ON HOMOTOPY INVARIANCE OF THE SOLVABILITY OF NONLINEAR VARIATIONAL INEQUALITIES

By Norimichi Hirano

§1. Introduction

Let E be a Banach space and 2^{E^*} the space of subsets of the dual space E^* of E. Let A be an operator from E into 2^{E^*} . A is said to be monotone if

 $\langle y_1 - y_2, x_1 - x_2 \rangle \geq 0$

for $y_i \in Ax_i (i=1, 2)$. Let *H* be a nonempty closed convex subset of *E* and *p* be an element of E^* . An element x_0 in *E* is said to be a solution of the variational inequality with respect to *p* if there exists $y_0 \in Ax_0$ such that

(1.1)
$$\langle y_0 - p, x - x_0 \rangle \ge 0$$
 for all $x \in H$.

The variational inequalities of the form (1.1) has been studied by many authors with applications to convex programming and a large class of freeboundary problems. The existence of solutions for the variational inequality (1.1) was investigated by Browder [2], Rockaffeler [7], Stampacchia [8], Takahashi [9] and others.

Our purpose in this paper is to consider invariance of the solvability of the variational inequality (1.1) under a homotopy of monotone operators. Recently Browder established a degree theory for a class of monotone type operators. In [4], he defined a homotopy of maximal monotone operators and proved homotopy invariance of the degree. In this paper we concern a homotopy of monotone operators in the sense of Browder. Our method is based on the method employed in [4] and [6].

§2. Perliminaries and statement of the main result.

Let *E* be a reflexive Banach space and *C*, *K* be nonempty closed convex subsets of *E*. Then we denote by $\partial_C K$ the set of $z \in K$ such that $U(z) \cap (C-K) \neq \phi$ for every nighborhood of U(z) of *z* and by $i_C K$ the set of $z \in K$ such that $U(z) \cap (C-K) = \phi$ for some neighborhood U(z) of *z*. We also denote by cl(C) the closure of *C*. Let *T* be a mapping from *E* into 2^{E^*} . Then we denote by G(T) the graph $G(T) = \{(y, x) \in E^* \times E : y \in Tx\}$ of *T* and by R(T) the range of *T*, i.e.,

Received July 18, 1984

 $R(T) = \{y \in E^* : y \in Tx \text{ for some } x \in E\}$. Let A be a monotone operator from E into 2^{E^*} . A is said to be maximal monotone if its graph G(A) is not properly contained in any other graph of monotone operator from E into 2^{E^*} . Let $f: E \to R \cup \{+\infty\}$ be a proper lower semicontinuous convex function. The subdifferential ∂f of f is the mapping defined by

$$\partial f(x) = \{x^* \in E^* : f(x) \leq f(u) + \langle x^*, x - u \rangle, \text{ for all } u \in E\}.$$

It is well known that ∂f is maximal monotone. Let K be a nonempty closed convex subset of E. Then the indicator function $I_K: E \to R \cup \{+\infty\}$ is defined by

$$I_K(x) = \begin{cases} 0 & \text{if } x \in K \\ +\infty & \text{if } x \in K. \end{cases}$$

The indicator function I_K is a proper lower semicontinuous convex function and $x^* \in \partial I_K x$ if and only if

(2.1)
$$x \in K$$
 and $\langle x^*, x-u \rangle \ge 0$ for all $u \in K$.

By using the subdifferential of the indicator function I_H , the variational inequality (1.1) can be rewritten as

$$(2.2) \qquad p \in A x_0 + \partial I_H x_0.$$

Let A be a mapping from H into 2^{E^*} , where E^* is endowed with its weak topology. A is said to be upper semicontinuous from H into 2^{E^*} , if for each $x \in H$ and each neighborhood V of Ax, there exists a nighborhood U of x such that $Au \subset V$ for all $u \in U \cap H$. Suppose that A maps bounded sets of H into bounded sets of E^* and Ax is closed convex subset of E^* for each $x \in H$. Then A is upper semicontinuous if and only if the graph G(A) of A is a closed subset of $E^* \times H$ (cf. [3]). Let $\{A(t) : t \in [0, 1]\}$ be a family of monotone operators from H into 2^{E^*} . Then $\{A(t) : t \in [0, 1]\}$ is said to be a pseudo-monotone homotopy of monotone operators from H into 2^{E^*} if $\{A(t) : t \in [0, 1]\}$ satisfies the following condition (cf. Browder [4]):

