TOTALLY REAL SUBMANIFOLDS OF AN ALMOST HERMITIAN MANIFOLD I

BY M. BARROS AND J. CASTELLANO

§1.—Introduction.—Let (\bar{M}, g, J) be an almost Hermitian manifold, that is, the tangent bundle of \bar{M} has an almost complex structure J and a Riemannian metric, g, such that g(JX, JY) = g(X, Y) for all $X, Y \in T\bar{M}$. Then dim $\bar{M} = 2m$ and \bar{M} is orientable.

In (2), B. Y. Chen and K. Ogiue studied some fundamental properties of totally real submanifolds of a Kaehler manifold.

In (3), B. Y. Chen, C. S. Houh and H. S. Lue follow the study of totally real submanifolds in a Kaehler manifold.

In (10), L. Vanhecke studied some fundamental properties of totally real submanifolds of a generalized complex space forms.

In this paper we study some properties of totally real submanifolds of an almost hermitian manifold (In particular, a Nearly Kaehler manifold).

We obtain some generalizations for results of (3), (6), (7) and (12).

In the last section we study a Hermitian connection (4), (9), respect to a totally real submanifold in an almost hermitian manifold. In particular, we obtain some basic formulas for this connection (Formulas of Gauss and Weingarten, equations of Gauss, Codazzi, Ricci...).

§ 2.—Basic formulas.—Let \bar{M}^{2m} be a 2m-dimensional almost Hermitian manifold with almost complex structure J and metric tensor g. Let $\overline{\nabla}$ be the Levi-Civita connection of \bar{M} .

It is well-known that \bar{M} is a Nearly Kaehler manifold if

$$(\overline{\nabla}_X J)X = 0 \tag{2.1}$$

for all $X \in T\overline{M}$, where $T\overline{M}$ is the tangent bundle of M. For $X \in T\overline{M}$, we denote a section (tangent vector field) in this vector bundle.

Let M^n be an *n*-dimensional totally real submanifold of \overline{M} , that is, for $x \in M$, $J(T_xM)$ is perpendicular to T_xM . Then the second fundamental form σ is given by

$$\sigma(X, Y) = \overline{\nabla}_X Y - \nabla_X Y \tag{2.2}$$

for all X, $Y \in TM$, where TM is the tangent bundle to M and ∇ is the induced connection of M.

Received April 12, 1979

The mean curvature vector is given by $H=\frac{1}{n}\operatorname{trace}\sigma$. For a normal vector field ξ , we write

$$\overline{\nabla}_{X}\xi = -A_{\xi}X + D_{X}\xi \tag{2.3}$$

where $-A_{\xi}X$ (resp. $D_X\xi$) denotes the tangential (resp. normal) component of $\overline{\nabla}_X\xi$. Then we have,

$$g(\sigma(X, Y), \xi) = g(A_{\xi}X, Y) \tag{2.4}$$

A normal vector field ξ is called a parallel section in the the normal bundle $T^{\perp}M$ if $D\xi=0$.

A subbundle S of the normal bundle $T^{\perp}M$ is holomorphic if S is invariant under J, i.e. JS=S.

A subbundle S of $T^\perp M$ is said to be parallel if S is invariant under parallel translation, i.e. for every local section ξ in S, $D_X \xi$ is also a section in S. It is clear that a unit normal vector field ξ is parallel if and only if the line bundle generated by ξ is parallel. For a subbundle S of $T^\perp M$, there exists a unique subbundle S^c of $T^\perp M$ such that S and S^c are orthogonal and $S \oplus S^c = T^\perp M$. We call S^c the complementary subbundle of S. It is clear that for a totally real submanifold M in \overline{M} , the complementary subbundle $(J(TM))^c$ of J(TM) is always holomorphic. Moreover, S is parallel if and only if S^c is parallel.

We call the complementary subbundles of holomorphic subbundles of $T^{\perp}M$, the coholomorphic subbundles of $T^{\perp}M$. Then a subbundle S of $T^{\perp}M$ is coholomorphic if and only if S is the direct sum of J(TM) and a holomorphic subbundle of $T^{\perp}M$.

§ 3.—Parallel subbundles.—In this section we consider an almost Hermitian manifold which is a Nearly kaehlerian.

Lemma 3.1.—Let M^n be a totally real submanifold of a Nearly Kaehler manifold \bar{M}^{2m} . If S is a 2r-dimensional parallel holomorphic subbundle of $T^\perp M$, then $\sigma/S=0$.

Proof.—It is very easy to prove that

$$g(\sigma(X, Y), \xi) = -g((\overline{\nabla}_X J)Y, J\xi) \tag{3.1}$$

for all X, $Y \in TM$ and $\xi \in S$.

If we use that \overline{M} is a Nearly Kaehler manifold and σ is symmetric, we have from (3.1) that $g(\sigma(X, Y), \xi)=0$ for all $\xi \in S$. Then $\sigma/_{S=0}$ (Q. E. D.)

