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A submanifold M of a Kaehlerian manifold M is called a generic submanifold
(an anti-holomorphic submanifold) if the normal space NP(M) of M at any point
P^M is always mapped into the tangent space TP(M) under the action of the
almost complex structure tensor F of the ambient manifold, that is, FNP(M)(Z
TP{M) for all P G M (see [4], [9], [10] and [12]). The typical examples of
generic submanifolds are real hypersurfaces of a Kaehlerian manifold. So many
authors, for example, Kon [12], Okumura [9], Pak [9] and Yano [12] etc., have
studied generic submanifolds of a Kaehlerian manifold by using the method of
Riemannian fibre bundles and developed this method of Lawson [2], Maeda [5]
or Okumura [8] extensively for real hypersurfaces.

In particular, two of the present authors [4] have studied generic submani-
folds with parallel mean curvature vector of an even-dimensional Euclidean space
under the condition that the /-structure induced on M is normal (see section 2).

The purpose of the present paper is to characterize generic submanifolds of
complex projective space CPm.

In § 1, we investigate fundamental properties and structure equations for
generic submanifolds immersed in a complex projective space CPm. And we find
the condition that the /-structure induced on M is normal.

In § 2, we recall the theory of fibrations and some relations between the
second fundamental tensor of M in CPm and that of M—π~\M) in S2τn + 1, and
then establish some equations for the connections in the normal bundles of M and
of M, where π is the projection induced from the Hopf-fibrations S1-+S2m+1—>CPm.

In the last § 3, we characterize generic submanifolds of a complex projective
space CPm by the method of Riemannian fibration. In characterizing the sub-
manifolds, we shall use the following theorem:

THEOREM A ([11]). Let M be a complete n-dimensional submanifold of Sm

with flat normal connection. If the second fundamental form of M is parallel,
then M is a small sphere, a great sphere or a Pythagorean product of a certain
number of spheres. Moreover, if M is of essential codimension m — n, then M is
a Pythagorean product of the form
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S P l ( r i ) X ••• xSPir(rN), rf+ ••• + ? V = 1 , N=m

or a Pythagorean product of the form

Sp\r,)X ••• xSPN'(rN/)ClSm-1(r)c:Sm, r,2+ ••• +rN.*=r2<l, N'=m-n.

Manifolds, submanifolds, geometric objects and mappings we discuss in this

paper are assumed to be differentiate and of C°°, We use in the present paper

the systems of indices as follows:

ic, μ, v, λ=l, 2, •••, 2 m + l h, i, j , k = l, 2, ••• , 2m,

a, β, γ, δ, ε = l , 2, ••• , n + l', a, b, c, d, e=l, 2, ••• , n ,

u, v, w, x, y, z=l, 2, " , p, n-\-p=2m.

The summation convention will be used with respect to those systems of indices.

§ 1. Generic submanifolds of Kaehlerian manifolds.

Let M be a 2m-dimensional Kaehlerian manifold covered by a system of co-

ordinate neighborhoods {0 yh} and denote by gμ components of the Hermitian

metric tensor and by F3

h those of the almost complex structure of M. Then we

have

(1.1) F3Ψt

h=-δΐ,

(1.2) FfFSgu^g i,

δ1} being the Kronecker delta.

And denoting by 7 ; the operator of covariant differentiation with respect to

gjU we get

(1.3) ΊjFt

h=0.

Let M be an 72-dimensional Riemannian manifold covered by a system of

coordinate neighborhoods {U; xa} and immersed isometrically in M by the im-

mersion i: M-+M. We identify i(M) with M itself and represent the immersion

i: M—M by

(1.4) yh = y\xa)

We put

(1.5) Bb

h=dby
h, db=d/dxb

and denote by Cx

h mutually orthogonal unit normals to M. Then denoting by

gcb the fundamental metric tensor of M, we have gcb=gjiBc

JBb

ι since the immer-

sion is isometric. Therefore, denoting by 7C the operator of van der Waerden-
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Bortolotti covariant differentiation with respect to gcb, equations of Gauss and
Weingarten for M are given by