(*) Let $\{t_i\} \subset [0, 1]$ be a sequence converging to t and $\{(z_i, x_i)\} \subset E^* \times H$ be a sequence such that $z_i \in A(t_i)x_i$ for each $i \ge 1$, $x_i \to x$ weakly in E, and $z_i \to z$ weakly in E^* . Suppose that

(2.3)
$$\overline{\lim} \langle z_i, x_i \rangle \leq \langle z, x \rangle.$$

Then $z \in A(t)x$ and $\langle z_i, x_i \rangle \rightarrow \langle z, x \rangle$.

Remark. To add to (*), Browder [4] assumed that $0 \in A(t)0$ and A(t) is maximal monotone for each $t \in [0, 1]$.

From the definition of the homotopy $\{A(t): t \in [0, 1]\}$ of monotone operators, we see that for each $t \in [0, 1]$, A(t) is upper-semitinuous from H into 2^{E^*} . Let

 $\{A(t): t \in [0, 1]\}$ be a pseudo-monotone homotopy of monotone operators from H into E^* . Then the pseudo-monotone homotopy $\{A(t): t \in [0, 1]\}$ is said to be bounded if for each bounded subset G of H, the set $\bigcup \{A(t)(G): t \in [0, 1]\}$ is bounded.

The duality mapping J of E into 2^{E^*} is given by

$$J(x) = \{x^* \in E^* : \langle x^*, x \rangle = |x^*| |x| = |x|^2 \}$$

for each $x \in E$. It is well known that J is a maximal monotone operator from E into 2^{E^*} . It is also known that every reflexive Banach space E can be renormed so that E and E^* are both locally uniformly convex (cf. Diestel [5]). Let J be the duality mapping corresponding to the locally uniformly convex norm of E. Then J has the following property (see proposition 8 of [4]);

(2.4) if $x_i \to x$ weakly in E and $\lim \langle J(x_i), x_i - x \rangle \leq 0$, then $x_i \to x$ strongly in E and $J(x_i) \to J(x)$ weakly in E^* .

We now state our main result.

THEOREM 1. Let H be a closed convex subset of a reflexive Banach space E and C be a bounded closed convex subset of H with $i_HC \neq \phi$. Let $\{A(t) : t \in [0, 1]\}$ be a bounded pseudo-monotone homotopy of monotone operators from H into 2^{E^*} and $p \in E^*$. Suppose that $p \in (A(0) + \partial I_H)(i_HC)$ and $p \in cl(\cup \{(A(t) + \partial I_H)(\partial_HC) : t \in [0, 1]\})$. Then $p \in (A(t) + \partial I_H)(C)$, for all $t \in [0, 1]$.

As a direct consequence of Theorem 1, we have the following result which is due to Browder [4] in case when $0 \in A(t)0$ for all $t \in [0, 1]$.

COROLLARY. Let G be a bounded convex and open subset of a reflexive Banach space E and $\{A(t): t \in [0, 1]\}$ be a bounded pseudo-monotone homotopy of maximal monotone operators from E into 2^{E^*} . Let $p \in E^*$. Suppose that $p \in A(0)(G)$ and $p \in cl(\cup \{A(t)(\partial G): t \in [0, 1]\}$. Then $p \in A(t)(G)$ for all $t \in [0, 1]$.

§3. Proofs.

In this section, we first state a necessary and sufficient condition for the variational inequality (1.1) to have a solution in H.

THEOREM 2(cf. [6]). Let H be a closed convex subset of a reflexive Banach space E and A be a monotone and upper-semicontinuous mapping from H into 2^{E^*} , where E^* is endowed with its weak topology. Then the following conditions are equivalent.

(i) There exist $x_0 \in H$ and $y_0 \in Ax_0$ such that

$$\langle y_0, x-x_0 \rangle \geq 0$$
, for all $x \in H$;

(ii) there exists a bounded closed convex subset K of H such that for each $z \in \partial_H K$ and $w \in Az$, there exists $x \in i_H K$ which satisfies that $\langle w, x-z \rangle \leq 0$.

