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NON-EXISTENCE OF A NORMAL CONDITIONAL

EXPECTATION IN A CONTINUOUS

CROSSED PRODUCT

BY YOSHIKAZU KATAYAMA

1. Introduction. The conditional expectations of operator algebras played an
important role from the outset in the theory of operator algebras. J. Diximeir
[3] and H. Umegaki [14] have introduced conditional expectations in a finite
von Neumann algebra onto its von Neumann subalgebras and there are abundant
systematic studies concerning the conditional expectations (See for example [3],.
[10], - , [17]).

Besides, we have the notion of a crossed product. It is constructed from a
triple (M, G, a) where M is a von Neumann algebra, G is a locally compact
group and a is an action of G on M, i.e. α is a homomorphism of G into the
automorphism group of M satisfying certain continuity conditions. We call it a
W*-dynamical system. The method of construction of the crossed product
GxaM from a PF*-dynamical system (M, G, a) will be made explicit in § 2..
Further we will call it a discrete crossed product when G is a discrete group,
and a continuous crossed product when G is not discrete. Now, in the case of
a discrete crossed product, there exists a faithful normal conditional expectation
of GxaM onto M. But it was not known, in the case of a continuous crossed
product, whether there exists a normal conditional expectation of GxaM onto M.

In this note we establish the following theorem; There is no normal condi-
tional expectation of GxaM onto M if G is a locally compact connected group
and if there is an element h in G such that ah is an outer automorphism of M.

In spite of this result, a normal semi-finite operator valued weight from a
crossed product GxaM into M can always be found. This was shown by IL
Haagerup [4] prior to our result.

2. Notations and Preliminaries. Let M be a von Neumann algebra on a
Hubert space H and G be a locally compact group. The triple (M, G, a) is said
a T^*-dynamical system if the mapping a of G into the group Aut(M) of all
automorphisms of M is a homomorphism and the function g-^ωag(x) is continuous
on G for any X G M and ωεM^ (M* is the predual of M).

The crossed product GxaM of M with G is the von Neumann algebra on
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L2(G, H) generated by the family of the operators [πa(x), λ(g) i ε M , g^G)

(πa(x)ζ)(h)=^a-Λx)ζ(h), ζ€=L\G, H),

Q(g)ζ)(h)=ζ(g-1h), ζeL8(G, H).

The mapping πa is then a normal isomorphism of M onto πa(M) such that
λ(g)πa(x)λ(g)*=πa(ag(x)) for all ^ G G and X E M . We often identify the von
Neumann algebra M with the von Neumann algebra πa(M).

Let T be a linear mapping of a von Neumann algebra M onto a von Neumann
subalgebra N of M.

D E F I N I T I O N . 2 . 1 T i s c a l l e d a c o n d i t i o n a l e x p e c t a t i o n of M o n t o N U T h a s
the following properties (See [3], [10], •••, [17]);

( i ) T ( l ) = l , where 1 is the identity operator.

(ii) T(axb)^a{T{x))b, for all a, b^Nf I G M .

Moreover T is called normal if ιT(N*)(zM*.
Let ^ be an automorphism of a von Neumann algebra M.

DEFINITION 2.2. φ is said /r^/ j ; acting if the element JC of M with the
property that xφ(y)=yx for any y^M is necessarily zero. For each automor-
phism φ of M, there is a unique central projection q of M such that

( i ) 0(tf)=?
(ii) Φ\MQ is an inner automorphism of Mq.
(iii) |̂jfcrCl_g) is a freely acting automorphism of Mα_ 5 ).

This central projection g will be denoted by p(φ) (cf. Kallmann [7]).
Let M be a von Neumann algebra. We also identify Mf with fMf=

{fxf\ X G M I where / is a projection of M or M'.

3. Main results.

THEOREM 3.1. Let (M, G, a) be a W*-dynarnιcal system and we suppose that
sup{p(ag); g^G, gφe}φ\, where e is the identity of G. Then, the following
statements are equivalent;

(i) G is a discrete group.
(ii) there exists a normal conditional expectation of GxaM onto M.