(1.6) VcBb

h=hcb

xCx

h,

(1.7) VcCx

h = -he

a

xBa

h

respectively, where hcb

x are the second fundamental tensors with respect to the
normals Cx

h and hc

a

x=hcbχhba~hCb
v gbagyx, gyX=Cy

JCx

τgdi being the metric ten-
sor of the normal bundle of M and (gba)=(gbay

1'
Equations of Gauss, Codazzi and Ricci are respectively given by

(1.8) Kdeb

a=KkJi

hB%b

a

h + hd

a

xheb

x-he

a

xhdb*,

(1.9) KkJi

hB%bC
x

h=Vdhcb

x-Vchdb

x,

(1.10) Kdey

x=KkJi

hB'ίcCυ

tCx

h+hde
xhce

υ-hcexhd

e

yf

where Bk

d

J

c

ι

bl=Bd

kBc>BSB\, Bd

i

e

i

b=Bd

kBe>Bb\ B\=Bb^gbagjh, Cx

h=Cy>gy
χgJh,

and Kdcb

a and Kdcy

x are the curvature tensor of M and that of the connection
induced in the normal bundle of M respectively.

From now on, we consider generic submanifolds of a Kaehlerian manifold M.
Then we can put in each neighborhood

(1.11) F*Be>=fe

aBa

h-fe

xCx

h,

(1.12) FjhCx

3=fx

aBa

h,

where fc

a is a tensor field of type (1.1) defined on M, fc

x that of mixed type

and fx

a=fcygeagyx.
Applying F to (1.11) and (1.12) respectively and using (1.1) and those equa-

tions, we can easily find

(1.13) / c β Λ α = - a ? + / c * / * α ,

(1.14) fcefe

x=0, f/fea=0,

(1.15) feXfye = δx .

Therefore, equations (1.13)^(1.15) show that M admits the so-called /-structure
satisfying / 3 + / = 0 (cf. [6] and [7] etc.).

Using Fji=—Fτj, Fji=FJ

hgιh, we have from (1.11) and (1.12),

(1.16) fcb=-fbc, fcx=fxc,

where we have put fcb=fc

agba, fbχ=zfbygyχ and fXb=fxagba
If we apply the operator 7C of the covariant differentiation to (1.11) and take

account of (1.3), then we obtain
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Fι

hlcBb>={lcfb«)Ba

h+fb«lcBa

h-{lcfb*)Cx

h-fb*lcCx\

or, substituting (1.6) and (1.7),

(1.17) VcΛα = Λc*V*α-λcα*Λ\

(1.18) Vefb

x=hce

xU.

By the same way we have from (1.12)

(1.19) Vc/*α=Λc e*/α e,

(1.20) f/hbey=hb

e

xfey

with the help of (1.6) and (1.7).
We now assume that the ambient manifold M is of constant holomorphic

sectional curvature c. Then it is well known that its curvature tensor KkJi

h has
the form

(1.21) KkJι

h=j(δ^gji-δfgkίΛ-Fk

hFji-FJ

hFki~2FkJFι

h).

Therefore, substituting (1.21) into (1.8), (1.9) and (1.10), we can see that the equa-
tions of Gauss, Codazzi and Ricci are respectively given by

(1.22) Kdcb

a=j(δigeb-δigdb+fd

afeb-fc

afdb-2fd^^

(1.23) Vdheb

x-lchdb

x=j(-fd

xfcb+fcxf

(1.24) Kdcy

x=j(fd

xfeυ-fe

xfdy)+hde

xhe

e

y-hcexhd%.

We now consider a tensor field S of type (1, 2) of the form

scb

a=lf, /]c6

α+(VcΛ*-v6/c*)Λa,
where

lf,Ωcb

a=fceVefb

a-fb

eVefc
a-Wcfb

e-Vbfc

e)fe

a

is the Nijenhuis tensor formed with fc

a.
Substituting (1.17) and (1.18) into this, we find

(1.25) Scb

a=(hc

e

xfe

a-fc

ehe

a

x)fb

x-(hb

e

xfe

a-fb

ehe

a

x)fc

x.

The induced /-structure on Mis said to be normal if SCb
a vanishes identically

(cf. [4]).
The left hand side of (1.25) does not depend on the choice of the unit normals

Cx

h. Indeed, if we choose another set of mutually orthogonal unit normals 'Cx

h,
then we have
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(1.26) 'Cx

h=σx

vCy

h,

(σx

y) being a special orthogonal matrix of degree 2m—n.
Defining the second fundamental tensor 'hcb

x with respect to fCx

h by ΊcBb

h

^'hcb

x'Cx

n, then we have from (1.6) and (1.26)

(1.27) 'hcb

x=σy

xhcb

y.