Remark. Sufficient conditions for the existence of solutions of (1.1) were studied by several authors (cf. Browder [2], Stampacchia [8]). Theorem 2 is a version of Theorem 1 of [6] for multivalued monotone operators. The proof of Theorem 1 of [6] is still valid for Theorem 2. Then we omit the proof.

Throughout the rest of this section, we suppose that E, H, C, and $\{A(t) : t \in [0, 1]\}$ satisfy the assumption in Theorem 1. For each operator $A: E \to 2^{E^*}$ and each $\lambda > 0$, we denote by A_{λ} the operator from E into 2^{E^*} given by $A_{\lambda} = A + (1/\lambda)J$, where J is the duality mapping from E into E^* corresponding to a norm on E in which E and E^* are locally uniformly convex. In the followings, we suppose that $A: H \to 2^{E^*}$ is a monotone operator satisfying the following condition:

(*)' Let $\{(z_i, x_i)\} \subset G(A)$ be a sequence such that $x_i \to x$ weakly in $E, z_i \to z$ weakly in E^* and

$$\overline{\lim_{i\to\infty}}\,\langle z_i,\,x_i\rangle \leq \langle z,\,x\rangle.$$

Then $z \in Ax$ and $\langle x_i, z_i \rangle \rightarrow \langle x, z \rangle$.

Remark. The condition (*)' is the case when A(t)=A in (*). It is obvious from the condition (*) that each A(t) satisfies the condition (*)'.

LEMMA 1. Let $\lambda > 0$. Let $\{t_i\} \subset [0, 1]$ be a sequence converging to t_0 and $\{(y_i, x_i)\} \subset E^* \times E$ be a sequence such that $y_i \in A(t_i)_{\lambda} x_i$ for each $i \ge 1$, $x_i \to x$ weakly in E and $y_i \to y$ weakly in E*. Suppose further that

$$\overline{\lim_{i\to\infty}} \langle y_i, x_i \rangle \leq \langle y, x \rangle.$$

Then $x_i \rightarrow x$ strongly in E, $\langle y_i, x_i \rangle \rightarrow \langle y, x \rangle$ and $y \in A_{\lambda}x$.

Proof. Let $\{z_i\} \subset E^*$ be a sequence such that $z_i \in A(t_i)x_i$ and $y_i = z_i + (1/\lambda)Jx_i$ for each $i \ge 1$. Since $\{z_i\}$ is bounded, we may suppose that $z_i \rightarrow z$ weakly in E^* . Then from the assumption, we have that

$$(3.1) \quad \overline{\lim_{i \to \infty}} \langle z_i + (1/\lambda) J x_i, x_i \rangle = \overline{\lim} \langle y_i, x_i \rangle \leq \langle y, x \rangle = \langle z, x \rangle + \overline{\lim_{i \to \infty}} \langle (1/\lambda) J x_i, x \rangle.$$

Then since $\overline{\lim} \langle Jx_i, x_i \rangle = \overline{\lim} |x_i|^2 \ge |x|^2$, the inequality (3.1) implies that $\overline{\lim} \langle z_i, x_i \rangle \le \langle z, x \rangle$. Then from the condition (*) we have that $z \in A(t_0)x$ and $\langle z_i, x_i \rangle \rightarrow \langle z, x \rangle$. Then again by (3.1), it follows that $|x_i|^2 \rightarrow |x|^2$, or equivalently $\overline{\lim} \langle Jx_i, x_i - x \rangle \le 0$. Then by (2.4), we have that $x_i \rightarrow x$ strongly in *E*. This completes the proof.

