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TOTALLY REAL SUBMANIFOLDS OF AN ALMOST
HERMITIAN MANIFOLD I

By M. BARROS AND J. CASTELLANO

§ 1.—Introduction.—Let (M, g, J) be an almost Hermitian manifold, that is, the
tangent bundle of M has an almost complex structure J and a Riemannian metric,
g, such that g(JX, JY)=g(X, Y) for all X, YeTM. Then dim M=2m and M
is orientable.

In (2), B.Y. Chen and K. Ogiue studied some fundamental properties of
totally real submanifolds of a Kaehler manifold.

In (3), B.Y. Chen, C.S. Houh and H.S. Lue follow the study of totally real
submanifolds in a Kaehler manifold.

In (10), L. Vanhecke studied some fundamental properties of totally real sub-
manifolds of a generalized complex space forms.

In this paper we study some properties of totally real submanifolds of an
almost hermitian manifold (In particular, a Nearly Kaehler manifold).

We obtain some generalizations for results of (3), (6), (7) and (12).

In the last section we study a Hermitian connection (4), (9), respect to a
totally real submanifold in an almost hermitian manifold. In particular, we obtain
some basic formulas for this connection (Formulas of Gauss and Weingarten,
equations of Gauss, Codazzi, Ricci---).

§ 2.—Basic formulas.—Let M*™ be a 2m-dimensional almost Hermitian manifold
with almost complex structure J and metric tensor g. Let ¥V be the Levi-Civita
connection of M.

It is well-known that M is a Nearly Kaehler manifold if

Fx))X=0 2.1

for all XeTM, where TM is the tangent bundle of M. For X<TM, we denote
a section (tangent vector field) in this vector bundle.

Let M™ be an n-dimensional totally real submanifold of M, that is, for x M,
J(TxM) is perpendicular to T yM. Then the second fundamental form ¢ is
given by

o(X, V)=V Y-V, Y (2.2)

for all X, YeTM, where TM is the tangent bundle to M and V is the induced
connection of M.

Received April 12, 1979

217



218 M. BARROS AND J. CASTELLANO

.. 1
The mean curvature vector is given by H:ztrace o. For a normal vector

field &, we write
VXE:—AfX’{"DXE (2.3)

there —A:X (resp. Dx&) denotes the tangential (resp. normal) component of
Vx& Then we have,
g(a(X, V), £)=g(4:X, Y) (2.4)

A normal vector field & is called a parallel section in the the normal bundle
T*M if DE=O.

A subbundle S of the normal bundle 7*M is holomorphic if S is invariant
under J, i.e. JS=S.

A subbundle S of T*M is said to be parallel if S is invariant under parallel
translation, i.e. for every local section & in S, Dy& is also a section in S. It is
clear that a unit normal vector field & is parallel if and only if the line bundle
generated by & is parallel. For a subbundle S of T*M, there exists a unique
subbundle S¢ of T*M such that S and S°¢ are orthogonal and SHS°=T*M. We
call S° the complementary subbundle of S. It is clear that for a totally real
submanifold M in M, the complementary subbundle (J(TM)) of J(TM) is always
holomorphic. Moreover, S is parallel if and only if S¢ is parallel.

We call the complementary subbundles of holomorphic subbundles of 7*M,
the coholomorphic subbundles of T*M. Then a subbundle S of T*M is coholo-
morphic if and only if S is the direct sum of J(7T'M) and a holomorphic subbundle
of T*M.

§ 3.—Parallel subbundles.—In this section we consider an almost Hermitian mani-
fold which is a Nearly kaehlerian.

LE_MMA 3.1.—Let M™ be a totally real submanifold of a Nearly Kaehler mani-
fold M*™. If S 1sa 2r-dimensional parallel holomorphic subbundle of T*M, then
a/S=0.

Proof —It is very easy to prove that

2(a(X, V), )=—g((Vx )Y, J&) (3.1

for all X, YeTM aq_d £esS.
If we use that M is a Nearly Kaehler manifold and ¢ is symmetric, we have
from (3.1) that g(a(X, Y), §)=0 for all £€S. Then ¢/ (Q.E.D)

LEMMA 3.2.—Let M™ be a totally real submanifold of a Nearly Kaehler mani-
fold M*™, If S is a parallel coholomorphic subbundle of T*M, then Im ¢CS,
where Imo={0o(X, Y)/X, YEeTM]}.

Proof —It is easy to see that S is parallel if and only if S¢ is parallel.
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Then, the result follows from Lemma 3.1.