Also, we have from (1.11) and (1.26)

ff x — π xf y
J C Oy J c

Consequently we have

(hc

e

xfe

a-fc

ehe\)fb

x-(hb

e

xfe

a-fb

ehe

a

x)fc

x

={'hc«xfe«-fc«'hβ\yfb

x-{fhb%fea-fb

e'he

a

x)'fc

x

because of σz

xσyx—gzy. This shows that the condition imposed on M is of
intrinsic character.

Suppose that Scb

a vanishes identically on M, we have from (1.25)

(U β f a__f eL a \f x __( U e f a__f eu a \ f a; _ Λ
\'ιc xj e J c lie x)J b \ιi>b xJ e J b He x)J c —V>

from which, transvecting fcy,

yf e—h f efcyfux

J a — ' h e x j a J J b ,

from which, taking the skew-symmetric part and then transvecting /Λ we get
/, f efcy — Λ
ϊlcezj a J —v.

Therefore, we obtain

(1.28) hbβ

xfae+haβ

xfb

e=0.

Hence we have

PROPOSITION 1.1. Let M be a generic submanifold of a Kaehlenan manifold
M. In order for the f-structure induced on M to be normal, it is necessary and
sufficient that the second fundamental tensors hcb

x and fc

a commute.

§ 2. Submersion π : S 2 m + 1->CPm and immersion ι: M->CPm.

L e t S 2 m + 1 ( l ) b e t h e h y p e r s p h e r e {(c\ •••, c m + 1 ) \ | c M 2 H \-\cm+1\2=l} of
radius 1 in the (m+l)-dimensional complex space Cm + 1, which will be identified
naturally with R*<m+1\ The sphere S2 m + 1(l) will be simply denoted by S2m+1.
Let 7r: s2m+1-^CPm be the natural projection of S 2 m + 1 onto a complex projective
space CPm which is defined by the Hopf-flbration.

We consider a Riemannian submersion π: M—+M compatible with the Hopf-
fibration π : s2m+1->CPm, where M i s a submanifold of codimension p in CPm and
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M—π \M) that of S2m+1. More precisely speaking, π: M-+M is a Riemannian
submersion with totally geodesic fibres such that the following diagram is com-
mutative :

where i: M—>S2m+1 and i: M-*CPm are certain isometric immersions.
Covering S2m+1 by a system of coordinate neighborhoods {U; yκ) such that

π(U)=U are coordinate neighborhoods of CPm with local coordinate (yh), we
represent the projection π : s2m+1-+CPm by

(2.1)

and put

(2.2)

yh=y\yκ)

Eκ

h=dκy

the rank of the matrix (Eκ

h) being always 2m.
Let's denote by ξκ components of ζ the unit Sasakian structure vector in

S2m+1. Since the unit vector field I is always tangent to the fibre π~\P), P e
CPm everywhere, Eκ

h and ζκ form a local coframe in S2 m + 1, where ξκ—gκμξ
/ι and

gκμ denote the Riemannian metric tensor of S2 m + 1. We denote by {EK

J} ξκ} the
frame corresponding to the coframe {Eκ

h, ξκ}. We then have

We now take coordinate neighborhoods {0 xa} of M such that π(O)=U are
coordinate neighborhoods of M with local coordinate (xa). Let the isometric
immersions ϊ and i be locally expressed by yκ=yκ(xa) and yh~yh(χa) in terms
of local coordinates (xa) in U ( c M ) and (xa) in U (CM) respectively. Then the
commutativity πoϊ=ιoπ of the diagram implies

y\xa(xa))=yh(yκ(xa)),

where we expressed the submersion π by xa—xa{xa) locally, and hence

(2.4) J-J α
α— p j n K

Bα

3=dαy
3, Bα

κ=dαy
κ and Eα

α=dαx
α.

For an arbitrary point P e M w e choose unit normal vector fields CX

J to M
defined in a neighborhood U of P in such a way that {Bα

J, Ox

j) spans the tangent
space of CPm at i(P). Let P be an arbitrary point of the fibre π~\P) over P
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then the lifts Cx

κ=Cx

JEκj of Cx

3 are unit normal vector fields to M defined in
the tubular neighborhood over U because of (2.4). Since ξκEκ

J~0, we can repre-
sent by

(2.5) ξ'=ξ"Ba',

where ξ" is a local vector field in M. Using (2.4) and (2.5), we find

(2.6) ξaξ
a=l, ξaEa»=0,

where ζa—ζ^gβa and gβa is the Riemannian metric tensor of M induced from
that of S2m+\ Therefore, {Ea

a, ξa) is a local coframe in M induced from that of
S2m+\ Denote by {Ea

a, ζa) the frame corresponding to this coframe {Ea

a, ξa),
we have

(2.7) Ea

bE°a=δi, ξaE
a

b=0,

and consequently

(2.8) E'jBb>=Ba*Ea

b

with the help of (2.4) and (2.6).

