TOTALLY REAL SUBMANIFOLDS OF AN ALMOST HERMITIAN MANIFOLD I

By M. Barros and J. Castellano

§1.-Introduction.-Let (\bar{M}, g, J) be an almost Hermitian manifold, that is, the tangent bundle of \bar{M} has an almost complex structure J and a Riemannian metric, g, such that $g(J X, J Y)=g(X, Y)$ for all $X, Y \in T \bar{M}$. Then $\operatorname{dim} \bar{M}=2 m$ and \bar{M} is orientable.

In (2), B. Y. Chen and K. Ogiue studied some fundamental properties of totally real submanifolds of a Kaehler manifold.

In (3), B. Y. Chen, C. S. Houh and H.S. Lue follow the study of totally real submanifolds in a Kaehler manifold.

In (10), L. Vanhecke studied some fundamental properties of totally real submanifolds of a generalized complex space forms.

In this paper we study some properties of totally real submanifolds of an almost hermitian manifold (In particular, a Nearly Kaehler manifold).

We obtain some generalizations for results of (3), (6), (7) and (12).
In the last section we study a Hermitian connection (4), (9), respect to a totally real submanifold in an almost hermitian manifold. In particular, we obtain some basic formulas for this connection (Formulas of Gauss and Weingarten, equations of Gauss, Codazzi, Ricci \cdots).
§2.-Basic formulas.-Let $\bar{M}^{2 m}$ be a $2 m$-dimensional almost Hermitian manifold with almost complex structure J and metric tensor g. Let $\bar{\nabla}$ be the Levi-Civita connection of \bar{M}.

It is well-known that \bar{M} is a Nearly Kaehler manifold if

$$
\begin{equation*}
\left(\bar{\nabla}_{X} J\right) X=0 \tag{2.1}
\end{equation*}
$$

for all $X \in T \bar{M}$, where $T \bar{M}$ is the tangent bundle of M. For $X \in T \bar{M}$, we denote a section (tangent vector field) in this vector bundle.

Let M^{n} be an n-dimensional totally real submanifold of \bar{M}, that is, for $x \in M$, $J\left(T_{X} M\right)$ is perpendicular to $T_{X} M$. Then the second fundamental form σ is given by

$$
\begin{equation*}
\sigma(X, Y)=\bar{\nabla}_{X} Y-\nabla_{X} Y \tag{2.2}
\end{equation*}
$$

for all $X, Y \in T M$, where $T M$ is the tangent bundle to M and ∇ is the induced connection of M.

Recerved April 12, 1979

The mean curvature vector is given by $H=\frac{1}{n}$ trace σ. For a normal vector field ξ, we write

$$
\begin{equation*}
\bar{\nabla}_{x} \xi=-A_{\xi} X+D_{x} \xi \tag{2.3}
\end{equation*}
$$

where $-A_{\xi} X$ (resp. $D_{X} \xi$) denotes the tangential (resp. normal) component of $\bar{\nabla}_{X} \xi$. Then we have,

$$
\begin{equation*}
g(\sigma(X, Y), \xi)=g\left(A_{\xi} X, Y\right) \tag{2.4}
\end{equation*}
$$

A normal vector field ξ is called a parallel section in the the normal bundle $T^{\perp} M$ if $D \xi=0$.

A subbundle S of the normal bundle $T^{\perp} M$ is holomorphic if S is invariant under J, i. e. $J S=S$.

A subbundle S of $T^{\perp} M$ is said to be parallel if S is invariant under parallel translation, i. e. for every local section ξ in $S, D_{X} \xi$ is also a section in S. It is clear that a unit normal vector field ξ is parallel if and only if the line bundle generated by ξ is parallel. For a subbundle S of $T^{\perp} M$, there exists a unique subbundle S^{c} of $T^{\perp} M$ such that S and S^{c} are orthogonal and $S \oplus S^{c}=T^{\perp} M$. We call S^{c} the complementary subbundle of S. It is clear that for a totally real submanifold M in \bar{M}, the complementary subbundle $(J(T M))^{c}$ of $J(T M)$ is always holomorphic. Moreover, S is parallel if and only if S^{c} is parallel.

We call the complementary subbundles of holomorphic subbundles of $T^{\perp} M$, the coholomorphic subbundles of $T^{\perp} M$. Then a subbundle S of $T^{\perp} M$ is coholomorphic if and only if S is the direct sum of $J(T M)$ and a holomorphic subbundle of $T^{\perp} M$.
§ 3.-Parallel subbundles.-In this section we consider an almost Hermitian manifold which is a Nearly kaehlerian.

Lemma 3.1.-Let M^{n} be a totally real submanfold of a Nearly Kaehler manifold $\bar{M}^{2 m}$. If S is a $2 r$-dimensional parallel holomorphic subbundle of $T^{\perp} M$, then $\sigma / S=0$.

Proof.-It is very easy to prove that

$$
\begin{equation*}
g(\sigma(X, Y), \xi)=-g\left(\left(\bar{\nabla}_{X} J\right) Y, J \xi\right) \tag{3.1}
\end{equation*}
$$

for all $X, Y \in T M$ and $\xi \in S$.
If we use that \bar{M} is a Nearly Kaehler manifold and σ is symmetric, we have from (3.1) that $g(\sigma(X, Y), \xi)=0$ for all $\xi \in S$. Then $\sigma / s=0$
(Q. E. D.)

Lemma 3.2.-Let M^{n} be a totally real submanifold of a Nearly Kaehler manifold $\bar{M}^{2 m}$. If S is a parallel coholomorphic subbundle of $T^{\perp} M$, then $\operatorname{Im} \sigma \subset S$, where $\operatorname{Im} \sigma=\{\sigma(X, Y) / X, Y \in T M\}$.