LEMMA 3.3.—Let M™ be a totally real submanifold of an almost Hermitian
manifold M*™, We suppose that M 1s a totally real submanifold of a 2(n-s)-
dimensional totally geodesic complex submanifold N2+ of M?™.  Then, there
exists an (n+2s)-dimensional parallel coholomorphic subbundle S of T*M.

Proof —We define S=TyM, that is, S is the normal bundle of M in N.
It is clear that T*M:S@T_‘N, dim S=n-42s and that S is coholomorphic.
Since N is totally geodesic in M, we have

Vyn=Dyy (3.2)
for all YeTN and p&T*N. Moreover
g(Vx&, p+gE, V=0 (3.3)

for all £S5, peT*N and XeTM.
Substituting (2.3) and (3.2) in (3.3), we get g(Dy&, 7)=0. Hence DyéeS.
(Q.E.D.)

Remark.—Lemma 3.1 and Lemma 3.2. has been proved by B.Y. Chen, C. S.
Houh and H.S. Lue (3) for a Kaehler manifold.

§ 4.—f-structure in the normal bundle.
Let & be any normal vector field on M™ in M?®™. We put
JE=P+fE (4.1)

where P& and f& denote respectively the tangential and the normal component
of J&. Then P is a tangent bundle valued 1-form and f is an endomorphism of
the normal bundle. Then,

—&=JP§+]1E (4.2)
and making use of (4.1)
—&=JPs+PfE+1%¢ (4.3)
Comparing the tangential and normal parts in (4.3), we get
Pfe=0 (4.4)
[+ JPE=—¢ (4.5)

In particular, if £é=JX for XeTM, we have —X=PJX-+fJX thus fJX=0 and
—X=PJX. By applying f to (4.3), we get f¢=—f£& Since & is an arbitrary
normal vector field f®+f=0. Therefore, if the endomorphism f doesn’t vanish
(i.e. if n<m) it defines an f-structure in T*M.

We define the covariant derivative of f with respect to D by
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(Dxf)6=DxfE—fDxé (4.6)

for all XeTM and é=T*M.

Moreover, we define the covariant derivative of P with respect to the con-
nection in TM@T+M obtained by combining the connections V in TM and D in
M

(V3 P)e=VxPE—PDx& 4.7

for all XeTM and E€T*M.

If Dyf=0 (respectively, U P=0 for all tangent vector fields X, then the f-
structure in the normal bundle (respectively, the tangent bundle valued 1-form
P) is said to be parallel.

§ 5.—Parallel f-structure.

LEMMA 5.1.—Let M™ be a totally real submamfold of an almost Hermitian
manifold M?™, then, for all X, YETM and £=T*M, we have

Ty NNE=TxP)e— Ay X+(Dxf)e+JAX+ (X, PE) (5.1)
and
Ty )Y=—A;yX—Po(X, Y)+Dy JVY— ]V —Fa(X, V) (5.2)

Proof —For £€T*M and XeTM, we have

Vi JE=Vy PE+VxfE
Then,
(Vx NE—JAeX+]Dxé=VxPé+a(X, PE)—A;eX+DyxfE

From (4.6) and (4.7), we obtain (5.1). In the proof of (5.2), we use a similar
reasoning.

COROLEARY 5.2.—Let M"be a totally real submanifold of a Nearly Kaehler
manifold M*™. Then for all X, YETM, we have

1
Po(X, YV)=— 'Z—(AJX Y4+ A,;p X) (56.3)
and

fo(X, V)= (D JY+ DyJ XD ¥ =Dy X) G4

The proof is immediate.
If we consider that M*™ is a Kaehler manifold, then we have the following
result.

_ THEOREM 5.3.—Let M™ be a totally real submamfold of a Kaehler manifold
M?*™ then the following statements are equivalent
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a) The f-structure win the normal bundle is parallel.
b) M™ is geodesic w.r.t. (J(TM)).

¢) The tangent bundle valued 1-form P is parallel.
d) (J(TM)) is parallel.

e) J(TM) s parallel.

Proof.—a) implies b) is proved in (12) and b) implies a) is proved in (6).
It is very easy_to prove that Im f=(J(TM))° and Ker f=J(T M), then taking

in account that M is a Kaehler manifold (V/=0) and from (5.1), we have the
others implications.