LEMMA 2. Let $\lambda > 0$ and $p \in E^*$. Suppose that $p \in cl((A_{\lambda} + \partial I_H)(\partial_H C))$. Then the following conditions are equivalent;

(a) $p \in (A_{\lambda} + \partial I_{H})(i_{H}C)$;

280

(b) there exists $\delta > 0$ such that

(3.2)
$$\inf_{y\in C} \langle z-p, y-x \rangle < -\delta, \quad \text{for all } x \in \partial_H C \quad \text{and} \quad z \in A_{\lambda} x.$$

Proof. Suppose that (b) holds. Then it is easy to see that for each $x \in \partial_H C$ and $z \in A_\lambda x$, there exists $y \in i_H C$ such that $\langle z-p, y-x \rangle \leq 0$. Then by Theorem 2, we have that (a) holds. We next suppose that (a) holds. For the sake of simplicity of the proof, we assume that p=0, $0 \in i_H C$ and $0 \in A_\lambda 0 + \partial I_H 0$. We first show that

(3.3)
$$\inf_{y \in C} \langle z, y - x \rangle < 0 \quad \text{for all} \quad x \in \partial_H C \quad \text{and} \quad z \in A_\lambda x.$$

Suppose that (3.3) is false, i.e., there exist $x_0 \in \partial_H C$ and $z_0 \in A_\lambda x_0$ such that

$$\langle z_0, y-x_0 \rangle \geq 0$$
 for all $y \in C$.

Then since $0 \in C$, we have that $\langle z_0, x_0 \rangle \leq 0$. Suppose that $\langle z_0, x_0 \rangle = 0$. Let y be an arbitrary element of H. Then since $0 \in i_H C$, there exists t > 0 such that $ty \in C$. Then we have that

$$\langle z_0, y \rangle = (1/t) \langle z_0, ty \rangle \geq (1/t) \langle z_0, x_0 \rangle = \langle z_0, x_0 \rangle = 0.$$

Hence from the observation above, we obtain that $\langle z_0, y-x_0 \rangle \ge 0$ for all $y \in H$, i.e., $0 \in (A_{\lambda} + \partial I_H)(\partial_H C)$. This contradicts the assumption. Therefore we find that $\langle z_0, x_0 \rangle < 0$. On the other hand, we have, from the assumption, that there exists $w \in A_{\lambda}0$ such that $\langle w, y \rangle \ge 0$ for all $y \in C$. Then from the monotonicity of A_{λ} and the observation above, we find

$$0 \leq \langle z_0 - w, x_0 \rangle = \langle z_0, x_0 \rangle - \langle w, x_0 \rangle < 0.$$

This is a contradiction. Thus we obtain that (3.3) holds. We now show that (3.2) holds for some $\delta > 0$. Suppose that (3.2) does not hold for any $\delta > 0$. Then there exist sequences $\{x_i\} \subset \partial_H C$ and $\{z_i\} \subset E^*$ such that $z_i \in A_\lambda x_i$ for each $i \ge 1$ and

(3.4)
$$\lim_{i\to\infty}\inf_{y\in C}\langle z_i, y-x_i\rangle\geq 0.$$

We may suppose that $x_i \rightarrow x_0$ weakly in E and $z_i \rightarrow z_0$ weakly in E^* . By putting $y=x_0$ in (3.4), we have that $\overline{\lim} \langle z_i, x_0-x_i \rangle \ge 0$. Then by applying Lemma 1 in case when A(t)=A for $t \in [0, 1]$, we have that $x_i \rightarrow x_0$ strongly in E and $z_0 \in A_\lambda x_0$. Then (3.4) implies that $\inf_{y \in C} \langle z_0, y-x_0 \rangle \ge 0$. While we have by (3.3) that $\inf_{y \in C} \langle z_0, y-x_0 \rangle < 0$. This is a contradiction. Thus we have shown that (3.2) holds.

LEMMA 3. Let $p \in E^*$ and $n_0 \ge 1$. Let $\{p_n \in E^* : n \ge n_0\}$ be a sequence such that $\lim_{n \to \infty} p_n = p$ and $p_n \in (A_n + \partial I_H)(C)$ for each $n \ge n_0$. Then $p \in (A + \partial I_H)(C)$.

Proof. From the assumption, we have that for each $n \ge n_0$, there exists $(z_n, x_n) \subset G(A)$ such that

(3.5)
$$\left\langle z_n + \frac{1}{n} J x_n - p_n, y - x_n \right\rangle \ge 0$$
 for all $y \in H$.

