3.8). Thus we obtain that there exists t(t,, 1]
such that (3.9) holds for some ¢’>0. Then by Lemma 2, we have that p,e
(A(t),+0I5)(C). This contradicts the definition of #,, Thus we have shown
that t,=1, i.e., p,=(AQ),+0Ix)C).

Let s=(0, 1). We put A*(t)=A(st) for each t<[0, 1]. Then {A%(): t<[0, 1]}
is also a pseudo-monotone homotopy of monotone operators. It is easy to see
that our argument above is still valid for {A(#): t=[0, 1]} replaced by {A%():
te[0, 1]}. Thus we have that p,=(A’(1),+0Iy)(C) for each s=(0, 1). This
implies that p,=(A@{),+0Ig)(C) for all t[0, 1]. This completes the proof.

Acknowledgement. The author wishes his heartly thanks to Professor W.
Takahashi for his suggestions and advice in the course of preparing this paper.
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