PROPOSITION 5.4.—Let M™ be a totally real submanifold of an almost Herma-
tian mamfold M®™. Then, the following statements are equivalent.

a) M is geodesic w.r.t. (J(TM))*;

b) Imac/(TM); ¢) o/wuamr=0
where Imo={0(X, Y)/X, YETM}

The proof is immediate.
In the next theorem, we give a generalization of a result of K. Yano-M.
Kon (12), for a Nearly-Kaehler manifold.

THEOREM 5.5.—Let M™ be a totally real submanifold of a Nearly-Kaehler
manifold M®*™. If the f-structure in the normal bundle is parallel, then M™ 1s
geodesic w. r.t. (J(TM)). Moreover, for all XeTM and éE(J(TM))*, (Vx )é=0.

Proof.—It is well-known that an almost Hermitian manifold N satisfies
g x )Y, Y)=0 (5.5)

for all X, YeTN, where J is the almost Hermitian structure and V the Riemannian

connection.
By (5.1), for all YeTM, we have

g((Vx g JY)=g((Dxf)E, JY)+g(o(X, V), )+g(a(X, PE), JY) (56)
If f is parallel, for all é(J(TM))°® from (4.5), we get,
g(o(X, V), O=—g([Vx))Y, J&) (5.7

Since ¢ is symmetric and M is a Nearly-Kaehler manifold, g(a(X, Y), £)=0 for
all X, YeTM and £€e(J(TM)). Moreover, Ny /)écTM for all XeTM and
Es(J(TM)). Since (J(TM))® is a holomorphic subbundle of T*+J, it is clair that

(Vx)E=0 (Q.E.D))

THEOR_EM 5.6.—Let M™ be a totally real submanifold of an almost Hermitian
manifold M*™. We suppose that
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a) M s geodesic w.r.t. (J(TM))*
b) For all XeTM and E(J(TM))*, Vx)é=0
Then, the f-structure in the normal bundle 1s parallel.

Proof —If £€(J(TM))¢, then A;=0, PE=0 and (Vx J)é=0, from (5.1), (D xf)E=0.
If £&=JY for YeTM, then we can consider two cases
i) Let » be a normal vector field in (J(TM))¢, then A,=0 and

g(DxfE, m=—g((Vx])y, )+g(AeX, J)=0
ii) Let » be a normal vector field in J(TM), then p=]Z for ZeTM
g(DxfE, m=g(Nx Y, J2)—g(AwX, Z)+g(o(X, V), JZ)
=—g(VxY, J2)—g(x]Y, Z)—g(AryX, Z)+g(a(X, Y), JZ)=0

Thus, g((Dxf)é, 7)=0 for all pT+M, then (Dyf)é=0 for all £€T*M and X
eTM. (Q.E.D.)

COROLLARY 5.7.—Let M™ be a totally real submanifold of a Nearly Kaehler
manifold M*™. Then the f-structure n the normal bundle is parallel 1f and only
if the following statements hold

a) M is geodesic w.r.t. (J(TM))*

b) For all XeTM and E€(J(TM))¢, (Vx )é=O0.

THEOREM 5.8.—Let M™ be a totally real submanifold of an almost Hermatian
manifold M?*™. We suppose that (NgxJ)E=0 for all XeTM and E(J(TM)).
Then the following statements are equivalent

1) The f-structure in the normal bundle is parallel.

2) M is geodesic w.r.t. (J(TM))".

The proof is immediate.

THEOREM 5.9.—Let M™ be a totally real submanifold of a Nearly Kaehler
manifold M?*™. If the f-structure in the normal bundle is parallel, then the
normal subbundle (J(TM))® is parallel.

Proof.—For all XeTM and £é=(J(TM))°, we have

0=y )e=(—A;eX—PDx&)+(Dx JE—fDx&+JA:X)
Thus,
PDx6=—A;:X and fDxé=DyJ6+]JA:X

since Im ¢ C J(T M), we have
PDX§:O: fDxszXJE
Then, Dx JE€(J(TM)). Since (J(TM))° is holomorphic, we get that (J(TM))° is
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parallel.

COROLLARY 5.10.— Let M™ ' be a totally real submamifold of a Nearly-
Kaehler manifold M*™. Then the following statements are equivalent

1) The f-structure in the normal bundle is parallel.

2) M is geodesic w.r.t. (J(TM))°.

(VxDE=0  for all XeTM and E<(J(TM)).

3) The normal subbundle (J(TM))" 1s parallel.
4) The normal subbundle J(TM) 1s parallel.

§ 6.—Parallel 1-form P.—In this section, we study, in which cases the tangent
bundle valued 1-form P is parallel.