Proof.-It is easy to see that S is parallel if and only if S^{c} is parallel.

Then, the result follows from Lemma 3.1.
Lemma 3.3.-Let M^{n} be a totally real submanıfold of an almost Hermitzan manifold $\bar{M}^{2 m}$. We suppose that M is a totally real submanifold of a $2(n+s)$ dimensional totally geodesic complex submanifold $N^{2(n+s)}$ of $\bar{M}^{2 m}$. Then, there exists an ($n+2$ s)-dimensıonal parallel coholomorphic subbundle S of $T^{\perp} M$.

Proof.-We define $S=T_{\stackrel{1}{N}} M$, that is, S is the normal bundle of M in N.
It is clear that $T^{\perp} M=S \oplus T^{\perp} N, \operatorname{dim} S=n+2 s$ and that S is coholomorphic. Since N is totally geodesic in \bar{M}, we have

$$
\begin{equation*}
\bar{\nabla}_{Y} \eta=\bar{D}_{Y} \eta \tag{3.2}
\end{equation*}
$$

for all $Y \in T N$ and $\eta \in T^{\perp} N$. Moreover

$$
\begin{equation*}
g\left(\bar{\nabla}_{x} \xi, \eta\right)+g\left(\xi, \bar{\nabla}_{x} \eta\right)=0 \tag{3.3}
\end{equation*}
$$

for all $\xi \in S, \eta \in T^{\perp} N$ and $X \in T M$.
Substituting (2.3) and (3.2) in (3.3), we get $g\left(D_{Y} \xi, \eta\right)=0$. Hence $D_{Y} \xi \in S$.
(Q.E. D.)

Remark.-Lemma 3.1 and Lemma 3.2. has been proved by B. Y. Chen, C. S. Houh and H.S. Lue (3) for a Kaehler manifold.

$\S 4 .-f$-structure in the normal bundle.

Let ξ be any normal vector field on M^{n} in $\bar{M}^{2 m}$. We put

$$
\begin{equation*}
J \xi=P \xi+f \xi \tag{4.1}
\end{equation*}
$$

where $P \xi$ and $f \xi$ denote respectively the tangential and the normal component of $I \xi$. Then P is a tangent bundle valued 1 -form and f is an endomorphism of the normal bundle. Then,
and making use of (4.1)

$$
\begin{equation*}
-\xi=J P \xi+J f \xi \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
-\xi=J P \xi+P f \xi+f^{2} \xi \tag{4.3}
\end{equation*}
$$

Comparing the tangential and normal parts in (4.3), we get

$$
\begin{align*}
& P f \xi=0 \tag{4.4}\\
& f^{2} \xi+J P \xi=-\xi \tag{4.5}
\end{align*}
$$

In particular, if $\xi=J X$ for $X \in T M$, we have $-X=P J X+f J X$ thus $f J X=0$ and $-X=P J X$. By applying f to (4.3), we get $f^{3} \xi=-f \xi$. Since ξ is an arbitrary normal vector field $f^{3}+f=0$. Therefore, if the endomorphism f doesn't vanish (i. e. if $n<m$) it defines an f-structure in $T^{\perp} M$.

We define the covariant derivative of f with respect to D by

$$
\begin{equation*}
\left(D_{X} f\right) \xi=D_{X} f \xi-f D_{X} \xi \tag{4.6}
\end{equation*}
$$

for all $X \in T M$ and $\xi \in T^{\perp} M$.
Moreover, we define the covariant derivative of P with respect to the connection in $T M \oplus T^{\perp} M$ obtained by combining the connections ∇ in $T M$ and D in $T^{\perp} M$

$$
\begin{equation*}
\left(\hat{\nabla}_{X} P\right) \xi=\nabla_{X} P \xi-P D_{X} \xi \tag{4.7}
\end{equation*}
$$

for all $X \in T M$ and $\xi \in T^{\perp} M$.
If $D_{X} f=0$ (respectively, $\hat{\nabla}_{X} P=0$ for all tangent vector fields X, then the f structure in the normal bundle (respectively, the tangent bundle valued 1-form P) is said to be parallel.

§ 5.-Parallel f-structure.

Lemma 5.1.-Let M^{n} be a totally real submanifold of an almost Hermitzan manifold $\bar{M}^{2 m}$, then, for all $X, Y \in T M$ and $\xi \in T^{\perp} M$, we have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} J\right) \xi=\left(\hat{\nabla}_{X} P\right) \xi-A_{f_{\xi}} X+\left(D_{X} f\right) \xi+J A_{\xi} X+\sigma(X, P \xi) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\bar{\nabla}_{X} J\right) Y=-A_{J Y} X-P \sigma(X, Y)+D_{X} J Y-J \nabla_{X} Y-f \sigma(X, Y) \tag{5.2}
\end{equation*}
$$

Proof.-For $\xi \in T^{\perp} M$ and $X \in T M$, we have

$$
\bar{\nabla}_{X} J \xi=\bar{\nabla}_{X} P \xi+\bar{\nabla}_{X} f \xi
$$

Then,

$$
\left(\bar{\nabla}_{X} J\right) \xi-J A_{\xi} X+J D_{X} \xi=\nabla_{X} P \xi+\sigma(X, P \xi)-A_{f \xi} X+D_{X} f \xi
$$

From (4.6) and (4.7), we obtain (5.1). In the proof of (5.2), we use a similar reasoning.