Lemma 3.2.—Let M^n be a totally real submanifold of a Nearly Kaehler manifold \overline{M}^{2m} . If S is a parallel coholomorphic subbundle of $T^{\perp}M$, then $\text{Im } \sigma \subset S$, where $\text{Im } \sigma = \{\sigma(X, Y)/X, Y \in TM\}$.

Proof.—It is easy to see that S is parallel if and only if S^c is parallel.

Then, the result follows from Lemma 3.1.

LEMMA 3.3.—Let M^n be a totally real submanifold of an almost Hermitian manifold \overline{M}^{2m} . We suppose that M is a totally real submanifold of a 2(n+s)-dimensional totally geodesic complex submanifold $N^{2(n+s)}$ of \overline{M}^{2m} . Then, there exists an (n+2s)-dimensional parallel coholomorphic subbundle S of $T^{\perp}M$.

Proof.—We define $S=T_N^{\perp}M$, that is, S is the normal bundle of M in N. It is clear that $T^{\perp}M=S \oplus T^{\perp}N$, dim S=n+2s and that S is coholomorphic. Since N is totally geodesic in \overline{M} , we have

$$\overline{\nabla}_{Y}\eta = \overline{D}_{Y}\eta \tag{3.2}$$

for all $Y \in TN$ and $\eta \in T^{\perp}N$. Moreover

$$g(\overline{\nabla}_X \xi, \eta) + g(\xi, \overline{\nabla}_X \eta) = 0$$
 (3.3)

for all $\xi \in S$, $\eta \in T^{\perp}N$ and $X \in TM$.

Substituting (2.3) and (3.2) in (3.3), we get $g(D_Y \xi, \eta) = 0$. Hence $D_Y \xi \in S$. (Q. E. D.)

Remark.—Lemma 3.1 and Lemma 3.2. has been proved by B. Y. Chen, C. S. Houh and H. S. Lue (3) for a Kaehler manifold.

§4.—f-structure in the normal bundle.

Let $\hat{\xi}$ be any normal vector field on M^n in \bar{M}^{2m} . We put

$$J\xi = P\xi + f\xi \tag{4.1}$$

where $P\xi$ and $f\xi$ denote respectively the tangential and the normal component of $J\xi$. Then P is a tangent bundle valued 1-form and f is an endomorphism of the normal bundle. Then,

$$-\xi = JP\xi + Jf\xi \tag{4.2}$$

and making use of (4.1)

$$-\xi = IP\xi + Pf\xi + f^2\xi \tag{4.3}$$

Comparing the tangential and normal parts in (4.3), we get

$$Pf\xi = 0 \tag{4.4}$$

$$f^2\xi + JP\xi = -\xi \tag{4.5}$$

In particular, if $\xi = JX$ for $X \in TM$, we have -X = PJX + fJX thus fJX = 0 and -X = PJX. By applying f to (4.3), we get $f^3\xi = -f\xi$. Since ξ is an arbitrary normal vector field $f^3 + f = 0$. Therefore, if the endomorphism f doesn't vanish (i. e. if n < m) it defines an f-structure in $T^\perp M$.

We define the covariant derivative of f with respect to D by

$$(D_X f) \xi = D_X f \xi - f D_X \xi \tag{4.6}$$

for all $X \in TM$ and $\xi \in T^{\perp}M$.

Moreover, we define the covariant derivative of P with respect to the connection in $TM \oplus T^{\perp}M$ obtained by combining the connections ∇ in TM and D in $T^{\perp}M$

$$(\hat{\nabla}_X P)\xi = \nabla_X P\xi - PD_X \xi \tag{4.7}$$

for all $X \in TM$ and $\xi \in T^{\perp}M$.

If $D_X f = 0$ (respectively, $\hat{\nabla}_X P = 0$ for all tangent vector fields X, then the f-structure in the normal bundle (respectively, the tangent bundle valued 1-form P) is said to be parallel.

§ 5.—Parallel f-structure.

LEMMA 5.1.—Let M^n be a totally real submanifold of an almost Hermitian manifold \bar{M}^{2m} , then, for all X, $Y \in TM$ and $\xi \in T^1M$, we have

$$(\overline{\nabla}_{X}J)\xi = (\widehat{\nabla}_{X}P)\xi - A_{f\xi}X + (D_{X}f)\xi + JA_{\xi}X + \sigma(X, P\xi)$$
(5.1)

and

$$(\overline{\nabla}_{X}J)Y = -A_{JY}X - P\sigma(X, Y) + D_{X}JY - J\nabla_{X}Y - f\sigma(X, Y)$$
(5.2)

Proof.—For $\xi \in T^{\perp}M$ and $X \in TM$, we have

$$\nabla_{\mathbf{r}} I \hat{\varepsilon} = \nabla_{\mathbf{r}} P \hat{\varepsilon} + \nabla_{\mathbf{r}} f \hat{\varepsilon}$$

Then,

$$(\overline{\nabla}_X J)\xi - JA_{\xi}X + JD_X\xi = \nabla_X P\xi + \sigma(X, P\xi) - A_{f\xi}X + D_X f\xi$$

From (4.6) and (4.7), we obtain (5.1). In the proof of (5.2), we use a similar reasoning.