Remark 3.2. That (i) implies (ii) is well known (cf. [2] Proposition 1, 4, β,
[9] § 4 and [6] § 2). In fact if G is a discrete group, the Hubert space L\G, H)
is identified with H®P{G). On the other hand, for each g in G, put

1 (g=A),

0 {gΦh),
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then the Hubert space L2(G, H) is identifiable with the direct sum Σ ®H®εg
g<ΞzG

of subspaces i/®ε^ (gεG). For each g in G and η in H, put Jgη—η®£g, then
Jg is an isometry of H onto H®εg. Every x in X(L2(G, H)) has a matrix rep-
resentation with an operator on H as each element

where Xφ) is the algebra of all bounded linear operators on a Hubert space ξ>.
Especially, we have

(πa{x))g

 Λ=δiag-i(x) (xεM, g, ΛεG),

Put T(j;)=(3/)e,e for y<=GxaM. Then T is a faithful normal conditional ex-
pectation of G X α M onto M.

Before we prove the implication (ii)^>(i), we will give two lemmas. Lemma
3.3 will be used repeatedly in the whole of our study.

LEMMA 3.3. Let T be a conditional expectation of GxaM onto M. We then

have T(λ(g))a-pcag»=0 for any g^G.

Proof. For each y<=Ma-P(ag», we have;

yT(λ(g)*)=T(yλ(g)*)=T(λ(g)*λ(g)yλ(g)*).

Since λ(g)yλ(g)*=ag(y) is an element of M,

yT(λ(g)*)=nλ(g)*)aβ(y).

Therefore T(λ(g)*)c1-p<ιag ) )=0 because ag is a freely acting automorphism of

LEMMA 3.4. sup{/?(α^); ^ ε G , gΦe] is a G-invanant central projection of M.

Proof. For any y^M, g, h^G with gΦe, we have

where U is an element of M such that ag]JίpCa ^ = AdU, U*U=p(ag) and UU*

=p(ag) (AdU{x)^UxU* for x<ΞMpUgg>).

Therefore we get ah(p(ag))^p(ahgh-i), so that

ah(sup{p(ag); g^G, gφe))^sup{p(ag) g<=G, gΦe}.

Hence sup{p(ag) g^G, gΦe} is a G-invariant central projection of M.

[The proof of Theorem 3.1.]. By Lemma 3.4, it is sufficient to prove the
Theorem in the case when ρ(ag)=0 for all g^G except the identity e. It
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follows that T(λ(g))=0 for all g^G except e by Lemma 3.3.
Suppose that T is a normal conditional expectation of GxaM onto M. Let

K(G, M) be the family of M-valued, σ-weakly continuous functions on G with
compact support. By [5] Lemma 2.3, K(G, M) is an involutive algebra and
a ^representation μ of K(G, M) is defined,

= λ(g)πa(ξ(g))dv(g),
J G

where ξ^K(G, M) and v is a left Haar measure of G. Moreover the repre-
sentation μ maps K(G, M) onto a σ-weakly dense subalgebra of GxaM. Since
T is normal and T(λ(g))=Q for all g^G except e, we have

T(μ(ξ))=\
J

\
JG

Therefore v({e}) must be a positive number, so G must be a discrete group.

Remark 3.5. Let (M, G, a) be a W*-dynamical system. Let V be a strongly
continuous unitary representation of G into M such that α ^ A ί / 1 ^ for any

We define a unitary operator W on L\G, H)=H®L\G)

(Wζ)(g)=Vgξ(g)

for all ί e L 2 ( G , //). We get;

for any I G M

for any g^G .

where p is the left regular representation of G on L2(G). Therefore we get

W(G X aM)W*=M®p{GY} Wπa{M)W*=M®l.

Whence we know that there are many normal conditional expectations of GxaM
onto M, according to the result of [13] Theorem 1.1.

We will have a decisive result about the existence of a normal conditional
expectation in case of a connected group.