Corollary 5.2.-Let M^{n} be a totally real submannfold of a Nearly Kaehler manifold $\bar{M}^{2 m}$. Then for all $X, Y \in T M$, we have

$$
\begin{equation*}
P \sigma(X, Y)=-\frac{1}{2}\left(A_{J X} Y+A_{J Y} X\right) \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
f \sigma(X, Y)=\frac{1}{2}\left(D_{X} J Y+D_{Y} J X-J D_{X} Y-J D_{Y} X\right) \tag{5.4}
\end{equation*}
$$

The proof is immediate.
If we consider that $\bar{M}^{2 m}$ is a Kaehler manifold, then we have the following result.

Theorem 5.3.-Let M^{n} be a totally real submannfold of a Kaehler mannfold $\bar{M}^{2 m}$ then the following statements are equivalent
a) The f-structure in the normal bundle is parallel.
b) M^{n} is geodesic w.r.t. $(J(T M))^{c}$.
c) The tangent bundle valued 1-form P is parallel.
d) $(J(T M))^{c}$ is parallel.
e) $J(T M)$ is parallel.

Proof.-a) implies b) is proved in (12) and b) implies a) is proved in (6).
It is very easy to prove that $\operatorname{Im} f=(J(T M))^{c}$ and $\operatorname{Ker} f=J(T M)$, then taking in account that \bar{M} is a Kaehler manifold ($\bar{\nabla} J=0$) and from (5.1), we have the others implications.

Proposition 5.4.-Let M^{n} be a totally real submanıfold of an almost Hermıtian manifold $\bar{M}^{2 m}$. Then, the following statements are equivalent.
a) M is geodesic w.r.t. $(J(T M))^{c}$;
b) $\operatorname{Im} \sigma c J(T M)$; c) $\sigma /_{(J(T M))^{c}}=0$
where $\operatorname{Im} \sigma=\{\sigma(X, Y) / X, Y \in T M\}$
The proof is immediate.
In the next theorem, we give a generalization of a result of K. Yano-M. Kon (12), for a Nearly-Kaehler manifold.

Theorem 5.5.-Let M^{n} be a totally real submamfold of a Nearly-Kaehler manifold $\bar{M}^{2 m}$. If the f-structure in the normal bundle is parallel, then M^{n} is geodesic w.r.t. $(J(T M))^{c}$. Moreover, for all $X \in T M$ and $\xi \in(J(T M))^{c},\left(\bar{\nabla}_{X} J\right) \xi=0$.

Proof.-It is well-known that an almost Hermitian manifold N satisfies

$$
\begin{equation*}
g\left(\left(\bar{\nabla}_{X} J\right) Y, Y\right)=0 \tag{5.5}
\end{equation*}
$$

for all $X, Y \in T N$, where J is the almost Hermitian structure and $\bar{\nabla}$ the Riemannian connection.

By (5.1), for all $Y \in T M$, we have

$$
\begin{equation*}
g\left(\left(\bar{\nabla}_{X} J\right) \xi, J Y\right)=g\left(\left(D_{X} f\right) \xi, J Y\right)+g(\sigma(X, Y), \xi)+g(\sigma(X, P \xi), J Y) \tag{5.6}
\end{equation*}
$$

If f is parallel, for all $\xi \in(J(T M))^{c}$ from (4.5), we get,

$$
\begin{equation*}
g(\sigma(X, Y), \xi)=-g\left(\left(\bar{\nabla}_{X} J\right) Y, J \xi\right) \tag{5.7}
\end{equation*}
$$

Since σ is symmetric and \bar{M} is a Nearly-Kaehler manifold, $g(\sigma(X, Y), \xi)=0$ for all $X, Y \in T M$ and $\xi \in(J(T M))^{c}$. Moreover, $\left(\bar{\nabla}_{X} J\right) \xi \in T M$ for all $X \in T M$ and $\xi \in(J(T M))^{c}$. Since $(J(T M))^{c}$ is a holomorphic subbundle of $T^{\perp} M$, it is clair that

$$
\left(\bar{\nabla}_{X} J\right) \xi=0 \quad \text { (Q. E. D.) }
$$

Theorem 5.6.-Let M^{n} be a totally real submanrfold of an almost Hermitian manifold $\bar{M}^{2 m}$. We suppose that
a) M is geodesic w.r.t. $(J(T M))^{c}$
b) For all $X \in T M$ and $\xi \in(J(T M))^{c},\left(\bar{\nabla}_{X} J\right) \xi=0$

Then, the f-structure in the normal bundle is parallel.
Proof.-If $\xi \in(J(T M))^{c}$, then $A_{\xi}=0, P \xi=0$ and $\left(\bar{\nabla}_{X} J\right) \xi=0$, from $(5.1),\left(D_{X} f\right) \xi=0$. If $\xi=J Y$ for $Y \in T M$, then we can consider two cases
i) Let η be a normal vector field in $(J(T M))^{c}$, then $A_{\eta}=0$ and

$$
g\left(\left(D_{X} f\right) \xi, \eta\right)=-g\left(\left(\bar{\nabla}_{X} J\right) \eta, \xi\right)+g\left(A_{\xi} X, J \eta\right)=0
$$

ii) Let η be a normal vector field in $J(T M)$, then $\eta=J Z$ for $Z \in T M$

$$
\begin{aligned}
g\left(\left(D_{X} f\right) \xi, \eta\right) & =g\left(\left(\bar{\nabla}_{X} J\right) J Y, J Z\right)-g\left(A_{J Y} X, Z\right)+g(\sigma(X, Y), J Z) \\
& =-g\left(\bar{\nabla}_{X} Y, J Z\right)-g\left(\bar{\nabla}_{X} J Y, Z\right)-g\left(A_{J Y} X, Z\right)+g(\sigma(X, Y), J Z)=0
\end{aligned}
$$

Thus, $g\left(\left(D_{X} f\right) \xi, \eta\right)=0$ for all $\eta \in T^{\perp} M$, then $\left(D_{X} f\right) \xi=0$ for all $\xi \in T^{\perp} M$ and X $\in T M$.