COROLLARY 5.2.—Let M^n be a totally real submanifold of a Nearly Kaehler manifold \bar{M}^{2m} . Then for all $X, Y \in TM$, we have

$$P\sigma(X, Y) = -\frac{1}{2}(A_{JX}Y + A_{JY}X)$$
 (5.3)

and

$$f\sigma(X, Y) = \frac{1}{2}(D_XJY + D_YJX - JD_XY - JD_YX)$$
 (5.4)

The proof is immediate.

If we consider that \bar{M}^{2m} is a Kaehler manifold, then we have the following result.

Theorem 5.3.—Let M^n be a totally real submanifold of a Kaehler manifold \bar{M}^{2m} then the following statements are equivalent

- a) The f-structure in the normal bundle is parallel.
- b) M^n is geodesic w.r.t. $(J(TM))^c$.
- c) The tangent bundle valued 1-form P is parallel.
- d) $(J(TM))^c$ is parallel.
- e) J(TM) is parallel.

Proof.—a) implies b) is proved in (12) and b) implies a) is proved in (6).

It is very easy to prove that $\operatorname{Im} f = (J(TM))^c$ and $\operatorname{Ker} f = J(TM)$, then taking in account that \overline{M} is a Kaehler manifold $(\overline{\nabla} J = 0)$ and from (5.1), we have the others implications.

PROPOSITION 5.4.—Let M^n be a totally real submanifold of an almost Hermitian manifold \bar{M}^{2m} . Then, the following statements are equivalent.

- a) M is geodesic w. r. t. $(J(TM))^c$;
- b) Im $\sigma c J(TM)$; c) $\sigma/_{(J(TM))}c=0$ where Im $\sigma=\{\sigma(X, Y)/X, Y\in TM\}$

The proof is immediate.

In the next theorem, we give a generalization of a result of K. Yano-M. Kon (12), for a Nearly-Kaehler manifold.

Theorem 5.5.—Let M^n be a totally real submanifold of a Nearly-Kaehler manifold \overline{M}^{2m} . If the f-structure in the normal bundle is parallel, then M^n is geodesic $w. r. t. (J(TM))^c$. Moreover, for all $X \in TM$ and $\xi \in (J(TM))^c$, $(\overline{\nabla}_X J) \xi = 0$.

Proof.—It is well-known that an almost Hermitian manifold N satisfies

$$g((\overline{\nabla}_{X}I)Y, Y) = 0 \tag{5.5}$$

for all X, $Y \in TN$, where J is the almost Hermitian structure and $\overline{\nabla}$ the Riemannian connection.

By (5.1), for all $Y \in TM$, we have

$$g((\overline{\nabla}_X J)\xi, JY) = g((D_X f)\xi, JY) + g(\sigma(X, Y), \xi) + g(\sigma(X, P\xi), JY)$$
 (5.6)

If f is parallel, for all $\xi \in (J(TM))^c$ from (4.5), we get,

$$g(\sigma(X, Y), \xi) = -g((\overline{\nabla}_X J)Y, J\xi)$$
(5.7)

Since σ is symmetric and \overline{M} is a Nearly-Kaehler manifold, $g(\sigma(X, Y), \xi)=0$ for all $X, Y \in TM$ and $\xi \in (J(TM))^c$. Moreover, $(\overline{\nabla}_X J)\xi \in TM$ for all $X \in TM$ and $\xi \in (J(TM))^c$. Since $(J(TM))^c$ is a holomorphic subbundle of $T^\perp M$, it is clair that

$$(\overline{\nabla}_{x}I)\xi=0 \tag{Q. E. D.}$$

Theorem 5.6.—Let M^n be a totally real submanifold of an almost Hermitian manifold \bar{M}^{2m} . We suppose that

- a) M is geodesic w, r, t. $(I(TM))^c$
- b) For all $X \in TM$ and $\xi \in (J(TM))^c$, $(\overline{\nabla}_X J)\xi = 0$ Then, the f-structure in the normal bundle is parallel.

