A REMARK ON CONFORMALLY FLAT TOTALLY REAL SUBMANIFOLDS

By Leopold Verstraelen

1. Introduction.

The following result is well-known.

THEOREM A. (K. Yano [7]). Let M^n , $n \ge 4$, be a totally umbilical submanifold of a conformally flat Riemannian manifold. Then M^n is conformally flat.

Corresponding to Theorem A one has the following results for submanifolds of Kaehlerian manifolds.

THEOREM B (S. Yamagushi and S. Sato [6]). Let M^n , $n \ge 4$, be a totally geodesic complex submanifold of a Kaehlerian manifold M^p , $p \ge 8$, with vanishing Bochner curvature tensor. Then M^n has vanishing Bochner curvature tensor.

THEOREM C (D. E. Blair [1], K. Yano [9]). Let M^n , $n \ge 4$, be a totally umbilical totally real submanifold of a Kaehlerian manifold with vanishing Bochner curvature tensor. Then M^n is conformally flat.

A generalization of Theorem A is given in the following.

THEOREM D (B. Y. Chen and K. Yano [4]). Let M^n , $n \ge 4$, be a totally quasiumbilical submanifold of a conformally flat Riemannian manifold. Then M^n is conformally flat.

In this paper we show that correspondingly Theorem C may be somewhat improved as follows.

THEOREM. Let M^n , $n \ge 4$, be a totally quasiumbilical totally real submanifold of a Kaehlerian manifold with vanishing Bochner curvature tensor. Then M^n is conformally flat.

A proof of this property will be given in a straightforward way using an expression of the equation of Gauss for a totally real submanifold N of a Kaehlerian manifold \tilde{N} which contains the Weyl curvature tensor of N and the

Received February 9, 1980.

Bochner curvature tensor \tilde{N} . This equation was obtained by K. Yano [9] and will be stated here as a Lemma.

Remark 1. Totally quasiumbilical Kaehler submanifolds are totally geodesic.

Remark 2. For a proof of Theorem D, see [2].

Remark 3. With respect to Theorems B and C, see also [11].

2. Preliminaries.

Let M^n be an n-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\{U; x^h\}$, $(h, j, i, k, l, t, s \in \{1', 2', \cdots, n'\})$. Let g_{ji}, ∇_j , $K_{kji}{}^h$, K_{ji} and K be the Riemannian metric tensor, the covariant differentiation of the corresponding Levi-Civita connection, the Riemann-Christoffel curvature tensor, the Ricci tensor and the scalar curvature of M^n , respectively. Then the Weyl curvature tensor of M^n is defined by

$$(1) C_{kii}{}^{h} = K_{kii}{}^{h} + \delta_{k}^{h} L_{ii} - \delta_{i}^{h} L_{ki} + L_{k}{}^{h} g_{ii} - L_{i}{}^{h} g_{ki},$$

where

$$L_{ji} = -\frac{1}{n-2}K_{ji} + \frac{1}{2(n-1)(n-2)}Kg_{ji}, \quad L_k{}^h = L_{kl}g^{th}$$

and g^{ts} are the contravariant components of g_{ji} . According to a Theorem of H. Weyl the vanishing of C_{kji}^h characterizes the conformal flatness of M^n for $n \ge 4$.

Let M^{2m} be a (real) 2m-dimensional Kaehlerian manifold covered by a system of coordinate neighborhoods $\{V; y^{\alpha}\}$, $(\alpha, \beta, \gamma, \lambda, \mu, \nu \in \{1, 2, \cdots, 2m\})$. Let $F_{\alpha}{}^{\beta}$, $g_{\alpha\beta}$, ∇_{α} , $R_{\nu\alpha\beta}{}^{\mu}$, $R_{\alpha\beta}$ and R be the complex structure tensor, the Kaehlerian metric tensor, the corresponding covariant differentiation operator, the Riemann-Christoffel curvature tensor, the Ricci tensor and the scalar curvature of M^{2m} , respectively. Then the *Bochner curvature tensor* of M^{2m} is defined by

