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COADJOINT EQUIVARIANCY OF MOMENTUM MAPPING

BY KENTARO MIKAMI

1. A coadjoint orbit of a Lie group G is a G-homogeneous symplectic
manifold with the inclusion map as the coadjoint equivariant momentum mapping.
If (M, Ω) is a G-homogeneous symplectic manifold with the coadjoint equivariant
momentum mapping, then the coadjoint equivariant momentum mapping gives a
symplectic covering mapping onto a coadjoint orbit. And we have a result of
B. Kostant which classifies the (simply connected) homogeneous symplectic
manifolds with coadjoint equivariant momentum mappings (cf. [1], [2], [5]). An
action with a fixed point may be considered to be antipodal with a homogeneous
action. As explained in [4], we have some theorems concerning with the exist-
ence of (coadjoint equivariant) momentum mappings. In particular, the following
three guarantee the coadjoint equivariancy of a momentum mapping:

(1) #2(g, R)=0, where g is the Lie algebra of G (cf. [4], [5], [6]),
(2) the symplectic form is an exact form of a G-invariant 1-form (cf. [1]),

and
(3) G is a semidirect product of Gλ by G2, where Gi and G2 have coadjoint

equivariant momentum mappings, H\qlf R)=0 and G1 is connected (cf. [3], [4]).

In this paper, we give a condition for the coadjoint equivariancy of momentum
mappings. The result is

PROPOSITION. Let (M, Ω) be a connected symplectic manifold, and let G be a
symplectic action on (M, Ω) with a momentum mapping. If the action G has a
fixed point, then G has a coadjoint equivariant momentum mapping.

2. Let (M, Ω) be a connected symplectic manifold, that is, M is a connected
smooth manifold with a non-degenerate closed 2-form Ω. Ω induces a bundle
isomorphism Ωb: TM->T*M between the tangent bundle and the cotangent
bundle of M defined by

Ωb(v)=vJΩ.

Denote the inverse of Ωb by Ω*. i 3 # : T*M-*TM is also a bundle isomorphism.
Let C°°(M) (resp. aut(M, Ω)) be the set of all real valued smooth functions (resp.
Hamiltonian vector fields i.e., vector field X satisfying LxΩ—ΰ) on M.

For each /eC°°(M), define β(f) by
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β{f) = Ω*(df), or equivalent^, Ω\β(f))=df.

Since we have

Lβif)Ω=β(f)JdΩ+d(β(f)-]Ω)

-•=d(ΩKβ(f)))=d(df)=O,

0(/)eaut(M, Ω) for each /eC°°(M). For each /, h in C°°{M), the Poisson
bracket {/, h) is defined by

{f,h}=-Ω(β(f),β(h))

=β(f)Jdh.

C°°{M) is a Lie algebra with the Poisson bracket {,}. For example, the Jacobi
identity for {,} comes from dΩ=Q. It is clear that aut(M, Ω) is a Lie sub-
algebra of the Lie algebra of all smooth vector fields on M. Since we have

d{f, h}=d(β(f)Jdh)

= Lβ(f)(β(h)jΩ)

=[j8(A

β satisfies β{f, h}—lβ(f), β(h)Ί, that is, β is a Lie algebra homomorphism from
C°°(M) into aut(M, fl).

Since LxΩ=dXJΩ=d(Ωb(X)), for each Hamiltonian vector field Z we have
a closed 1-form β b(Z). Let γ(X) be the de Rham cohomology class of Ω\X) for
each X in aut(M, Ω). We have

= J ( Z _ J F J f l ) for each X, Y in aut(M, Ω).

This implies f[X, F ] = 0 . Thus γ is a Lie algebra homomorphism from aut(M, fl)
into ϋΓ^M, J?) if we introduce the trivial Lie algebra structure in H\M, R). We
have the following short exact sequence of Lie algebra homomorphisms

β r
0 — > R cz_ C~(M) — > aut(M, Ω) — > H\M, R) > 0.

Let G be a Lie group. A smooth left action φ: GxM^M is called a
symplectic action of a Lie group G on a symplectic manifold (M, i2) if for each
g in G the map φg: M-^M: m^>φ(g, m) is a symplectomorphism, that is, 0fi2
= β. A symplectic action (G, φ) on (M, Ω) induces a Lie algebra homomorphism
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p : g • aut(Λf, Ω)
defined by

where g is the Lie algebra of G consisting of all left-invariant vector fields on
G, φm is the orbit map of (G, φ) through m, that is, ψm(g)=φ(g, rn) and e is the
unit of G.

A momentum mapping for the symplectic action (G, φ) is a mapping / : M
->g* (=the dual space of g) such that

This condition is equivalent to

or

Ω*dJ(ξ)=p(ξ) i.e., β(J(ζ))=p(ξ),

where J(ξ) in C°°(M) is defined by

M)(m)=<J(m), D .
A momentum mapping / : M-^ g* for the symplectic action (G, 0) is coadjoint

equivariant if and only if / satisfies

for each g, m in G and M. This condition is equivalent to

JAdig-^φ*! for each # in G.

Differentiating the above, we have

?]={/(£), /()?)} for each ξ, η in g,

that is, / is a Lie algebra homomorphism of g into C°°(M). We know that if the
Lie group G is connected and if / is a Lie algebra homomorphism, then / is
coadjoint equivariant.

3. At first, we prove

LEMMA (cf. [1]). For a symplectic action (G, φ) on a symplectic manifold
(M, Ω) we have

(1) φ*Ω"φg*=Ω"
(2) φg*Ω*φ*=Ω*
(3) φβ*β(f)=β(φϊ-if)

(4) φ*g{f,h} = {φϊf,ΦW
(5) φβ*p(ξ)=p(Ad(g)ξ)
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for each g in G, f, h in C°°(M) and ξ in §. These mean that the diagrams below
are commutative.

Vr*

T*M

k* L

Proof of Lemma. For each £ in G, φ%Ω—Ω implies

Ω{φg*v, φe*w)=Ω(v, w) for any v, w in TmM.

This means

and proves (1). (2) is only another expression of (1). (2) implies (3), since

The proof of (4) is

Φίif, h}=φ*(β(f)Jdh)=(φg-i*β(f))Jφϊdh

= β(φΐf)Jd(φ*h)={φ*f, φ*h]

using (3). (5) comes from

= p(Ad(g)ξ)φ(g,n),

where Ig is the inner automorphism of G induced by g and (Ig)*e=Ad(g).

Now we prove our Proposition. Let / be a given momentum mapping for
the symplectic action (G, φ), that is, / is linear and satisfies βj^p. Using
Lemma, we have

Therefore
= βJ(Ad(g~1)ξ) for each g in G.

is a constant function on M, and so
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φ*sm)-J(Ad(g-1)ξ)=(φ*J(ξ))(nιΰ)-j(Ad(g-1)ξ)(m(1)

for any given point m0 in M. Let m0 be a fixed point for the symplectic action
(G, φ), that is, φg(mo)=mQ for each g in G. Then we have

for each g in G. Define Λ: g-»C°°(M) by

^(f)=/(f)-

Then Λ is linear and satisfies βλ—p. Moreover we have

Thus λ defines a coadjoint equivariant momentum mapping for the symplectic
action (G, φ). This completes the proof of our Proposition.
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