Proof.—If $\xi \in (J(TM))^c$, then $A_{\xi} = 0$, $P\xi = 0$ and $(\overline{\nabla}_X J)\xi = 0$, from (5.1), $(D_X f)\xi = 0$. If $\xi = JY$ for $Y \in TM$, then we can consider two cases

i) Let η be a normal vector field in $(J(TM))^c$, then $A_n=0$ and

$$g((D_X f)\xi, \eta) = -g((\overline{\nabla}_X J)\eta, \xi) + g(A_{\xi}X, J\eta) = 0$$

ii) Let η be a normal vector field in J(TM), then $\eta = JZ$ for $Z \in TM$

$$g((D_X f)\xi, \eta) = g((\overline{\nabla}_X J)JY, JZ) - g(A_{JY}X, Z) + g(\sigma(X, Y), JZ)$$

$$= -g(\overline{\nabla}_X Y, JZ) - g(\overline{\nabla}_X JY, Z) - g(A_{JY}X, Z) + g(\sigma(X, Y), JZ) = 0$$

Thus, $g((D_X f)\xi, \eta)=0$ for all $\eta \in T^{\perp}M$, then $(D_X f)\xi=0$ for all $\xi \in T^{\perp}M$ and $X \in TM$. (Q. E. D.)

COROLLARY 5.7.—Let M^n be a totally real submanifold of a Nearly Kaehler manifold \overline{M}^{2m} . Then the f-structure in the normal bundle is parallel if and only if the following statements hold

- a) M is geodesic w.r.t. $(J(TM))^c$
- b) For all $X \in TM$ and $\xi \in (J(TM))^c$, $(\overline{\nabla}_X J)\xi = 0$.

THEOREM 5.8.—Let M^n be a totally real submanifold of an almost Hermitian manifold \overline{M}^{2m} . We suppose that $(\overline{\nabla}_X J)\xi=0$ for all $X\in TM$ and $\xi\in (J(TM))^c$. Then the following statements are equivalent

- 1) The f-structure in the normal bundle is parallel.
- 2) M is geodesic $w.r.t.(J(TM))^{c}$.

The proof is immediate.

Theorem 5.9.—Let M^n be a totally real submanifold of a Nearly Kaehler manifold \overline{M}^{2m} . If the f-structure in the normal bundle is parallel, then the normal subbundle $(J(TM))^c$ is parallel.

Proof.—For all $X \in TM$ and $\xi \in (J(TM))^c$, we have

$$0 = (\overline{\nabla}_X J)\xi = (-A_{J\xi}X - PD_X\xi) + (D_X J\xi - fD_X\xi + JA_{\xi}X)$$

Thus,

$$PD_X\xi = -A_{J\xi}X$$
 and $fD_X\xi = D_XJ\xi + JA_{\xi}X$

since Im $\sigma \subset J(TM)$, we have

$$PD_X\xi=0$$
, $fD_X\xi=D_XJ\xi$

Then, $D_X J\xi \in (J(TM))^c$. Since $(J(TM))^c$ is holomorphic, we get that $(J(TM))^c$ is

parallel.

COROLLARY 5.10.— Let M^{m-1} be a totally real submanifold of a Nearly-Kaehler manifold M^{2m} . Then the following statements are equivalent

- 1) The f-structure in the normal bundle is parallel.
- 2) M is geodesic $w.r.t.(J(TM))^c.$

$$(\overline{\nabla}_X J)\xi=0$$
 for all $X\in TM$ and $\xi\in (J(TM))^c$.

- 3) The normal subbundle $(J(TM))^c$ is parallel.
- 4) The normal subbundle J(TM) is parallel.

§ 6.—Parallel 1-form P.—In this section, we study, in which cases the tangent bundle valued 1-form P is parallel.

Theorem 6.1.— Let M^n be a totally real submanifold of an almost Hermitian manifold \bar{M}^{2m} . We suppose that

- a) M is geodesic w.r.t. the normal subbundle $(J(TM))^c$.
- b) For all $X \in TM$ and $\xi \in T^{\perp}M$, $(\overline{\nabla}_X J)\xi \in T^{\perp}M$.

Then, the tangent bundle valued 1-form P is parallel.

Proof.—From (5.1), we have

$$g((\overline{\nabla}_X J)\xi, Y) = g((\widehat{\nabla}_X P)\xi, Y) - g(A_{f\xi}X, Y)$$
(6.1)

for all $Y \in TM$.

Since
$$f\xi \in (J(TM))^c$$
, from (6.1), we have $(\hat{\nabla}_x P)\xi = 0$. (Q. E. D.)

THEOREM 6.2.—Let M^n be a totally real submanifold of an almost Hermitian manifold \bar{M}^{2m} . We suppose that $(\bar{\nabla}_X J)\xi \in T^\perp M$ for all $X \in TM$ and $\xi \in T^\perp M$; then, the following statements are equivalent

- 1) The tangent bundle valued 1-form P is parallel.
- 2) M is geodesic $w.r.t.(J(TM))^c$.

Proof.—(2) implies (1) is proved in Theorem 5.1. If P is parallel, from (5.1), we have $g(A_{f\xi}X, Y)=0$ for all $X, Y\in TM$ and $\xi\in T^\perp M$. Since $f\xi\in (J(TM))^c$ and $\mathrm{Im}\, f=(J(TM))^c$ we get the other implication.