THEOREM 3.6. Let G be a locally compact connected group and (M, G, a) be
a W*-dynamical system. If there is an element h in G such that ah is an outer
automorphism of M, then there does not exist any normal conditional expectation
of GxaM onto M.

Proof. We suppose that there exists a normal conditional expectation T of
GxaM onto M.

Assume first that there is an element g in G such that g is on a one-
parameter subgroup x(t) at t=s and ag=axCS) is an outer automorphism of M.
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ί ( α ccs)) is then a central projection of M which is not the identity operator of
M. For any 77. eiV, we get

because fe(S/»,)"=a^S). From Lemma 3.3, TU(x(s/n))) a -p(^ ( s / n ) ) )=0, so we
have

))) =0

for any n^N, Therefore we get,

so we get l=p(ag), which is a contradiction. So the assumed situation does not
take place.

When an element g in G is on a one-parameter subgroup of G, we write
e^g. By the above argument, ag must be an inner automorphism of M for any
g in {^eG; e~g}. Now, G is equal to the closed subgroup K generated by
{g(=G; e~g}. Indeed, suppose that there are an element g m G and an open
neighborhood U of e in G such that the intersection of gU and K is empty. By
[8] Theorem 4.6, there exists in U a compact normal subgroup H such that G/H
is a Lie group. Then there is a neighborhood V of g in G such that V contains
H and each point of V/H is on a one-parameter subgroup in G/H. Since G///
is also a connected group, G/H is the group generated by V/H, so that there
are a finite subset {gxH\ z = l, 2y -••, n} in G///, and one-parameter subgroups

n

Xi(t) 0 = 1, 2, •••, n) in G/// such that HgtH=gH, gtH is on the one-parameter
1 = 1

s u b g r o u p x z ( 0 of G / / / a t ί = s t (2 = 1, 2, •••, w) a n d gt^V 0 = 1, 2, ••• , 71). By
Π8] T h e o r e m 4.15, t h e r e a r e o n e - p a r a m e t e r s u b g r o u p s y%(f) of G 0 —1» 2, ••• , n)

s u c h t h a t yi(t)H=xt(t) for a n y ί G β 0 = 1, 2, ••• , n). T h e e l e m e n t ^ ^ Π v ^ j )
2 = 1 '

n

is contained in HdU because Π yι(sι)H=gH. Then the intersection of K and
t = l

n

gί/ is not empty since TLyiiSt) is contained in both K and g/7, which is a
ι=i

contradiction.
As the group generated by {g^G; e^g] was shown to be dense in G,

there is a net {^Jie/ in this group such that it converges to h in G, h being
the element in the statement of the Theorem. Since ag are inner automorphisms
of M for any g in {g^G; e^g}, a8ι are inner automorphisms of M for any
fε/. Then we get;
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so that l — p(ah)=0, which is not the case. We get thus a contradiction and

the proof is complete.

Remark 3.7. If the group is not supposed connected, there are I^*-dynamical

systems with a non-discrete locally compact group such that there is an element

h in G with the freely acting automorphism ah of M and there is a normal

conditional expectation of GxaM onto M. For instance, let G be a locally

compact group GiXG2 where G2 is a discrete group and G2 is a non-discrete

locally compact group. Then (L°°(d), G1xG2, a) and (L°°(Gi), Glf σ) are W*-

dynamical systems where the actions a(,gιh^ = σg are the translation of L°°(Gi)

for all (£, A ) G G ! X G 2 . Then GxaL°°(d) is isomorphic to G1X(TL00(G1)(g)io(G2)
//

where ,o is the left regular representation of G2 on L2(G2). Let ω be a normal

state of p(G2)", pω be a slice mapping associated with ω (See [13]) of

G1XσL
ca{G1)®ρ{G2Y

f onto GiX^L^Gi). Let T be a normal conditional expecta-

tion of GiXffL°°(Gi) onto L°°(Gi) (Remark 3.2). Then T°£ω is a normal condi-

tional expectation of GxΛZ,°°(Gi) onto L°°(d).