Since $\{x_n\}$ and $\{z_n\}$ are bounded, we may assume that $x_n \to x_0$ weakly in E and $z_n \to z_0$ weakly in E^* . Then since $p_n \to p$ strongly in E and $(1/n)Jx_n \to 0$ strongly in E^* , (3.5) implies that $\overline{\lim} \langle z_n, x_n \rangle \leq \langle z_0, x_0 \rangle$. Then from the definition of A, it follows that $\langle z_n, x_n \rangle \to \langle z_0, x_0 \rangle$ and $z_0 \in Ax_0$. Then again by (3.5), we have that

 $\langle z_0 - p, y - x_0 \rangle \geq 0$ for all $y \in H$,

i.e., $p \in (A + \partial I_H)(C)$. This completes the proof.

Proof of Theorem 1. By Lemma 3, it is sufficient to show that there exists a positive integer n_0 and a sequence $\{p_n\}_{n\geq n_0} \subset E^*$ such that $\lim_{n\to\infty} p_n = p$ and for each $n\geq n_0$, $p_n\in (A(t)_n+\partial I_H)(C)$ for all $t\in [0, 1]$. From the assumption, we have that there exists r>0 such that $B(p, r)\cap (A(t)+\partial I_H)(\partial_H C)=\phi$, for all $t\in [0, 1]$, where $B(p, r)\subset E^*$ denotes the open ball about p with radius r. Hence we choose $n_0\geq 1$ such that $(1/n_0)J(\partial_H C)\subset B(0, r/2)$. Then we have that $B(p, r/2)\cap (A(t)_n+$ $\partial I_H)(\partial_H C)=\phi$, for all $n\geq n_0$ and $t\in [0, 1]$. Let x_0 be an element of C such that $p\in (A(0)+\partial I_H)x_0$. We put $p_n=p+(1/n)J(x_0)$, for each $n\geq n_0$. Then $p_n\in (A(0)_n+$ $\partial I_H)(C)$ for each $n\geq n_0$. Also we have that for each $n\geq n_0$, $p_n\notin ((A(t)_n+\partial I_H)(\partial_H C))$ for all $t\in [0, 1]$. We now fix $n\geq n_0$ and show that $p_n\in (A(t)_n+\partial I_H)(C)$ for all $t\in [0, 1]$. Put $t_0=\sup\{t\in [0, 1]: p_n\in (A(t)_n+\partial I_H)(C)\}$. Then there exist a sequence $\{t_i\}\subset [0, t_0]$ and a sequence $\{(x_i, z_i)\}\subset E\times E^*$ such that $\lim_{t\to\infty} t_i=t_0, z_i\in$ $A(t_i)_n x_i$ for each $i\geq 1$ and

$$(3.6) \qquad p_n \in A(t_i)_n x_i + \partial I_H x_i \quad \text{for all } i \ge 1.$$

The equation (3.6) can be rewritten as

(3.7) for each
$$i \ge 0$$
, $\langle z_i - p_n, y - x_i \rangle \ge 0$ for all $y \in H$.

Since $\{x_i\}$ and $\{z_i\}$ are bounded, we may assume without any loss of generality that $x_i \rightarrow x_0$ weakly in E and $z_i \rightarrow z_0$ weakly in E^* . Then from the definition of pseudo-monotone homotopy, we find that $z_0 \in A(t_0)_n x_0$ and $\langle z_i, x_i \rangle \rightarrow \langle z_0, x_0 \rangle$. Then again by (3.7), we obtain that $\langle z_0 - p_n, y - x_0 \rangle \ge 0$ for all $y \in H$, i.e., $p_n \in A(t_0)_n x_0 + \partial I_H x_0$. Thus we have that $p_n \in (A(t_0)_n + \partial I_H)(C)$. Hence we claim that $t_0 = 1$. Suppose that $t_0 < 1$. Since $p_n \in (A(t_0)_n + \partial I_H)(C)$, we have by Lemma 2 that there exists $\delta > 0$ such that

(3.8)
$$\inf_{y \in C} \langle z - p_n, y - x \rangle < -\delta$$

for all $x \in \partial_{II}C$ and $z \in A(t_0)_n x$. Then we show that there exists $t \in (t_0, 1]$ such that for some $\delta' > 0$,