§7.—Totally umbilical submanifolds.—In this section, we consider that M^n is totally umbilical, that is

$$\sigma(X, Y) = g(X, Y)H \tag{7.1}$$

for all $X, Y \in TM$, where H is the mean curvature vector.

Theorem 7.1.—Let M^n be a totally real submanifold of a Nearly-Kaehler manifold \bar{M}^{2m} . We suppose that:

- a) M is totally umbilical.
- b) The f-structure in the normal bundle is parallel. Then M is totally geodesic.

Proof.—If \overline{M} is a Nearly-Kaehler manifold, that is, $(\overline{\nabla}_X J)X = 0$ then

$$J\sigma(X, X) = -A_{JX}X + D_XJX - J\nabla_XX \tag{7.2}$$

for all $X \in TM$.

If X is any unit vector field perpendicular to Y, then from (7.1) and (7.2)

$$0 = g(X, X) \cdot g(H, JX) = g(H, JY) \tag{7.3}$$

thus $H \in (J(TM))^c$. From Theorem 5.5 and Proposition 5.4 wet get H=0.

(Q. E. D.)

COROLLARY 7.2.— Let M^n (n>1) be a totally real submanifold of a Kaehler manifold \bar{M}^{2m} . We suppose that:

- a) M is totally umbilical.
- b) The f-structure in the normal bundle is parallel. Then, M is totally geodesic.

Remark. Corollary 7.2 has been proved by G.D. Ludden, M. Okumura and K. Yano (7), in the case m=n.

COROLLARY 7.3.— Let M^m (m>1) be a totally real submanifold of a Nearly Kaehler manifold \bar{M}^{2m} . If M is totally umbilical, then, M is totally geodesic.

§8.—On a Hermitian connection.—Let \bar{M}^{2m} be an almost Hermitian manifold with Riemannian connection $\bar{\nabla}$. Then we can define a new connection $\bar{\nabla}'$ on \bar{M} by (4),

$$\overline{\nabla}_{X}'Y = \frac{1}{2}(\overline{\nabla}_{X}Y - J\overline{\nabla}_{X}JY) \tag{8.1}$$

for all X, $Y \in T\overline{M}$.

It is well-known that $(\overline{\nabla}'_X J) = 0$ and so $\overline{\nabla}'$ is a Hermitian connection in the sense of (8).

Let M^n be a totally real submanifold on \bar{M}^{2m} . If $X, Y \in TM$, we can write

$$\overline{\nabla}_{X}'Y = \nabla_{X}'Y + \sigma'(X, Y) \tag{8.2}$$

where, $\nabla'_X Y$ (resp. $\sigma'(X, Y)$) denotes the tangential component (resp. the normal component) of $\overline{\nabla}'_X Y$.

Proposition 8.1.— If M^n is a totally real submanifold of an almost Hermitian manifold \bar{M}^{2m} , then

- a) ∇' is a connection on M.
- b) The mapping $\sigma': TM \times TM \rightarrow T^{\perp}M$ is bilinear over F(M).
- c) We have the following relations

$$\nabla_X' Y = \frac{1}{2} (\nabla_X Y - PD_X JY) \tag{8.4}$$

and

$$\sigma'(X, Y) = \frac{1}{2}(\sigma(X, Y) + JA_{JY}X - fD_XJY)$$
(8.5)

where, F(M) is the algebra of C^{∞} differentiable functions on M.

Next, if $X \in TM$ and $\xi \in T^{\perp}M$, we write

$$\nabla_X' \xi = -A_{\xi}' X + D_X' \xi \tag{8.6}$$

where, $-A'_{\xi}X$ and $D'_{x}\xi$ are symbols for the tangential and normal components.

Proposition 8.2.— Let M^n be a totally real submanifold of an almost Hermitian manifold \bar{M}^{2n} . Then

a) D' is a connection in the normal bundle $T^{\perp}M$.

b)
$$g(\sigma'(X, Y), \xi) = g(A'_{\xi}X, Y)$$
 (8.7)

for all X, $Y \in TM$ and $\xi \in T^{\perp}M$.

- c) The mapping $A': (X, \xi) \in TM \times T^{\perp}M \rightarrow A'_{\xi}X \in TM$ is bilinear over F(M).
- d) We have the following relations

$$A'_{\xi}X = \frac{1}{2}(A_{\xi}X + P\sigma(X, P\xi) + PD_Xf\xi)$$
 (8.8)

$$D_X'\xi = \frac{1}{2}(D_X\xi + JA_{f\xi}X - J\nabla_X P\xi - f\sigma(X, P\xi) - fD_X f\xi)$$
(8.9)

The proofs of Propositions 8.1. and 8.2. are immediate.