Corollary 5.7.-Let M^{n} be a totally real submanifold of a Nearly Kaehler manifold $\bar{M}^{2 m}$. Then the f-structure in the normal bundle is parallel if and only if the following statements hold
a) M is geodesic w.r.t. $(J(T M))^{c}$
b) For all $X \in T M$ and $\xi \in(J(T M))^{c},\left(\bar{\nabla}_{X} J\right) \xi=0$.

Theorem 5.8.-Let M^{n} be a totally real submanifold of an almost Hermitian manifold $\bar{M}^{2 m}$. We suppose that $\left(\bar{\nabla}_{X} J\right) \xi=0$ for all $X \in T M$ and $\xi \in(J(T M))^{c}$. Then the following statements are equivalent

1) The f-structure in the normal bundle is parallel.
2) M is geodesic w.r.t. $(J(T M))^{c}$.

The proof is immediate.
Theorem 5.9.-Let M^{n} be a totally real submanifold of a Nearly Kaehler manifold $\bar{M}^{2 m}$. If the f-structure in the normal bundle is parallel, then the normal subbundle $(J(T M))^{c}$ is parallel.

Proof.-For all $X \in T M$ and $\xi \in(J(T M))^{c}$, we have

$$
0=\left(\bar{\nabla}_{X} J\right) \xi=\left(-A_{J \xi} X-P D_{X} \xi\right)+\left(D_{X} J \xi-f D_{X} \xi+J A_{\xi} X\right)
$$

Thus,

$$
P D_{X} \xi=-A_{J \xi} X \quad \text { and } \quad f D_{X} \xi=D_{X} J \xi+J A_{\xi} X
$$

since $\operatorname{Im} \sigma \subset J(T M)$, we have

$$
P D_{X} \xi=0, \quad f D_{x} \xi=D_{X} J \xi
$$

Then, $D_{X} J \xi \in(J(T M))^{c}$. Since $(J(T M))^{c}$ is holomorphic, we get that $(J(T M))^{c}$ is
parallel.
Corollary 5.10.- Let M^{m-1} be a totally real submanfold of a NearlyKaehler manifold $M^{2 m}$. Then the following statements are equivalent

1) The f-structure in the normal bundle is parallel.
2) M is geodesic w.r.t. $(J(T M))^{c}$.

$$
\left(\bar{\nabla}_{X} J\right) \xi=0 \quad \text { for all } \quad X \in T M \text { and } \quad \xi \in(J(T M))^{c} .
$$

3) The normal subbundle $(J(T M))^{c}$ is parallel.
4) The normal subbundle $J(T M)$ is parallel.
§6.-Parallel 1-form P.-In this section, we study, in which cases the tangent bundle valued 1-form P is parallel.

Theorem 6.1.- Let M^{n} be a totally real submanifold of an almost Hermitian manifold $\bar{M}^{2 m}$. We suppose that
a) M is geodesic w.r.t. the normal subbundle $(J(T M))^{c}$.
b) For all $X \in T M$ and $\xi \in T^{\perp} M,\left(\bar{\nabla}_{X} J\right) \xi \in T^{\perp} M$.

Then, the tangent bundle valued 1-form P is parallel.
Proof.-From (5.1), we have

$$
\begin{equation*}
g\left(\left(\bar{\nabla}_{X} J\right) \xi, Y\right)=g\left(\left(\hat{\nabla}_{X} P\right) \xi, Y\right)-g\left(A_{f \xi} X, Y\right) \tag{6.1}
\end{equation*}
$$

for all $Y \in T M$.
Since $f \xi \in(J(T M))^{c}$, from (6.1), we have $\left(\hat{\nabla}_{X} P\right) \xi=0$. (Q. E. D.)
Theorem 6.2.-Let M^{n} be a totally real submanıfold of an almost Hermitian manifold $\bar{M}^{2 m}$. We suppose that $\left(\bar{\nabla}_{X} J\right) \xi \in T^{\perp} M$ for all $X \in T M$ and $\xi \in T \perp M$; then, the following statements are equivalent

1) The tangent bundle valued 1 -form P is parallel.
2) M is geodesic w.r.t. $(J(T M))^{c}$.

Proof.-(2) implies (1) is proved in Theorem 5.1. If P is parallel, from (5.1), we have $g\left(A_{f \xi} X, Y\right)=0$ for all $X, Y \in T M$ and $\xi \in T^{\perp} M$. Since $f \xi \in(J(T M))^{c}$ and $\operatorname{Im} f=(J(T M))^{c}$ we get the other implication.
§7.-Totally umbilical submanifolds.-In this section, we consider that M^{n} is totally umbilical, that is

$$
\begin{equation*}
\boldsymbol{\sigma}(X, Y)=g(X, Y) H \tag{7.1}
\end{equation*}
$$

for all $X, Y \in T M$, where H is the mean curvature vector.
Theorem 7.1.-Let M^{n} be a totally real submanifold of a Nearly-Kaehler manifold $\bar{M}^{2 m}$. We suppose that:
a) M is totally umbilical.
b) The f-structure in the normal bundle is parallel.

Then M is totally geodesic.
Proof.-If \bar{M} is a Nearly-Kaehler manifold, that is, $\left(\bar{\nabla}_{X} J\right) X=0$ then

$$
\begin{equation*}
J \sigma(X, X)=-A_{J X} X+D_{X} J X-J \nabla_{X} X \tag{7.2}
\end{equation*}
$$

for all $X \in T M$.
If X is any unit vector field perpendicular to Y, then from (7.1) and (7.2)

$$
\begin{equation*}
0=g(X, X) \cdot g(H, J X)=g(H, J Y) \tag{7.3}
\end{equation*}
$$

thus $H \in(J(T M))^{c}$. From Theorem 5.5 and Proposition 5.4 wet get $H=0$.
(Q. E. D.)