$$(2) \qquad B_{\nu\mu\lambda}{}^{\alpha} = R_{\nu\mu\lambda}{}^{\alpha} + \delta_{\nu}^{\alpha} A_{\mu\lambda} - \delta_{\mu}^{\alpha} A_{\nu\lambda} + A_{\nu}{}^{\alpha} g_{\mu\lambda} - A_{\mu}{}^{\alpha} g_{\nu\lambda} + F_{\nu}{}^{\alpha} \widetilde{A}_{\mu\lambda} - F_{\mu}{}^{\alpha} \widetilde{A}_{\nu\lambda} + \widetilde{A}_{\nu}{}^{\alpha} g_{\mu\lambda} - \widetilde{A}_{\mu}{}^{\alpha} F_{\nu\lambda} - 2(F_{\nu\mu} \widetilde{A}_{\lambda}{}^{\alpha} + \widetilde{A}_{\nu\mu} F_{\lambda}{}^{\alpha}),$$

where

$$A_{\mu\lambda} = -\frac{1}{2(m+2)} R_{\mu\lambda} + \frac{1}{8(m+1)(m+2)} R g_{\mu\lambda}, \quad R_{\nu}^{\alpha} = A_{\nu\gamma} g^{i\alpha},$$

$$\tilde{A}_{\mu\lambda} = -A_{\mu\gamma} F_{\lambda}^{\gamma}, \quad \tilde{A}_{\nu}^{\alpha} = \tilde{A}_{\nu\gamma} g^{i\alpha}, \quad F_{\mu\lambda} = F_{\mu}^{\gamma} g_{\gamma\lambda}$$

and $g^{\lambda\mu}$ are the contravariant components of $g_{\alpha\beta}$ [5], [8], [11].

Now, let M^n be a Riemannian manifold isometrically immersed in a Kaehlerian manifold M^{2m} . Let the immersion be represented by $y^{\alpha} = y^{\alpha}(x^h)$ and put

 $B_i^{\alpha} = \frac{\partial y^{\alpha}}{\partial x^i}$. Let C_y^{α} be 2m-n mutually orthogonal unit normal vectors of M^n in M^{2m} , $(x, y, z \in \{(n+1)', (n+2)', \dots, (2m)'\})$. Then

(3)
$$g_{ji} = g_{\mu\lambda} B_{ji}^{\mu\lambda}, \quad B_{ji}^{\mu\lambda} = B_{j}^{\mu} B_{i}^{\lambda}$$

and the metric tensor induced in the normal bundle is given by

$$(4) g_{zy} = g_{\mu\lambda} C_{zy}^{\mu\lambda}, \quad C_{zy}^{\mu\lambda} = C_z^{\mu} C_y^{\lambda}.$$

The second fundamental tensors H_{ji}^{x} of M^{n} with respect to the normals C_{x}^{α} are determined by the formulas of Gauss and Weingarten

$$\nabla_{j}B_{i}{}^{\alpha}=H_{ji}{}^{x}C_{x}{}^{\alpha},$$

$$\nabla_{i}C_{y}{}^{\alpha} = -H_{i}{}^{i}{}_{y}B_{i}{}^{\alpha},$$

where $H_{j'y} = H_{jty} g^{ti}$, $H_{jty} = H_{jt}^z g_{zy}$.

The equations of Gauss for the submanifold M^n of M^{2m} are given by

(7)
$$K_{kji}{}^{h} = R_{\nu\mu\lambda}{}^{\alpha}B_{kji\alpha}^{\nu\mu\lambda h} + H_{k}{}^{h}{}_{x}H_{ji}{}^{x} - H_{j}{}^{h}{}_{x}H_{ki}{}^{x}$$

where
$$B_{kji\alpha}^{\nu\mu\lambda\hbar} = B_k^{\nu} B_j^{\mu} B_i^{\lambda} B_{\alpha}^{\hbar}$$
, $B_{\alpha}^{\hbar} = B_i^{\gamma} g^{i\hbar} g_{\gamma\alpha}$.