We call the formulas (8.2) and (8.6) the equations of Gauss and Weingarten for the Hermitian connection $\overline{\nabla}'$.

If $\overline{R}'(X, Y) = [\overline{\nabla}'_X, \overline{\nabla}'_Y] - \overline{\nabla}'_{[X,Y]}$ is the curvature operator determined by $\overline{\nabla}'$, (4), then we write $g(\overline{R}'(X, Y)Z, W) = \overline{R}'(X, Y, Z, W)$.

It is very easy to obtain the equation of Gauss for $\overline{\nabla}'$, that is,

$$\bar{R}'(X, Y, Z, W) = R'(X, Y, Z, W) + g(\sigma'(X, Z), \sigma'(Y, W))
-g(\sigma'(Y, Z), \sigma'(X, W))$$
(8.10)

for all $X, Y, Z, W \in TM$, where R'(X, Y, Z, W) = g(R'(X, Y)Z, W).

We define the covariant derivative of σ' with respect to the connection in $TM \oplus T^{\perp}M$ obtained by combining the connections ∇' in TM and D' in $T^{\perp}M$, that is,

$$(\overline{\nabla}'_X \sigma')(Y, Z) = D'_X \sigma'(Y, Z) - \sigma(\overline{\nabla}'_X Y, Z) - \sigma'(Y, \overline{\nabla}'_X Z) \tag{8.11}$$

for all $X, Y, Z \in TM$. Then it is very easy to prove the equation of Codazzi for $\overline{\nabla}'$.

Proposition 8.3.—(Equation of Codazzi). The normal component of $\overline{R}'(X, Y)Z$ is given by

$$(\overline{R}'(X, Y)Z)^{n} = (\overline{\nabla}'_{X}\sigma')(Y, Z) - (\overline{\nabla}'_{Y}\sigma')(X, Z) + \sigma'(T_{\nabla'}(X, Y), Z)$$
(8.12)

for all X, Y, $Z \in TM$, where $T_{\nabla'}(X, Y) = \nabla'_X Y - \nabla'_Y X - [X, Y]$ is the torsion of ∇' .

Let $R^{D'}$ be the curvature tensor associated with D', i.e. $R^{D'}(X, Y) = [D'_X, D'_Y] - D'_{[X,Y]}$. Then we can obtain of a very easy manner the equation of Ricci for $\overline{\nabla}'$

$$\overline{R}(X, Y, \xi, \eta) = R^{D'}(X, Y, \xi, \eta) + g(A'_{\eta}Y, A'_{\xi}X) - g(A'_{\eta}X, A'_{\xi}Y)$$
(8.13)

for all X, $Y \in TM$ and ξ , $\eta \in T^{\perp}M$.

LEMMA 8.4.—Let M^n be a totally real submanifold of an almost Hermitian manifold \bar{M}^{2m} . Then the following statements are equivalents

- a) σ' is symmetric, i.e. $\sigma'(X, Y) = \sigma'(Y, X)$
- b) $A_{JX}Y = A_{JY}X$ and $fD_XJY = fD_YJX$
- c) $T_{\nabla}(X, Y) = -\frac{1}{2}(PD_XJY PD_YJX + [X, Y])$

for all X, $Y \in TM$. Where $T_{\overline{\nabla}}$ is the torsion of $\overline{\nabla}$.

Remark.—We observe that c) implies that $T_{\overline{\nabla}'}(X,Y) \in TM$ for all $X,Y \in TM$. We can say that if σ' is symmetric for a totally real submanifold M, then M is torsion-invariant with respect to $\overline{\nabla}'$, in the same sense that a submanifold is curvature-invariant.

If σ' is symmetric, we can define the mean curvature vector H' for $\overline{\nabla}'$

$$H' = \frac{1}{n} \operatorname{trace} \sigma'$$

Then, it is easy to find the following relation

$$H' = \frac{1}{2} \{H + R_1 + R_2\}$$

where $H = \frac{1}{n}$ trace σ is the mean curvature vector and

$$R_1 = \frac{1}{n} \sum_{i=1}^{n} J A_{JX_i} X_i \in J(TM), \qquad R_2 = f \left(-\frac{1}{n} \sum_{i=1}^{n} D_{X_i} J X_i \right) \in (J(TM))^c$$

 $\{X_1, \dots, X_n\}$ is a local frame of vector fields in TM.

COROLLARY 8.5.— Let M^n be a totally real submanifold of a Nearly Kaehler manifold \bar{M}^{2m} . Then σ' is symmetric if and only if $\sigma = \sigma'$.