Corollary 7.2.- Let $M^{n}(n>1)$ be a totally real submanfold of a Kaehler manıfold $\bar{M}^{2 m}$. We suppose that:
a) M is totally umbilical.
b) The f-structure in the normal bundle is parallel.

Then, M is totally geodesic.
Remark. Corollary 7.2 has been proved by G. D. Ludden, M. Okumura and K. Yano (7), in the case $m=n$.

Corollary 7.3.- Let $M^{m}(m>1)$ be a totally real submanrfold of a Nearly Kaehler manifold $\bar{M}^{2 m}$. If M is totally umbilical, then, M is totally geodesic.
§ 8.-On a Hermitian connection.-Let $\bar{M}^{2 m}$ be an almost Hermitian manifold with Riemannian connection $\bar{\nabla}$. Then we can define a new connection $\bar{\nabla}^{\prime}$ on \bar{M} by (4),

$$
\begin{equation*}
\bar{\nabla}_{X}^{\prime} Y=\frac{1}{2}\left(\bar{\nabla}_{X} Y-J \bar{\nabla}_{X} J Y\right) \tag{8.1}
\end{equation*}
$$

for all $X, Y \in T \bar{M}$.
It is well-known that $\left(\bar{\nabla}_{x}^{\prime} J\right)=0$ and so $\bar{\nabla}^{\prime}$ is a Hermitian connection in the sense of (8).

Let M^{n} be a totally real submanifold on $\bar{M}^{2 m}$. If $X, Y \in T M$, we can write

$$
\begin{equation*}
\bar{\nabla}_{X}^{\prime} Y=\nabla_{X}^{\prime} Y+\sigma^{\prime}(X, Y) \tag{8.2}
\end{equation*}
$$

where, $\nabla_{X}^{\prime} Y$ (resp. $\left.\sigma^{\prime}(X, Y)\right)$ denotes the tangential component (resp. the normal component) of $\bar{\nabla}_{X}^{\prime} Y$.

Proposition 8.1.- If M^{n} is a totally real submantold of an almost Hermıtian manrfold $\bar{M}^{2 m}$, then
a) ∇^{\prime} is a connection on M.
b) The mapping $\sigma^{\prime}: T M \times T M \rightarrow T^{\perp} M$ is bilinear over $F(M)$.
c) We have the following relations

$$
\begin{equation*}
\nabla_{X}^{\prime} Y=\frac{1}{2}\left(\nabla_{X} Y-P D_{X} J Y\right) \tag{8.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{\prime}(X, Y)=\frac{1}{2}\left(\sigma(X, Y)+J A_{J Y} X-f D_{X} J Y\right) \tag{8.5}
\end{equation*}
$$

where, $F(M)$ is the algebra of C^{∞} differentzable functions on M.
Next, if $X \in T M$ and $\xi \in T^{\perp} M$, we write

$$
\begin{equation*}
\nabla_{x}^{\prime} \xi=-A_{\xi}^{\prime} X+D_{x}^{\prime} \xi \tag{8.6}
\end{equation*}
$$

where, $-A_{\xi}^{\prime} X$ and $D_{x}^{\prime} \xi$ are symbols for the tangential and normal components.
Proposition 8.2.- Let M^{n} be a totally real submanıfold of an almost Hermitran manıfold $\bar{M}^{2 m}$. Then
a) D^{\prime} is a connection in the normal bundle $T^{\perp} M$.
b) $g\left(\sigma^{\prime}(X, Y), \xi\right)=g\left(A_{\xi}^{\prime} X, Y\right)$
for all $X, Y \in T M$ and $\xi \in T^{\perp} M$.
c) The mapping $A^{\prime}:(X, \xi) \in T M \times T^{\perp} M \rightarrow A_{\xi}^{\prime} X \in T M$ is bilmear over $F(M)$.
d) We have the following relations

$$
\begin{align*}
& A_{\xi}^{\prime} X=\frac{1}{2}\left(A_{\xi} X+P \sigma(X, P \xi)+P D_{X} f \xi\right) \tag{8.8}\\
& D_{x}^{\prime} \xi=\frac{1}{2}\left(D_{x} \xi+J A_{f \xi} X-J \nabla_{X} P \xi-f \sigma(X, P \xi)-f D_{X} f \xi\right) \tag{8.9}
\end{align*}
$$

The proofs of Propositions 8.1. and 8.2. are immediate.
We call the formulas (8.2) and (8.6) the equations of Gauss and Weingarten for the Hermitian connection $\bar{\nabla}^{\prime}$.

If $\bar{R}^{\prime}(X, Y)=\left[\bar{\nabla}_{X}^{\prime}, \bar{\nabla}_{Y}^{\prime}\right]-\bar{\nabla}_{[X, Y]}^{\prime}$ is the curvature operator determined by $\bar{\nabla}^{\prime}$, (4), then we write $g\left(\bar{R}^{\prime}(X, Y) Z, W\right)=\bar{R}^{\prime}(X, Y, Z, W)$.