282

(3.9)
$$\inf_{\boldsymbol{y}\in C} \langle \boldsymbol{z}-\boldsymbol{p}_n, \boldsymbol{y}-\boldsymbol{x}\rangle < -\delta', \quad \text{for } \boldsymbol{x}\in \partial_H C \text{ and } \boldsymbol{z}\in A(t)_n \boldsymbol{x}.$$

Suppose that (3.9) does not hold for any $\delta' > 0$. Then there exist a sequence $\{t_i\} \subset (t_0, 1]$ converging to t_0 and a sequence $\{(x_i, z_i)\} \subset H \times E^*$ such that $x_i \in \partial_H C$, $z_i \in A(t_i)_n x_i$ for each $i \ge 1$ and

$$(3.10) \qquad \lim_{i \to \infty} \inf_{y \in C} \langle z_i - p_n, y - x_i \rangle \geq 0.$$

Since $\{x_i\}$ and $\{z_i\}$ are bounded, we may assume that $x_i \rightarrow x_0$ weakly in E and $z_i \rightarrow z_0$ weakly in E^* . Then by putting $y = x_0$ in (3.10), it follows that $z_0 \in A(t_0)_n x_0$, $\langle z_i, x_i \rangle \rightarrow \langle z_0, x_0 \rangle$ and $x_i \rightarrow x_0$ strongly in E. Then $x_0 \in \partial_H C$. Also we have by (3.10) that

$$(3.11) \qquad \qquad \inf_{n \in C} \langle z_0 - p_n, y - x_0 \rangle \geq 0.$$

Since $x_0 \in \partial_H C$, this contradicts (3.8). Thus we obtain that there exists $t \in (t_0, 1]$ such that (3.9) holds for some $\delta' > 0$. Then by Lemma 2, we have that $p_n \in (A(t)_n + \partial I_H)(C)$. This contradicts the definition of t_0 . Thus we have shown that $t_0 = 1$, i.e., $p_n \in (A(1)_n + \partial I_H)(C)$.

Let $s \in (0, 1)$. We put $A^s(t) = A(st)$ for each $t \in [0, 1]$. Then $\{A^s(t) : t \in [0, 1]\}$ is also a pseudo-monotone homotopy of monotone operators. It is easy to see that our argument above is still valid for $\{A(t) : t \in [0, 1]\}$ replaced by $\{A^s(t) : t \in [0, 1]\}$. Thus we have that $p_n \in (A^s(1)_n + \partial I_H)(C)$ for each $s \in (0, 1)$. This implies that $p_n \in (A(t)_n + \partial I_H)(C)$ for all $t \in [0, 1]$. This completes the proof.

Acknowledgement. The author wishes his heartly thanks to Professor W. Takahashi for his suggestions and advice in the course of preparing this paper.

References

- [1] V. BARBU AND Th. PRECUPANU, Convexity and optimization in Banach spaces, Editura Academiei R.S.R., Bucharest, 1975.
- [2] F.E. BROWDER, Nonlinear variational inequalities and maximal monotone mappings in Banach spaces, Math. Ann., 183 (1969), 213-231.
- [3] F.E. BROWDER, Nonlinear Operators and Nonlinear Equations of Evolution in Banacn spaces, Proceedings of Symposia in Pure Mathematics, XVIII (2), 1976.
- F.E. BROWDER, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc., 9 (1983), 1-41.
- [5] J. DIESTEL, Geometry of Banach spaces, Lecture note in Mathematics, Springer Verlag 485 (1975).
- [6] N. HIRANO AND W. TAKAHASHI, Existence theorems on unbounded sets in Banach spaces, Proc. Amer. Math. Soc., 80 (1980), 647-650.
- [7] R.T. ROCKAFELLAR, Convex functions, monotone operators and variational inequalities, Theory and Applications of Monotone Operators, Oderisi, Gubbio, 1969, 35-65.
- [8] G. STAMPACCHIA, Variational inequalities, Theory and Applications of Monotone

Operators, Oderisi, Gubbio, 1969, 20-34.

[9] W. TAKAHASHI, Nonlinear variational inequalities and fixed point theorems, J. Math. Soc. Japan, 28 (1976), 168-181.

> Department of Mathematics Faculty of Engineering Yokohama National University 156, Tokiwadai, Hodogaya Yokohama, Japan

284