Proof.—If \bar{M} is a Nearly-Kaehler manifold, we have

$$0 = (\overline{\nabla}_X J) Y + (\overline{\nabla}_Y J) X$$

$$=-A_{JX}Y-A_{JY}X+D_XJY+D_YJX-J\nabla_XY-J\nabla_YX-2J\sigma(X, Y)$$

then,

$$A_{JX}Y + A_{JY}X = -2P\sigma(X, Y)$$
 (8.14)

$$D_XJY + D_YJX = J\nabla_XY + J\nabla_YX + 2f\sigma(X, Y)$$
(8.15)

From (8.15)

$$fD_XJY + fD_YJX = 2Jf\sigma(X, Y)$$
(8.16)

for all X, $Y \in TM$.

By Lemma 8.4, (8.14), (8.16) and (8.5), $\sigma = \sigma'$. The converse is obvious.

Proposition 8.6.—Let M^n be a totally real submanifold of a Nearly-Kaehler manifold \bar{M}^{2n} . Then H=H'.

Proof.—If \overline{M} is a Nearly-Kaehler manifold, then we have from (1.1) that $\overline{\nabla}'_X X = \overline{\nabla}_X X$. Thus $\sigma(X, X) = \sigma'(X, X)$ for all $X \in TM$. Hence H = H'.

COROLLARY 8.7.— Let M^n be a totally real submanifold of a Nearly-Kaehler manifold \overline{M}^{2m} . Then M is minimal for the Hermitian connection $\overline{\nabla}'$ i.e. H'=0 if and only if is minimal for the Riemannian connection $\overline{\nabla}$ i.e. H=0.

In the following, we study the relation between $\{f, D', J(TM) \text{ and } (J(TM))^c\}$

PROPOSITION 8.8.—Let M^n be a totally real submanifold of a Nearly-Kaehler manifold \bar{M}^{2m} . We supose that $(J(TM))^c$ is parallel with respect to D. The $(J(TM))^c$ is parallel with respect to D'.

Proof.—From (8.9), we have

$$2D_X'\xi = D_X\xi + JA_{J\xi}X - fD_XJ\xi$$

for all $X \in TM$ and $\xi \in (J(TM))^c$. Since $(J(TM))^c$ is parallel with respect to D, $A_{J\xi} = 0$ and $D_X \xi$, $fD_X J \xi \in (J(TM))^c$, thus $D_X' \xi \in (J(TM))^c$, then $(J(TM))^c$ is parallel with respect to D'.

PROPOSITION 8.9.—Let M^n be a totally real submanifold of a Nearly Kaehler monifold \bar{M}^{2m} . If S is a subbundle of $T^\perp M$ such that S is parallel with respect to D', then

1) If S is holomorphic, then $\sigma'/_s=0$

2) If S is coholomorphic, then Im $\sigma' \subset S$.

Proof.—Since $(\overline{\nabla}' J) = 0$, we have

$$g(\sigma'(X, Y), \xi) = g(\overline{\nabla}'_X JY, J\xi) = g(D'_X JY, J\xi)$$

If S is holomorphic and $\xi \in S$, we have $g(\sigma'(X, Y), \xi) = 0$, thus $\sigma'/_{s} = 0$. In the proof of 2) we use a similar reasoning.

Lemma 8.10.—Let M^n be a totally real submanifold of an almost Hermitian manifold \bar{M}^{2n} . Then,

$$(\widehat{\nabla}_{X}^{\prime}P)\widehat{\xi} = A_{f\xi}^{\prime}X \tag{8.17}$$

and

$$(D_X'f)\xi = -JA_{\xi}'X - \sigma'(X, P\xi) \tag{8.18}$$

for all $X \in TM$ and $\xi \in T^{\perp}M$, where,

$$(\widehat{\nabla}_{X}'P)\xi = \nabla_{X}'P\xi - PD_{X}'\xi , \qquad (D_{X}'f)\xi = D_{X}'f\xi - fD_{X}'\xi .$$

Proof.—Since $(\nabla' J)=0$, (8.18) and (8.17) follow from (8.2) and (8.6).

Theorem 8.11.—Let M^n be a totally real submanifold of an almost Hermitian manifold \bar{M}^{2m} . Then the following statements are equivalent

- 1) The f-structure in the normal bundle is parallel with respect to D'.
- 2) $A'_{\xi}=0$ for all $\xi \in (J(TM))^c$.
- 3) $(J(TM))^c$ is parallel with respect to D'.
- 4) J(TM) is parallel with respect to D'.
- 5) The tangent bundle valued 1-form P is parallel with respect to D'.