Denoting by j k j U \ and \ J the Christoffel symbols formed

with the Riemannian metric gμχ, gjif gβa and gba respectively, we put

tί A' \ J Z

DμE
λ

t=dμE\+\ 1^,-ί h

and

DμE
λ

t=dμE\+\ λ 1^,-

Since the metrics gχμ and gaβ are both invariant with respect to the submersions
π and π respectively, the van der Waerden-Bortolotti covariant derivatives of
Eλ\ E\ and Ea

a, Ea

a are given by
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respectively, where hjι=hjhg
ίh, hb

a — hbcg
C(ι, hj% and hba being the structure ten-

sors induced from the submersions π and π respectively (see Ishihara and Koni-
shi [3]).

On the other hand the equations of Gauss and Weingarten for the immersion
I: M~^S2m+ι are given by

(2.11) VβBa

κ=hβa

xCx

κ, VβCx'=-hβ

a

xBa

κ,

and those for the immersion i: M^CPm by

(2.12) lbBa

h=hba*Cx

h, lbCx

h=-hb\Ba

h,

where hβa

x=hβr

ygragyx, hβa

x and hba

x are the second fundamental tensors of M
and M with respect to the unit normals Cx

κ and Cx

h respectively. Moreover, in
such a case, (2.4) and (2.8) imply

lb=E%ϊ.

We now put Fμ

λ=Dμξ
λ. Then we have by definition of the Sasakian structure

(2.13) Fμ

xFS=-δl+Uλ, Fμ

λξμ=0, ξλFμ

λ=O9 Fμλ+Fλμ=O

and

(2.14) DμFλ'=ξλδμ-ξ'gμλ , Dμξ
λ=Fμ

λ,

where Fμλ=gκχFμ

λ. Denoting by X the Lie differentiation with respect to the
vector field f, we find

(2.15) XFμ

λ=0.

Putting in each neighborhood U

(2.16) F3

%^Fμ

λE^3Eλ\

we can see that F3

% defines a global tensor field of the same type of Fμ

λ, which
will be denoted by the same letter, with the help of (2.15), xEλj=0 and xEλ

ι

=0. Moreover, using (2.9), (2.14) and (2.16), we easily see

(2.17) FS=-hj\

which satisfies

(2.18) F, f t iV=-δ}.

Differentiating (2.6) covariantly along CPm and using (2.9) and (2.14), we have

(2.19) 7 t F / = 0

where 7 denotes the projection of D. Hence the base space CPm admits a
Kaehlerian structure {F/, gμ] which is represented by the structure tensor /z/
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of the submersion π : s2m+1->CPm defined by the Hopf-fibration.
Let's denote by Kκμυ

λ and Kkji

h components of the curvature tensors of
(S2m+1, gχμ) and (CPm, gμ) respectively. Since the unit sphere is a space of con-
stant curvature 1, using the equations of co-Gauss, we have

Kkμ

h=Kκμλ

λEκ

kEvjE\Eλ

h+hk

hhjι-hJ

hhki-2hkjhι

h

and together with (2.17)

Hence CPm is a Kaehlerian manifold with constant holomorphic sectional curva-
ture 4 (cf. Ishihara and Konishi [3]).

Putting

(2.20) F*Bf=fb*Ba

h-fb*Cx

h, Ft

hCx*=fx

aBa

h,

as already shown in § 1, we can easily find the algebraic relations (1.13)^(1.16)
are the structure equations (1.17)~(1.24) with c—i which will be very useful.
Now we put in each neighborhood U of M

(2.21) fβa=haEfE"a. fx

a=fx

aEa

a, fa

x=faxEa

a,

where here and in the sequel we denote the lifts of functions by the same letters
as those the given functions. Then, using (2.4), (2.8), (2.20) and (2.21) and taking
account of CX

K =-CJEK

3, we obtain

(2.22) Fμ'Bar=fjBβ*-fa*Cx',

(2.23) Fμ*CχP=fx*Ba*.