It is very easy to obtain the equation of Gauss for $\bar{\nabla}^{\prime}$, that is,

$$
\begin{align*}
\bar{R}^{\prime}(X, Y, Z, W)= & R^{\prime}(X, Y, Z, W)+g\left(\sigma^{\prime}(X, Z), \sigma^{\prime}(Y, W)\right) \\
& -g\left(\sigma^{\prime}(Y, Z), \sigma^{\prime}(X, W)\right) \tag{8.10}
\end{align*}
$$

for all $X, Y, Z, W \in T M$, where $R^{\prime}(X, Y, Z, W)=g\left(R^{\prime}(X, Y) Z, W\right)$.
We define the covariant derivative of σ^{\prime} with respect to the connection in $T M \oplus T^{\perp} M$ obtained by combining the connections ∇^{\prime} in $T M$ and D^{\prime} in $T^{\perp} M$, that is,

$$
\begin{equation*}
\left(\bar{\nabla}_{X}^{\prime} \sigma^{\prime}\right)(Y, Z)=D_{X}^{\prime} \sigma^{\prime}(Y, Z)-\sigma\left(\nabla_{X}^{\prime} Y, Z\right)-\sigma^{\prime}\left(Y, \nabla_{X}^{\prime} Z\right) \tag{8.11}
\end{equation*}
$$

for all $X, Y, Z \in T M$. Then it is very easy to prove the equation of Codazzi for $\bar{\nabla}^{\prime}$.

Proposition 8.3.-(Equation of Codazzi). The normal component of $\bar{R}^{\prime}(X, Y) Z$ is given by

$$
\begin{equation*}
\left(\bar{R}^{\prime}(X, Y) Z\right)^{n}=\left(\bar{\nabla}_{X}^{\prime} \sigma^{\prime}\right)(Y, Z)-\left(\bar{\nabla}_{Y}^{\prime} \sigma^{\prime}\right)(X, Z)+\sigma^{\prime}\left(T_{\nabla}(X, Y), Z\right) \tag{8.12}
\end{equation*}
$$

for all $X, Y, Z \in T M$, where $T_{\nabla}(X, Y)=\nabla_{X}^{\prime} Y-\nabla_{Y}^{\prime} X-[X, Y]$ is the torsion of ∇^{\prime}.
Let $R^{D^{\prime}}$ be the curvature tensor associated with D^{\prime}, i.e. $R^{D^{\prime}}(X, Y)=\left[D_{X}^{\prime}, D_{Y}^{\prime}\right]$ $\left.\overline{\bar{\nabla}}^{\prime} D^{\prime}{ }^{\prime} X, Y\right]$. Then we can obtain of a very easy manner the equation of Ricci for

$$
\begin{equation*}
\bar{R}(X, Y, \xi, \eta)=R^{D^{\prime}}(X, Y, \xi, \eta)+g\left(A_{\eta}^{\prime} Y, A_{\xi}^{\prime} X\right)-g\left(A_{\eta}^{\prime} X, A_{\xi}^{\prime} Y\right) \tag{8.13}
\end{equation*}
$$

for all $X, Y \in T M$ and $\xi, \eta \in T^{\perp} M$.
Lemma 8.4.-Let M^{n} be a totally real submanıfold of an almost Hermitian manifold $\bar{M}^{2 m}$. Then the following statements are equivalents
a) σ^{\prime} is symmetric, i.e. $\sigma^{\prime}(X, Y)=\sigma^{\prime}(Y, X)$
b) $A_{J X} Y=A_{J Y} X$ and $f D_{X} J Y=f D_{Y} J X$
c) $T_{\bar{\nabla}}(X, Y)=-\frac{1}{2}\left(P D_{X} J Y-P D_{Y} J X+[X, Y]\right)$
for all $X, Y \in T M$. Where $T_{\bar{\nabla}}$ is the torsion of $\bar{\nabla}^{\prime}$.
Remark.-We observe that c$)$ implies that $T_{\bar{\nabla}}(X, Y) \in T M$ for all $X, Y \in T M$. We can say that if σ^{\prime} is symmetric for a totally real submanifold M, then M is torsion-invariant with respect to $\bar{\nabla}^{\prime}$, in the same sense that a submanifold is curvature-invariant.

If σ^{\prime} is symmetric, we can define the mean curvature vector H^{\prime} for $\bar{\nabla}^{\prime}$

$$
H^{\prime}=\frac{1}{n} \operatorname{trace} \sigma^{\prime}
$$

Then, it is easy to find the following relation

$$
H^{\prime}=\frac{1}{2}\left\{H+R_{1}+R_{2}\right\}
$$

where $H=\frac{1}{n}$ trace σ is the mean curvature vector and

$$
R_{1}=\frac{1}{n} \sum_{i=1}^{n} J A_{J X_{i}} X_{i} \in J(T M), \quad R_{2}=f^{\prime}\left(-\frac{1}{n} \sum_{i=1}^{n} D_{X_{\imath}} J X_{\imath}\right) \in(J(T M))^{c}
$$

$\left\{X_{1}, \cdots, X_{n}\right\}$ is a local frame of vector fields in $T M$.
Corollary 8.5.- Let M^{n} be a totally real submanfold of a Nearly Kaehler manifold $\bar{M}^{2 m}$. Then σ^{\prime} is symmetric if and only if $\sigma=\sigma^{\prime}$.

Proof.-If \bar{M} is a Nearly-Kaehler manifold, we have

$$
\begin{aligned}
0 & =\left(\bar{\nabla}_{X} J\right) Y+\left(\bar{\nabla}_{Y} J\right) X \\
& =-A_{J X} Y-A_{J Y} X+D_{X} J Y+D_{Y} J X-J \nabla_{X} Y-J \nabla_{Y} X-2 J \sigma(X, Y)
\end{aligned}
$$

then,

$$
\begin{align*}
& A_{J X} Y+A_{J Y} X=-2 P \sigma(X, Y) \tag{8.14}\\
& D_{X} J Y+D_{Y} J X=J \nabla_{X} Y+J \nabla_{Y} X+2 f \sigma(X, Y) \tag{8.15}
\end{align*}
$$

From (8.15)

$$
\begin{equation*}
f D_{X} J Y+f D_{Y} J X=2 J f \sigma(X, Y) \tag{8.16}
\end{equation*}
$$

for all $X, Y \in T M$.
By Lemma 8.4, (8.14), (8.16) and (8.5), $\sigma=\sigma^{\prime}$. The converse is obvious.
Proposition 8.6.-Let M^{n} be a totally real submanifold of a Nearly-Kaehler manifold $\bar{M}^{2 m}$. Then $H=H^{\prime}$.