Proof.-

- 1) \Rightarrow 2) is trivial.
- 2) \Rightarrow 1) From (8.18), we have $(D_X'f)\xi=0$ for all $X\in TM$ and $\xi\in (J(TM))^c$. Then, it is sufficient to prove that

$$g((D'_X f)\xi, \eta) = 0$$
 (8.19)

for all $\xi \in J(TM)$ and $\eta \in T^{\perp}M$. We consider two cases:

- i) If $\eta \in (J(TM))^c$. Using (8.18) and 1), it is very easy to prove (8.19).
- ii) If $\eta \in J(TM)$, $\eta = JY$ and $\xi = JZ$ for $Y, Z \in TM$

$$g((D'_X f)JZ, JY) = -g(JA'_{JZ}X, JY) + g(\sigma'(X, Z), JY)$$

$$=-g(A'_{JZ}X+P\sigma'(X,Z),Y)$$

Since $(\overline{\nabla}'J)=0$, $\overline{\nabla}'_XJY=J\overline{\nabla}'_XY$ and we obtain $g((D'_Xf)J_Z, JY)=0$. $2)\Rightarrow 3)$

Since $A'_{\xi}=0$ for all $\xi \in (J(TM))^c$ and $(J(TM))^c$ is a holomorphic subbundle of

 $T^{\perp}M$, we have

$$0 = g(\overline{\nabla}_X' J\xi, Z) = g(J\overline{\nabla}_X'\xi, Z) = -g(\overline{\nabla}_X'\xi, JZ) = -g(D_X'\xi, JZ)$$

for all X, $Z \in TM$ and $\xi \in (J(TM))^c$, thus we obtain 3).

 $3)\Rightarrow 4)$ It is immediate.

 $4) \Rightarrow 5)$

If $\xi \in J(TM)$, $f\xi = 0$ and $(\widehat{\nabla}'_X P) = 0$

If $\xi \in (J(TM))^c$, $P\xi = 0$, and $g((\widehat{\nabla}'_X P)\xi, Y) = g(A'_{J\xi}X, Y)$

for all $X, Y \in TM$. Then

$$g((\widehat{\nabla}_{X}'P)\xi, Y) = g(J\overline{\nabla}_{X}'\xi, Y) = -g(\overline{\nabla}_{X}'\xi, JY) = -g(D_{X}'\xi, JY) = 0$$

 $5) \Rightarrow 2)$ It follows from (8.18).

(Q. E. D.)

Let M^n be a totally real submanifold of an almost Hermitian manifold \bar{M}^{2m} . We suppose that $\sigma'(X, Y) = \sigma'(Y, X)$ for all $X, Y \in TM$. Moreover, we can say that M is totally geodesic with respect to σ' , if $\sigma' = 0$. Then we have the following

Theorem 8.12.—Let M^n (n>1) be a totally real submanifold of an almost Hermitian manifold \bar{M}^{2m} . Suppose that

- a) M is totally umbilical with respect to σ' .
- b) The f-structure is parallel respect to D'.

Then M is totally geodesic respect to σ' .

Proof.—For all $X, Y \in TM$, $(\overline{\nabla}'_X J)Y = 0$, then

$$J\sigma'(X, Y) = -A'_{JY}X + D'_{X}JY - J\nabla'_{X}Y$$
 (8.20)

By (8.20), we have

$$g(\sigma'(X, Y), JZ) = g(\sigma'(X, Z), JY)$$

Using a), we have

$$g(X, Y)g(H', JZ)=g(X, Z)g(H', JY)$$

$$g(H', JZ)Y = g(H', JY)Z$$

If Y and Z are lineary independent, then g(H', JZ)=0 for all $Z \in TM$, thus H'=0. (Q. E. D.)

REFERENCES

- [1] CHEN, B.Y., Geometry of submanifolds, Marcel Dekker, 1973.
- [2] Chen, B. Y. And Ogiue, K., On totally real submanifolds, Trans. Amer. Math. Soc., 193 (1974), 257-266.

- [3] CHEN, B. Y., HOUH, C. S. AND LUE, H. S., Totally real submanifolds, J. of Diff. Geom., 12 (1977), 473-480.
- [4] GRAY, A., Nearly Kaehler manifold, J. of Diff. Geom. 4 (1970), 283-309.
- [5] GRAY, A., The structure of Nearly Kaehler manifolds, Math. Ann. 248 (1976), 223-233.
- [6] HENDRIX, M. AND VERSTRAELEN, L., On totally real submanifolds with parallel f-structure in the normal bundle, Soochow J. of Math., 4 (1978), 55-61.
- [7] LUDDEN, G.D., OKUMURA, M. AND YANO, K., Totally real submanifolds of complex manifolds, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 346-353.
- [8] Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, Interscience, New-York, 1963, 1969.
- [9] Vanhecke, L., Some theorems for quasi and nearly Kaehler manifolds, Boll. Unione Matematica Italiana, (4), 12 (1975), 174-188.
- [10] VANHECKE, L., Antiholomorphic submanifolds of generalized complex space forms, Bull. Inst. Acad. Sinica, Taiwan 4 (1976), 127-140.
- [11] YANO, K., On a structure defined by a tensor field f of type (1, 1) satisfying $f^3+f=0$, Tensor 14 (1963), 99-109.
- [12] YANO, K. AND KON, M., Anti-invariant submanifolds, Marcel Dekker 1976.

Seccion de Matematicas Universidad de Granada Granada, Spain