THEOREM 6.1.— Let M™ be a totally real submanifold of an almost Hermitian
manifold M*™. We suppose that

a) M 1is geodesic w. r.t. the normal subbundle (J(TM))".

b) For all X€TM and é€T*M, Ny )EcT*M.
Then, the tangent bundle valued 1-form P 1s parallel.

Proof.—From (5.1), we have

g(Tx g, V)=g(VxP), V)—g(AzX, V) (6.1)
for all YeTM.
Since fee(J(TM)), from (6.1), we have (VyxP)e=0. (Q.E.D.)

THEOREM 6.2.—Let M™ be a totally real submanifold of an almost Hermitian
manifold M, We suppose that Nx J)EST M for all XeTM and E€T*M ; then,
the following statements are equivalent

1) The tangent bundle valued 1-form P 1is parallel.

2) M is geodesic w.r.t. (J(TM))".

Proof.—(2) implies (1) is proved in Theorem 5.1. If P is parallel, from (5.1),
we have g(A;:X, Y)=0 for all X, YeTM and &¢=T*M. Since fée(J(TM))
and Im f=(J(TM))* we get the other implication.

§ 7.—Totally umbilical submanifolds.—In this section, we consider that M" is

totally umbilical, that is
o(X, Y)=g(X, Y)H 7.1

for all X, YeTM, where H is the mean curvature vector.

THEOREM 7.1.—Let M™ be a totally real submanifold of a Nearly-Kaehler
manifold M*™. We suppose that:
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a) M s totally umbilical.

b) The f-structure in the normal bundle 1s parallel.
Then M is totally geodesic.

Proof —If M is a Nearly-Kaehler manifold, that is, (Vx/)X=0 then

JoX, X)=—A,;x X+Dx JX—]JVx X (7.2)
for all XeTM.

If X is any unit vector field perpendicular to Y, then from (7.1) and (7.2)
0=g(X, X)-g(H, JX)=g(H, JY) (7.3)

thus He(J(TM)). From Theorem 5.5 and Proposition 5.4 wet get H=0.
(Q.E.D.)

COROLEARY 72— Let M™ (n>1) be a totally real submanifold of a Kaehler
manifold M*™. We suppose that :
a) M s totally umbilical.

b) The f-structure in the normal bundle 1s parallel.
Then, M is totally geodesic.

Remark. Corollary 7.2 has been proved by G.D. Ludden, M. Okumura and
K. Yano (7), in the case m=n.

COROLLARY 7.3.— Let M™ (m>1) be a totally real submanifold of a Nearly
Kaehler manifold M*™. If M s totally wmbilical, then, M is totally geodesic.

§8.—0On a Hermitian connection.—Let M?®*™ be an almost Hermitian m_anifold
with Riemannian connection V. Then we can define a new connection V' on M by(4),

TV = o (T ¥ JT2]T) @1)

for all X, YeTM.

It is well-known that (V% /)=0 and so V' is a Hermitian connection in the
sense of (8).

Let M™ be a totally real submanifold on AM?®™. If X, YeTM, we can write
Ve Y=V%Y+o' (X, Y) 8.2)

where, V¢ Y (resp. ¢’(X, V)) denotes the tangential component (resp. the normal
component) of V5%Y.

PROPOSITION 8.1.— If M™ 1s a totally real submanifold of an almost Herma-
tian manifold M*™, then

a) V' is a connection on M.

b) The mapping o' : TMXTM—-T*M is bilinear over F(M).

c) We have the following relations
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T V= %(VX Y—PDyJY) (8.4)

and

o'(X, V)= (0(X, V) +JAnX—~fDsJY) 85

where, F(M) 1s the algebra of C* differentiable functions on M.
Next, if XeTM and é=T*M, we write
Vixé=—A; X+ Dx& (8.6)

where, —AzX and D%& are symbols for the tangential and normal components.

PROPOSITION 8.2.— Let M™ be a totally real submanmifold of an almost Herma-
tian manifold M?*™. Then

a) D’ 1s a connection wn the normal bundle T+M.
b) glo’(X,Y), &) =g(A:X, Y) (8.7)

for all X, YeTM and E€T*M.
¢) The mapping A’ : (X, §)eTMXT*M—A; X TM 1s bilinear over F(M).
d) We have the following relations

A X= ';_(AeX +Po(X, PE)+PDxfE) (8.8)

1
Dyé= '2_(DX§+]AI$X_.IVXPE_][U(X: P&)—fDxfE) (8.9)
The proofs of Propositions 8.1. and 8.2. are immediate.

We call the formulas (8.2) and (8.6) the equations of Gauss and Weingarten
for the Hermitian connection V.