 M^n is said to be totally real or anti-invariant submanifold of M^{2m} if the complex structure F of M^{2m} maps every tangent vector of M^n to a vector which is normal to M^n [3], [10]. Thus a totally real submanifold satisfies equations of the form

(8)
$$F_{\lambda}{}^{\alpha}B_{i}{}^{\lambda} = -f_{i}{}^{x}C_{x}{}^{\alpha}, \quad F_{\lambda}{}^{\alpha}C_{y}{}^{\lambda} = f_{y}{}^{h}B_{h}{}^{\alpha} + f_{y}{}^{x}C_{x}{}^{\alpha}.$$

3. Equations of Gauss for a totally real submanifold in terms of the curvature tensors of Weyl and Bochner [9]

Using the conformal second fundamental tensors M_{ii}^{x} with respect to C_{x}^{α} [7],

(9)
$$M_{ji}{}^{x} = H_{ji}{}^{x} - H^{x}g_{ji}, \quad H^{x} = \frac{1}{n}g^{ts}H_{ts}{}^{x},$$

the equations of Gauss for any submanifold M^n may be written as

(10)
$$K_{kji}{}^{\hbar} = R_{\nu\mu\lambda}{}^{\alpha} B_{kjia}^{\nu\mu\lambda\hbar} + M_{k}{}^{\hbar}{}_{x} M_{ji}{}^{x} - M_{j}{}^{\hbar}{}_{x} M_{ki}{}^{x} + \delta_{k}^{\hbar} M_{ji}{}^{x} H_{x} - \delta_{j}^{\hbar} M_{ki}{}^{x} H_{x} + M_{k}{}^{\hbar}{}_{x} H^{x} g_{ji} - M_{j}{}^{\hbar}{}_{x} H^{x} g_{ki} + H_{x} H^{x} (\delta_{k}^{\hbar} g_{ji} - \delta_{j}^{\hbar} g_{ki}),$$

where
$$M_k{}^h{}_x = M_{ktx}g^{th}$$
, $M_{ktz} = M_{kt}{}^yg_{yz}$, $H_z = H^yg_{yz}$.

Now, assume that M^n is totally real. Then from (8) it follows that

$$(11) F_{\lambda}{}^{\alpha}B_{\lambda}{}^{\lambda}B^{h}{}_{\alpha}=0.$$

Using (11), transvection of (2) with $B_{k i \alpha}^{\nu \mu \lambda h}$ gives

(12)
$$R_{\nu\mu\lambda}{}^{\alpha}B_{kji}^{\nu\mu\lambda\hbar} = B_{\nu\mu\lambda}{}^{\alpha}B_{kji}^{\nu\mu\lambda\hbar} - \delta_{k}^{\hbar}A_{\mu\lambda}B_{ji}^{\mu\lambda} + \delta_{j}^{\hbar}A_{\mu\lambda}B_{ki}^{\mu\lambda} - A_{\mu\lambda}B_{ki}^{\mu\lambda}B_{ki}^{\mu\lambda} + A_{\mu\lambda}B_{ji}^{\mu\lambda}B_{ki}^{\mu\lambda}B_{$$