Proof.-If \bar{M} is a Nearly-Kaehler manifold, then we have from (1.1) that $\bar{\nabla}_{X}^{\prime} X=\bar{\nabla}_{X} X$. Thus $\sigma(X, X)=\sigma^{\prime}(X, X)$ for all $X \in T M$. Hence $H=H^{\prime}$.

Corollary 8.7.- Let M^{n} be a totally real submanifold of a Nearly-Kaehler manifold $\bar{M}^{2 m}$. Then M is minimal for the Hermitian connection $\bar{\nabla}^{\prime}$ i.e. $H^{\prime}=0$ if and only if is minimal for the Riemannian connection $\bar{\nabla}$ i.e. $H=0$.

In the following, we study the relation between $\left\{f, D^{\prime}, J(T M)\right.$ and $\left.(J(T M))^{c}\right\}$
Proposition 8.8.-Let M^{n} be a totally real submannfold of a Nearly-Kaehler manifold $\bar{M}^{2 m}$. We supose that $(J(T M))^{c}$ is parallel with respect to D. The $(J(T M))^{c}$ is parallel with respect to D^{\prime}.

Proof.-From (8.9), we have

$$
2 D_{x}^{\prime} \xi=D_{X} \xi+J A_{J \xi} X-f D_{X} J \xi
$$

for all $X \in T M$ and $\xi \in(J(T M))^{c}$. Since $(J(T M))^{c}$ is parallel with respect to $D, A_{J \xi}=0$ and $D_{X} \xi, f D_{X} J \xi \in(J(T M))^{c}$, thus $D_{X}^{\prime} \xi \in(J(T M))^{c}$, then $(J(T M))^{c}$ is parallel with respect to D^{\prime}.

Proposition 8.9.-Let M^{n} be a totally real submannfold of a Nearly Kaehler monifold $\bar{M}^{2 m}$. If S is a subbundle of $T^{\perp} M$ such that S is parallel with respect to D^{\prime}, then

1) If S is holomorphic, then $\sigma^{\prime} / s=0$
2) If S is coholomorphıc, then $\operatorname{Im} \sigma^{\prime} \subset S$.

Proof.-Since $\left(\bar{\nabla}^{\prime} J\right)=0$, we have

$$
g\left(\sigma^{\prime}(X, Y), \xi\right)=g\left(\bar{\nabla}_{X}^{\prime} J Y, J \xi\right)=g\left(D_{X}^{\prime} J Y, J \xi\right)
$$

If S is holomorphic and $\xi \in S$, we have $g\left(\sigma^{\prime}(X, Y), \xi\right)=0$, thus $\sigma^{\prime} / s=0$.
In the proof of 2) we use a similar reasoning.
Lemma 8.10.-Let M^{n} be a totally real submanıfold of an almost Hermitian manafold $\bar{M}^{2 m}$. Then,

$$
\begin{equation*}
\left(\hat{\nabla}_{X}^{\prime} P\right) \xi=A_{f \xi}^{\prime} X \tag{8.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(D_{X}^{\prime} f\right) \xi=-J A_{\xi}^{\prime} X-\sigma^{\prime}(X, P \xi) \tag{8.18}
\end{equation*}
$$

for all $X \in T M$ and $\xi \in T^{\perp} M$, where,

$$
\left(\hat{\nabla}_{x}^{\prime} P\right) \xi=\nabla_{x}^{\prime} P \xi-P D_{x}^{\prime} \xi, \quad\left(D_{x}^{\prime} f\right) \xi=D_{x}^{\prime} f \xi-f D_{x}^{\prime} \xi
$$

Proof.-Since $\left(\nabla^{\prime} J\right)=0,(8.18)$ and (8.17) follow from (8.2) and (8.6).
Theorem 8.11.-Let M^{n} be a totally real submanafold of an almost Hermitian manifold $\bar{M}^{2 m}$. Then the following statements are equivalent

1) The f-structure in the normal bundle is parallel with respect to D^{\prime}.
2) $A_{\xi}^{\prime}=0$ for all $\xi \in(J(T M))^{c}$.
3) $(J(T M))^{c}$ is parallel with respect to D^{\prime}.
4) $J(T M)$ is parallel with respect to D^{\prime}.
5) The tangent bundle valued 1-form P is parallel with respect to D^{\prime}.

Proof.-

1) $\Rightarrow 2$) is trivial.
2) $\Rightarrow 1$) From (8.18), we have $\left(D_{x}^{\prime} f\right) \xi=0$ for all $X \in T M$ and $\xi \in(J(T M))^{c}$.