If R'(X, \"=[V%, V41—TVx.y1 is the curvature operator determined by V,
(4), then we write g(R'(X, Y)Z, W)=R'(X, Y, Z, W).
It is very easy to obtain the equation of Gauss for ¥, that is,

R(X, Y, Z, W)=R'(X, Y, Z, W)+g(a'(X, Z), o'(Y, W)
—g(a'(Y, 2), o’(X, W)) (8.10)

for all X, Y, Z WeTM, where R'(X, Y, Z, W)=g(R'(X, Y)Z, W).

We define the covariant derivative of ¢’ with respect to the connection in
TMPT+M obtained by combining the connections V' in TM and D’ in T*M,
that is,

(Vxo' )XY, Z)=Dxo'(Y, Z)—a(N%Y, Z)—a'(Y, Vx2) (8.11)
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E)r all X, Y, ZeTM. Then it is very easy to prove the equation of Codazzi for
V.
PROPOSITION 8.3.—(Equation of Codazzi). The normal component of R'(X, Y)Z
is given by
(R'(X, YZ)"=Txa" ¥, Z)—(Tyo')X, Z)+0o'(Tv/(X, Y), Z) (812)
for all X, Y, ZeTM, where Tv.(X, Y)=V%Y—VyX—[X, Y] 1s the torsion of V.

Let R? be the curvature tensor associated with D’, i.e. R?(X, Y)=[DY%, Dy]
—D’tx,y. Then we can obtain of a very easy manner the equation of Ricci for
v/

R(X, Y, & n)=R"(X, Y, § p+g(AY, AiX)—g(A4;X, AY) (813)
for all X, YeTM and &, peT*M.

LEMMA 84.—Let M™ be a totally real submanifold of an almost Hermitian
manifold M*™. Then the following statements are equivalents
a) o’ is symmetric, i.e. o'(X, Y)=0'(Y, X)

b) AJXY:AJYX and fijYszij
O ToAX, V)= 5 (PDx]JY—PDyJX+(X, Y])

for all X, YETM. Where T<. 1s the torsion of V.

Remark.—We observe that c¢) implies that T%.(X, Y)eTM for all X, YeTM.
We can say that if ¢’ is symmetric for a totally real submanifold M, then M
is torsion-invariant with respect to V’, in the same sense that a submanifold is
curvature-invariant.

If ¢’ is symmetric, we can define the mean curvature vector H’ for ¥

H'= itrace o’
n
Then, it is easy to find the following relation
, 1
H :7{H+R1+R2}

1 .
where HZ%—trace o is the mean curvature vector and

n

Ri=— 3 JAx X JTM),  Re=f{~+ % Dy, JX)<(TADY

1=1 1=1
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{Xy, -+, X,} is a local frame of vector fields in TM.

COROLLARY 8.5.— Let M™ be a totally real submamifold of a Nearly Kaehler
manifold M*™. Then o’ is symmetric 1f and only if o=0a’.

Proof —If M is a Nearly-Kaehler manifold, we have
0=Tx HY+Ty X
=—A;xY—A;X+DxJY+ Dy JX—JVxY—]Vp X—2]0(X, V)

then,
A;xY+A;yX=—2Pc(X, Y) (8.14)
Dy]JY+DyJX=]Vx Y+ ]V X+2f0(X, V) (8.15)
From (8.15)
fDxJY+fDyJX=2]fc(X, Y) (8.16)

for all X, YeTM.
By Lemma 8.4, (8.14), (8.16) and (8.5), s=0’. The converse is obvious.

PROP0§ITION 8.6.—Let M™ be a totally real submanifold of a Nearly-Kaehler
manifold M*™. Then H=H'.

Proof.—If M is a Nearly-Kaehler manifold, then we have from (1.1) that
V% X=VxX. Thus ¢(X, X)=0¢'(X, X) for all XeTM. Hence H=H'.

COROLEARY 87.— Let M™ be a totally real submanifold of a Nearly-Kaehler
manifold M*™. Then M 1s munimal for the Hermitian connection V' 1.e. H'=0
if and only if 1s munimal for the Riemanman connection N i.e. H=0,

In the following, we study the relation between {f, D’, J(TM) and (J(TM))}

PROPOS_ITION 8.8.—Let M™ be a totally real submanifold of a Nearly-Kaehler
manifold M®*™. We supose that (J(TM)) s parallel with respect to D. The
(J(TM)) is parallel with respect to D’.