Substitution of (12) in (10) yields

(13)
$$K_{kji}{}^{h} = B_{\nu\mu\lambda}{}^{\alpha} B_{kji\alpha}^{\nu\mu\lambda h} - \delta_{k}^{h} A_{\mu\lambda} B_{ji}^{\mu\lambda} + \delta_{j}^{h} A_{\mu\lambda} B_{ki}^{a\lambda} - A_{\mu\lambda} B_{kl}^{a\lambda} g^{th} g_{ji}$$

$$+ A_{\mu\lambda} B_{ji}^{\mu\lambda} g^{th} g_{ki} + M_{k}{}^{h}{}_{x} M_{ji}{}^{x} - M_{j}{}^{h}{}_{x} M_{ki}{}^{x} + \delta_{k}^{h} M_{ji}{}^{x} H_{x}$$

$$- \delta_{j}^{h} M_{ki}{}^{x} H_{x} + M_{k}{}^{h}{}_{x} H^{x} g_{ji} - M_{j}{}^{h}{}_{x} H^{x} g_{ki} + H_{x} H^{x} (\delta_{k}^{h} g_{ji} - \delta_{j}^{h} g_{ki}).$$

The Ricci tensor K_{ji} is obtained by contraction with respect to h and k:

(14)
$$K_{ji} = B_{\nu\mu\lambda}{}^{\alpha}B_{\alpha}^{\nu}B_{ji}^{\mu\lambda} - (n-2)A_{\mu\lambda}B_{ji}^{\mu\lambda} - A_{\mu\lambda}B^{\mu\lambda}g_{ji} - M_{j}{}^{t}{}_{x}M_{ti}{}^{x} + (n-2)M_{ji}{}^{x}H_{x} + (n-1)H_{x}H^{x}g_{ji},$$
 where
$$B^{\mu\lambda} = B_{ij}^{\mu\lambda}g^{ji}, \quad B_{\alpha}^{\nu} = B_{t}{}^{\nu}B_{\alpha}^{t}.$$

where

Transvection with g^{ji} gives

$$(15) \hspace{1cm} A_{\mu\lambda}B^{\mu\lambda} = \frac{n}{2}H_xH^x + \frac{1}{2(n-1)}(B_{\nu\mu\lambda}{}^{\alpha}B^{\nu}_{\alpha}B^{\mu\lambda} - K - M_s{}^t{}_xM_t{}^{sx}),$$

where

$$M_t^{sx} = M_t^{s}_{y} g^{yx}$$
.

Substitution of (15) in (14) yields

(16)
$$A_{\mu\lambda}B_{ji}^{a\lambda} = L_{ji} + \frac{1}{n-2} B_{\nu\mu\lambda}{}^{\alpha}B_{\alpha}^{\nu}B_{ji}^{\mu\lambda} - \frac{1}{2(n-1)(n-2)} B_{\nu\mu\lambda}{}^{\alpha}B_{\alpha}^{\nu}B^{\mu\lambda}g_{ji}$$
$$-\frac{1}{n-2} M_{j}{}^{t}{}_{x}M_{ti}{}^{x} + \frac{1}{2(n-1)(n-2)} M_{s}{}^{t}{}_{x}M_{t}{}^{sx}g_{ji}$$
$$+M_{ji}{}^{x}H_{x} + \frac{1}{2} H_{x}H^{x}g_{ji}.$$

Finally substitution of (16) in (13) gives the following.

Lemma. Let M^n be a totally real submanifold of a Kaehlerian manifold M^{2m} . Then

$$\begin{split} C_{kji}{}^{h} &= B_{\nu\mu\lambda}{}^{\alpha} B_{kji\alpha}^{\nu\mu\lambda h} - \frac{1}{n-2} \left[\hat{o}_{k}^{h} B_{\nu\mu\lambda}{}^{\alpha} B_{\alpha}^{\nu} B_{ji}^{\mu\lambda} - \hat{o}_{j}^{h} B_{\nu\mu\lambda}{}^{\alpha} B_{\alpha}^{\nu} B_{ki}^{\mu\lambda} \right. \\ & + B_{\nu\mu\lambda}{}^{\alpha} B_{\alpha}^{\nu} B_{ki}^{\mu\lambda} g^{th} g_{ji} - B_{\nu\mu\lambda}{}^{\alpha} B_{\alpha}^{\nu} B_{ji}^{\mu\lambda} g^{th} g_{ki} \right] \\ & + \frac{1}{(n-1)(n-2)} B_{\nu\mu\lambda}{}^{\alpha} B_{\alpha}^{\nu} B^{\mu\lambda} (\hat{o}_{k}^{h} g_{ji} - \hat{o}_{j}^{h} g_{ki}) + M_{k}{}^{h}{}_{x} M_{ji}{}^{x} - M_{j}{}^{h}{}_{x} M_{ki}{}^{x} \end{split}$$