Transvecting F/ to (2.22) and (2.23) respectively and using (2.13), (2.22) and (2.23)
in the usual way, we can easily obtain that

(2.24)

(2.25) farfr"=0, f*τfτa=0,

(2.26) fx

τfrv=δϊ,

(2.27) fa%=0, ξrfr

a=O,

(2.28) frΨ=0, ξrfx

r=O,

(2.29) fβa=-faβ, fax=fxa,

where we have put fβa=fβrgra,fax=fa

vgyX,fxa=fx

βgβa. Applying the operator
lβ = Bβ'

:Dκ to (2.22) and (2.23) respectively and making use of (2.11), (2.14), (2.22)
and (2.23), we also find

(2.30)
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(2.31)

(2.32) hβa
vfx

a=hβa

xfa
y.

Also, applying the operator ΐβ to (2.5) and taking account of (2.11) and (2.14), we
have

(2.33) Vβξa=fβ

a, ξahβa*=~fβ

x, hf£t=-fx*,

which and (2.9) and (2.21) imply

(2.34) f»a=-hb

a.

Moreover, in such a submanifold M, equations of Gauss, Codazzi and Ricci are
respectively given by

(2.35)

(2.36) ββ

(2.37) Kβav

x=hβr

xhary-har

xhβ

r

v,

where Kδγβ

a and Kβay

a are components of the curvature tensor of M and those
of the normal bundle of M respectively because the ambient manifold S 2 m + 1 is a
space of constant curvature 1.

Now we apply the operator Ίb=Bb

JΊ'j=Er

b% to (2.4). Then, using (2.11) and
(2.12), we have

from which, taking account of (2.9), (2.10) and (2.34),

or, using (2.20),

(2.38) hβa

xEtb=hba

xEa

a-fb

xξa.

Transvecting (2.38) with Er

b and changing the index γ with β, we get

(2.39) hβa

x=hba

xEβ

bEa

a-fβ*ξa-ξβfa

x

with the help of (2.21) and (2.33).
Thus we have

LEMMA 2.1. The mean curvature of M is the same as that of M.

Therefore, from now on, we write he

ex and ha

ax as the same letter hx

Moreover, the mean curvature vector M is given by
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n + 1

The mean curvature vector H is said to be parallel in the normal bundle of M
if Vβhx=0. Hence, as a direct consequence of Lemma 2.1, we have

LEMMA 2.2. The mean curvature vector of M is parallel in the normal bundle
of M if and only if the mean curvature vector of M is parallel in the normal
bundle of M.

Transvecting hγ

a

y to (2.39) and using (2.21), (2.26), (2.28) and (2.38) imply

(2.40) hβr

xh/y=(hba

xhc

a

y+fb

xfcy)Eβ

bEa

c-hba

xfy

aEβ

bξa

which and (1.20) gives

hβγ

xhary-haτ

xhβ\={fd

xfcy-fc

xfdy-Yhde

xhc%-hce

xhd%)Eβ

dEa

c,

that is,
Kβaυ

x=Kdey*Eβ

dEa

e.
Thus we obtain

LEMMA 2.3. In order that the connection in the normal bundle of M in S2m+1

is flat, it is necessary and sufficient that the connection in the normal bundle of
M in CPm is flat.

§ 3. Generic submanifolds of a complex projective space admitting the
normal /-structure.

In this section we assume that the /-structure induced on M in CPm is normal
and the normal connection of M is flat, that is,

(3.1) hbe

xfa

e+hae

xfb

e=0

and

(3.2) faxfev-fcxfΛv + hde
xhe

β

v-hee

xhd

β

v=O

with the help of (1.24) with c=4.
Transvecting (3.1) with fc

a and making use of (1.13), we obtain

from which, taking the skew-symmetric part with respect to c and b,

(hce

xfy

eyby-(hbe

xfy

e)fc

y=o.

Transvection fz

c gives
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(3.3) hbe

xfy

e=Pyz

xfb

z,

where we have put

(3.4) Py,
x=hcb*fyef.b.

Putting PyZX=Py2

wgWχ, we see that Pyzx is symmetric for all indices be-
cause of (1.20) and (3.4). Also, transvecting (3.2) with / / and using (3.3), we
find

P up xf w p x p uf w — Άx f f x rr
zy •* uw J d 1 zu 1 yw J d uz J dy J d a>yz >

or, using (1.15),

1")^ p u p x p xp u.— sz σ sx _
\° OJ Γ zy Γ uvo Γ zu Γ yw —uzε>yw uw&yz>

from which,

(3.6) PzuXPyχU=PχPyzX + (p-l)gyz,

where we have put

(3.7) P*=gv*Pvz*.