Then, it is sufficient to prove that

$$
\begin{equation*}
g\left(\left(D_{X}^{\prime} f\right) \xi, \eta\right)=0 \tag{8.19}
\end{equation*}
$$

for all $\xi \in J(T M)$ and $\eta \in T^{\perp} M$. We consider two cases:
i) If $\eta \in(J(T M))^{c}$. Using (8.18) and 1), it is very easy to prove (8.19).
ii) If $\eta \in J(T M), \eta=J Y$ and $\xi=J Z$ for $Y, Z \in T M$

$$
\begin{aligned}
g\left(\left(D_{X}^{\prime} f\right) J Z, J Y\right) & =-g\left(J A_{J Z}^{\prime} X, J Y\right)+g\left(\sigma^{\prime}(X, Z), J Y\right) \\
& =-g\left(A_{J Z}^{\prime} X+P \sigma^{\prime}(X, Z), Y\right)
\end{aligned}
$$

Since $\left(\bar{\nabla}^{\prime} J\right)=0, \bar{\nabla}_{x}^{\prime} J Y=J \bar{\nabla}_{x}^{\prime} Y$ and we obtain $g\left(\left(D_{x}^{\prime} f\right) J Z, J Y\right)=0$.
2) $\Rightarrow 3$)

Since $A_{\xi}^{\prime}=0$ for all $\xi \in(J(T M))^{c}$ and $(J(T M))^{c}$ is a holomorphic subbundle of
$T^{\perp} M$, we have

$$
0=g\left(\bar{\nabla}_{x}^{\prime} J \xi, Z\right)=g\left(J \bar{\nabla}_{x}^{\prime} \xi, Z\right)=-g\left(\bar{\nabla}_{x}^{\prime} \xi, J Z\right)=-g\left(D_{x}^{\prime} \xi, J Z\right)
$$

for all $X, Z \in T M$ and $\xi \in(J(T M))^{c}$, thus we obtain 3).
$3) \Rightarrow 4$) It is immediate.
4) $\Rightarrow 5$)

If

$$
\xi \in J(T M), \quad f \xi=0 \quad \text { and } \quad\left(\hat{\nabla}_{X}^{\prime} P\right)=0
$$

If

$$
\xi \in(J(T M))^{c}, \quad P \xi=0, \quad \text { and } \quad g\left(\left(\hat{\nabla}_{X}^{\prime} P\right) \xi, Y\right)=g\left(A_{J \xi}^{\prime} X, Y\right)
$$

for all $X, Y \in T M$. Then

$$
g\left(\left(\hat{\nabla}_{x}^{\prime} P\right) \xi, Y\right)=g\left(J \bar{\nabla}_{x}^{\prime} \xi, Y\right)=-g\left(\bar{\nabla}_{x}^{\prime} \xi, J Y\right)=-g\left(D_{x}^{\prime} \xi, J Y\right)=0
$$

$5) \Rightarrow 2$) It follows from (8.18).
(Q. E. D.)

Let M^{n} be a totally real submanifold of an almost Hermitian manifold $\bar{M}^{2 m}$. We suppose that $\sigma^{\prime}(X, Y)=\sigma^{\prime}(Y, X)$ for all $X, Y \in T M$. Moreover, we can say that M is totally geodesic with respect to σ^{\prime}, if $\sigma^{\prime}=0$. Then we have the following

Theorem 8.12.-Let $M^{n}(n>1)$ be a totally real submanıfold of an almost Hermitian manıfold $\bar{M}^{2 m}$. Suppose that
a) M is totally umbilical with respect to σ^{\prime}.
b) The f-structure is parallel respect to D^{\prime}.

Then M is totally geodesic respect to σ^{\prime}.
Proof.-For all $X, Y \in T M,\left(\bar{\nabla}_{X}^{\prime} J\right) Y=0$, then

$$
\begin{equation*}
J \sigma^{\prime}(X, Y)=-A_{J Y}^{\prime} X+D_{X}^{\prime} J Y-J \nabla_{X}^{\prime} Y \tag{8.20}
\end{equation*}
$$

By (8.20), we have

$$
g\left(\sigma^{\prime}(X, Y), J Z\right)=g\left(\sigma^{\prime}(X, Z), J Y\right)
$$

Using a), we have

$$
\begin{aligned}
& g(X, Y) g\left(H^{\prime}, J Z\right)=g(X, Z) g\left(H^{\prime}, J Y\right) \\
& g\left(H^{\prime}, J Z\right) Y=g\left(H^{\prime}, J Y\right) Z
\end{aligned}
$$

If Y and Z are lineary independent, then $g\left(H^{\prime}, J Z\right)=0$ for all $Z \in T M$, thus $H^{\prime}=0$.
(Q. E. D.)

References

[1] Chen, B. Y., Geometry of submanifolds, Marcel Dekker, 1973.
[2] Chen, B. Y. and Ogiue, K., On totally real submanifolds, Trans. Amer. Math. Soc., 193 (1974), 257-266.
[3] Chen, B. Y., Houh, C.S. and Lue, H.S., Totally real submanifolds, J. of Diff. Geom., 12 (1977), 473-480.
[4] Gray, A., Nearly Kaehler manifold, J. of Diff. Geom. 4 (1970), 283-309.
[5] Gray, A., The structure of Nearly Kaehler manifolds, Math. Ann. 248 (1976), 223-233.
[6] Hendrix, M. and Verstraelen, L., On totally real submanifolds with parallel f-structure in the normal bundle, Soochow J. of Math., 4 (1978), 55-61.
[7] Ludden, G. D., Okumura, M. and Yano, K., Totally real submanifolds of complex manifolds, Atti. Accad. Naz. Linceı Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 346-353.
[8] Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, Interscience, New-York, 1963, 1969.
[9] Vanhecke, L., Some theorems for quası and nearly Kaehler manifolds, Boll. Unione Matematica Italiana, (4), 12 (1975), 174-188.
[10] Vanhecke, L., Antiholomorphic submanifolds of generalized complex space forms, Bull. Inst. Acad. Sinica, Taiwan 4 (1976), 127-140.
[11] Yano, K., On a structure defined by a tensor field f of type (1, 1) satisfying $f^{3}+f=0$, Tensor 14 (1963), 99-109.
[12] Yano, K. and Kon, M., Anti-invariant submanifolds, Marcel Dekker 1976.
Seccion de Matematicas
Universidad de Granada
Granada, Spain