PROPOSITION 3.8. L ί̂ (M, G, α) ^ α W*-dynamιcal system, Γ be an open

subgroup of G and ω be a faithful normal semi-finite weight on M. Then there

is a faithful normal conditional expectation T of GxaM onto W*(M, Γ, a) =

{πa(M\ λ(Γ)}" such that ώ°T=ώ and T(λ(g))=0 if g&Γ where ώ is the dual

weight associated with ω.

Proof. By [5] Theorem 3.2 we get,

σf(πa(x))=πa{σt{x)) for all z e M ,

σγ{λ{g))=Δ(g)uλ{g)πa{{Dω-ag : Dω)t) for all g ε G .

Therefore W*(M, Γ, a) is σf-'mvariant for all t^R. Let K(Γ, 8tω) be the family

of all ^ί^-valued continuous functions on Γ with a compact support where 2ϊω is

the left Hubert algebra associated with ω. We regard K(Γ, 9ίω) as {f^K(G, Sίω)

/ = 0 outside JΓ}. Then by [5] Theorem 3.2, ft>|^*(iίf.r.α) is semi-finite. Then by

[11] Theorem, there is a unique faithful normal conditional expectation T of

GxaM onto W*(M, Γ, a) such that ώ°T=ώ. Moreover we find, by the con-

struction of T in [11], that T(x)=Φ(ExE) for all x^GxaM where E is the

projection of L2(G, H) onto L2(Γ, H) and Φ is the canonical automorphism of

ΓxβM onto W*(My Γy a);

Φ(πβ(x))^πa(x) for all

Φ(λ(g))=λ(g) for all

(where the action /3 is the restriction of a on Γ). For all x(g)^K(G, M), we
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obtain,

τ(^Gπa{x{g))λ{g)dg)^φ{E^(πa{x{g))λ{g)dg E)

=\rπa(x(g))λ(g)dg .

Then we get Ttf(g))=0 for all g&Γ since Eλ(g)F=0 for g&Γ.

Remark 3.9. The above proposition was proved by H. Choda m case of a
discrete group ([1] Proposition 2).

4. Applications.

COROLLARY 4.1. Let G be a locally compact connected group and (M, G, a)
be a W*-dynamical system. If there is an element g^G such that p(ag)=0, then
the crossed product GxaM is properly infinite.

COROLLARY 4.2. Let (M, G, a) be a W*-dynamical system. If the group G
is not discrete and p(ag)=0 for all g^G except g~e, then the crossed product
GxaM is properly infinite.

We prove the Corollary 4.1 only, as we can prove the Corollary 4.2 in the
same way.

[Proof of Corollary 4.1]. We suppose GxaM is not properly infinite and
let (GxaM)p be the greatest finite portion of GxaM. Since p is a central
projection of GxaM, p is a projection of πa(MY. Let q be the central support
of p in πa(MY. Then we get that q is a G-mvariant projection of πa(M)Γλπa(My
because p is /WΛ(g )-invariant for all g^G. The von Neumann algebra Mp is a
von Neumann subalgebra of a finite von Neumann algebra (GxaM)p, so that
there is a normal conditional expectation 7\ of (GxaM)p onto Mv (See [3]
Theoreme 8 or [14] Theorem 1). We define a new normal conditional expecta-
tion T of {GxaM\ onto Mq;

T(x)=Φ(T1(pxp))

for all χ(Ξ(GxaM)q where Φ is the canonical isomorphism of Mp onto MQ.
For a, b^Mq, χ G ( G x a M ) ? , we have

= Φ{papT1(pxp)pbp}-=a{ΦTί(pxp)}b=a(T(x))b,

and
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Therefore T is a conditional expectation of (GxaM)q onto Mq. The normality

of T is clear. On the other hand, (GxaM)q is the crossed product with the

l^*-dynamical system (Mq, G, a\Mq). This contradicts Theorem 3.6.
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