$$\begin{split} & + \frac{1}{n-2} \left[\delta_{k}^{h} M_{\jmath}{}^{t}{}_{x} M_{t\imath}{}^{x} - \delta_{\jmath}^{h} M_{k}{}^{t}{}_{x} M_{t\imath}{}^{x} + M_{k}{}^{t}{}_{x} M_{t}{}^{hx} g_{\jmath i} - M_{\jmath}{}^{t}{}_{x} M_{t}{}^{hx} g_{k\imath} \right] \\ & - \frac{1}{(n-1)(n-2)} M_{s}{}^{t}{}_{x} M_{t}{}^{sx} (\delta_{k}^{h} g_{\jmath i} - \delta_{\jmath}^{h} g_{k\imath}) \,. \end{split}$$

4. Proof of Theorem

If on U there exist two functions a^z , b^z and a unit vector field u^z such that

then M^n is said to be *quasiumbilical* with respect to the normal direction $C_z{}^\alpha$. This is equivalent to say that M^n has a principal curvature with multiplicity $\geq n-1$ with respect to $C_z{}^\alpha$. If respectively identically $a^z=0$, $b^z=0$ or $a^z=b^z=0$ then M^n is said to be *cylindrical*, *umbilical* or *geodesic* with respect to $C_z{}^\alpha$. M^n is called a *totally* quasiumbilical, cylindrical, umbilical or geodesic submanifold of M^{2m} if M^n is quasiumbilical, cylindrical, umbilical or geodesic with respect to every normal direction $C_z{}^\alpha$.

From (9) and (17) it follows that the conformal second fundamental tensors M_{ji}^z of a totally quasiumbilical submanifold are given by

(18)
$$M_{ji}^{z} = b^{z} \left(-\frac{1}{n} g_{ji} + u_{j}^{z} u_{i}^{z} \right).$$

In particular, M^n is totally umbilical if and only if $M_{ji}^z = 0$.

The preceding Lemma implies that a totally real submanifold M^n , $n \ge 4$, of a Kaehlerian manifold M^{2m} with vanishing Bochner curvature tensor is conformally flat if and only if

(19)
$$M_{k}{}^{h}{}_{x}M_{ji}{}^{x} - M_{j}{}^{h}{}_{x}M_{ki}{}^{x} + \frac{1}{n-2} \left[\partial_{k}^{h} M_{j}{}^{t}{}_{x}M_{ti}{}^{x} - \partial_{j}^{h} M_{k}{}^{t}{}_{x}M_{ti}{}^{x} + M_{k}{}^{t}{}_{x}M_{t}{}^{hx} g_{ji} - M_{j}{}^{t}{}_{x}M_{t}{}^{hx} g_{ki} \right] - \frac{1}{(n-1)(n-2)} M_{s}{}^{t}{}_{x}M_{t}{}^{sx} (\partial_{k}^{h} g_{ji} - \partial_{j}^{h} g_{ki}) = 0.$$

In particular, (19) is trivially satisfied when M^n is totally umbilical.