Proof —From (8.9), we have
2D%E=Dx&+JA;e X—fDxJE

for all XeTM and &=(J(TM))*. Since (J(TM))® is parallel with respect to
D, A;e=0 and Dyx&, fDxJEs(J(TM)), thus D%Es(J(TM)), then (J(TM)) is
parallel with respect to D’.

PROPOSITION 8.9.—Let M™ be a totally real submanifold of a Nearly Kaehler
monifold M*™. If S is a subbundle of T*M such that S s parallel with respect
to D', then

1) If S is holomorphic, then o’/s=0
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2) If S s coholomorphic, then Im ¢’'CS.
Proof.—Since (V' ]J)=0, we have
g(a’'(X, V), &)y=g(N%JY, JE)=g(D%]Y, J&)

If S is holomorphic and £ S, we have g(o'(X, Y), £)=0, thus ¢’/s=0.
In the proof of 2) we use a similar reasoning.

LEMMA 8.10.—Let M™ be a totally real submanifold of an almost Hermitian

manifold M*™. Then, ~
Ny P)=AL:X (8.17)

and
(DxNé=—JA:X—0a'(X, P§) (8.18)

for all XeTM and é=T*M, where,
(W P)e=V5xPE—PD%E,  (Dxf)e=DYfE—fD%E.
Proof.—Since (V' ])=0, (8.18) and (8.17) follow from (8.2) and (8.6).

THEOREM 8.11.—Let M"™be a totally real submanifold of an almost Hermitian
manifold M*™. Then the following statements are equivalent

1) The f-structure in the normal bundle 1s parallel with respect to D’.

2) A:=0 for all E€(J(TM))".

3) (J(TM))® 1s parallel with respect to D’.

4) J(TM) s parallel with respect to D’.

5) The tangent bundle valued 1-form P 1s parallel with respect to D’.

Proof.—

1)=>2) is trivial.

2)=>1) From (8.18), we have (D% f)é=0 for all XeTM and E=(J(TM))".
Then, it is sufficient to prove that

g((D% g, p)=0 (8.19)

for all £ J(TM) and n=T*M. We consider two cases:
i) If pe(J(TM)). Using (8.18) and 1), it is very easy to prove (8.19).

ii) If peJ(TM), y=JY and £=JZ for Y, ZETM
g(DxN]Z, JY)=—g(JAizX, JY)+g(o'(X, Z), JY)
=—g(A7zX+Po'(X, 2),Y)

Since (V' ])=0, V4 JY=JV%Y and we obtain g((D%f)Jz, JY)=0.

2)=>3)
Since A;=0 for all £=(J(TM))* and (J(TM)) is a holomorphic subbundle of
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T+M, we have
0=g(Vx JE, 2)=g(JV%E, Z2)=—g(N%E, JZ)=—g(D%E, JZ)

for all X, ZeTM and £=(J(TM)), thus we obtain 3).
3)=>4) It is immediate.

4)=5)
If eeJ(TM), fé=0 and (J%P)=0
It Ee(J(TM), P&=0, and g((VyP)E, YV)=g(As:X, Y)

for all X, YeTM. Then
(Ve P)E, YV)=g(JTx&, ¥)=—g(Tx&, JY)=—g(Dx&, JV)=0
5)=>2) It follows from (8.18). Q.E.D.)

Let M™ be a totally real submanifold of an almost Hermitian manifold M2®™.
We suppose that ¢/(X, YV)=0'(Y, X) for all X, YeTM. Moreover, we can say
that M is totally geodesic with respect to ¢’, if ¢’=0. Then we have the
following

THEOREM 8.12.—Let M™ (n>1) be a totally real submanifold of an almost
Hermitian manifold M*™. Suppose that

a) M is totally umbilical with respect to o’.

b) The f-structure s parallel respect to D’.
Then M 1s totally geodesic respect to o’.

Proof —For all X, YeTM, (Vs ])Y=0, then

Jo'(X, Y)=—ApX+Dx JY— V%Y (8.20)
By (8.20), we have

ga"(X, V), J2)=g(o'(X, 2), JY)
Using a), we have

gX, Y)g(H', JZ)=g(X, Z)g(H', JY)
gH', JO)Y=g(H', JY)Z

If Y and Z are lineary independent, then g(H’, JZ)=0 for all Z=TM, thus H'=0.
(Q.E.D.)
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