Now assume that M^n is totally quasiumbilical. Then using the fact that the 2m-n vectors $C_x{}^\alpha$ are orthonormal, it follows from (18) that

$$\begin{split} (21) & \qquad M_k{}^h{}_x M_{ji}{}^x - M_j{}^h{}_x M_{ki}{}^x \\ &= \sum_x (b^x)^2 \bigg[\frac{1}{n^2} (\partial_k^h g_{ji} - \partial_j^h g_{ki}) - \frac{1}{n} (\partial_k^h u_j^x u_i^x - \partial_j^h u_k^x u_i^x \\ & \qquad + g_{ji} g^{th} u_k^x u_i^x - g_{ki} g^{th} u_j^x u_i^x) \bigg] \,, \end{split}$$

(23)

(22)
$$\delta_{k}^{h} M_{j}^{t}{}_{x} M_{ti}{}^{x} - \delta_{j}^{h} M_{k}{}^{t}{}_{x} M_{ti}{}^{x} + M_{k}{}^{t}{}_{x} M_{t}{}^{hx} g_{gi} - M_{j}{}^{t}{}_{x} M_{t}{}^{hx} g_{ki}$$

$$= \sum_{x} (b^{x})^{2} \left[\frac{2}{n^{2}} (\delta_{k}^{h} g_{ji} - \delta_{j}^{h} g_{ki}) + \frac{n-2}{n} (\delta_{k}^{h} u_{j}^{x} u_{i}^{x} - \delta_{j}^{h} u_{k}^{x} u_{i}^{x} + g_{ji} g^{lh} u_{k}^{x} u_{i}^{x} - g_{ki} g^{lh} u_{j}^{x} u_{i}^{x} \right]$$

$$+ g_{ji} g^{lh} u_{k}^{x} u_{i}^{x} - g_{ki} g^{lh} u_{j}^{x} u_{i}^{x} \right] ,$$

$$(23) \qquad M_{s}^{t}{}_{x} M_{t}^{sx} (\delta_{k}^{h} g_{ji} - \delta_{j}^{h} g_{ki}) = \frac{n-1}{n} (\delta_{k}^{h} g_{ji} - \delta_{j}^{h} g_{ki}) \sum_{x} (b^{x})^{2} .$$

By substitutions with (21), (22) and (23) it is clear that (19) is indeed satisfied under the present assumption.

Bibliography

- [1] BLAIR, D. E., On the geometric meaning of the Bochner curvature tensor, Geometriae Dedicata, 4 (1975), 33-38.
- [2] CHEN, B.Y., Geometry of submanifolds, Marcel Dekker, New York, 1973.
- [3] CHEN, B. Y. AND OGIUE, K., On totally real submanifolds, Trans. Amer. Math. Soc., 193 (1974), 257-266.
- [4] CHEN, B.Y. AND YANO, K., Sous-variétés localement conformes à un espace euclidien, C. R. Acad. Sci. Paris, 275 (1972), 123-126.
- [5] TACHIBANA, S., On the Bochner, curvature tensor, Natural Sc. Rep. Ochanomizu Univ., 18 (1967), 15-19.
- YAMAGUCHI, S. AND SATO, S., On complex hypersurfaces with vanishing Bochner tensor in Kaehlerian manifolds, Tensor N.S., 22 (1971), 77-81.
- [7] YANO, K., Sur les équations de Gauss dans la géométrie conforme des espaces de Riemann, Proc. Imp. Acad. Tokyo, 15 (1939), 247-252.
- [8] YANO, K., Manifolds and submanifolds with vanishing Weyl or Bochner curvature tensor, Proc. of Symposia Pure Math., 21 (1975), 253-262.
- [9] YANO, K., Totally real submanifolds of a Kaehlerian manifold, J. Differential Geometry, 11 (1976), 351-359.
- [10] YANO, K. AND KON, M., Anti-invariant submanifolds, Marcel Dekker, New York,
- [11] YANO, K. AND SAWAKI, S., On the Weyl and Bochner curvature tensor, Rend. Accad. Naz. dei XL, 3 (1977-78), 31-54.

KATHOLIEKE UNIVERSITEIT LEUVEN DEPARTEMENT WISKUNDE Celestijnenlaan 200B B-3030 Leuven (België)