Now we prove

LEMMA 3.1. Let M be an n-dimensional generic submanifold of CPm with
flat normal connection. If the f-structure induced on M is normal, then we have

(3.8) hβa

Xhΐ%^PyZ

Xhβr

Z+gβγδ
Xy .

Proof. Differentiating (3.3) covariantly along M and then taking the skew-
symmetric part of what obtained thus, we have

with the help of (1.18). Substituting (1.23) with c=4 and making use of (3.2),
then it must be that

(3.9) 2/c6

with the help of (3.1). Transvecting (3.9) with fw

b and using (1.14) and (1.15),

VcPVv,x=fΛVbPv.x)fc'.
Therefore (3.9) reduces to

(3.10) fc*δx

y+hcexha

βyfb

a=Pv,
xheβ'fb

e

with the help of Pyz

x=Pzy

x. Transvecting (3.10) with fd\ we have

(3.11) (gcd-
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Taking account of (3.3) and (3.5), then (3.11) gives

— p XL z \ f x f %x f z f \ p x p w f z f u
— l y z t i e d \ J c J d y V y J c J z d ~ ϊ ~ Γ w u Γ z y J d J c

Consequently, we obtain

(3.12) heβ

xhb

β

y=Py,xhelt'+gebδϊ-fcxfbυ.

Substitution (3.12) into (2.41) yields

hβa*hr

a

v=Py,*hβ7'+gβrδ
x

υ

with the help of (2.21), (2.39) and (3.3). This completes the proof of our lemma.
On the other hand, by the straightforward computation we get

(3.13) hβaxfra+hra

xfβa=O

with the help of (2.24), (2.25), (2.26), (2.27), (2.39) and (3.1). Transvection (2.39)
with fy

a gives

(3.14) hβa

xfv

a=Py,
xfβ*-δyξβ

with the help of (2.21) and (3.3), from which, transvecting fw

β, we find

/ Q 1 ^ p x—h x ί βf a

or, transvecting gyz,

(3.16) Px=hβa

xfyϊf
ya.

Now, differentiating (3.13) covariantly and using (2.31), we find

or, using (2.33), (3.8) and (3.14),

CJδhβa

x)f

from which, taking the skew-symmetric part with respect to the indices δ and β,

since the ambient manifold S 2 m + 1 is a space of constant curvature 1. Hence the
last two equations imply (ΐrhβa

x)fδ

a~§, from which, transvecting fε

δ, we find

by virtue of (2.24). Transvection this equation with gβε gives
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By the straightforward computation, we find

because of (2.28) and (2.33). Consequently, we have

(3.17) %hx=(%hβa*)fβyfy

a.

If we differentiate (3.16) covariantly and use (3.17), then we obtain

or, substitute (2.25) and make use of (3.14), we get

Thus we have

LEMMA 3.2. Under the same assumptions as those stated in Lemma 3.1, we
have

(3.18) %Px=%hx.

Next, we prove

LEMMA 3.3. Under the same assumptions as those stated in Lemma 3.1, we
have

(3.19) ~A(hβa

xhβa

x)=(ϊβVah
x)hβa

x+\\%hβa

x\\\

where Δ is the Laplacian given by Δ~grβlrlβ.

Proof. From the Ricci identity, we have

(3.20) Ψ%hβa

x-VβVah
x=Kβrha

γx-Kδβaΐh
rδx

with the help of (2.36), where Kβr is the Ricci tensor given by

(3.21) Kβr=ngβr+hxhβrx-hβa

xhτ

a

x

by virtue of (2.35). If we transvect (3.20) with hβa

x and take account of (2.37),
(3.8) and (3.21), then we find

with the help of (3.6). Therefore, we have the Laplacian of the length of the
second fundamental tensors hβa

x as follows:
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Thus we complete the proof of this lemma.
If the mean curvature vector of M is parallel in the normal bundle, then it

follows that the mean curvature vector of M is also parallel in the normal bundle

by means of Lemma 2.2. Therefore, hβa

xhβa

x=hxP
XJr(n-]-l)p, which is induced

from (3.8), is a constant along M because of (3.18). Hence (3.19) reduces to

yrhβax=0. Since M is of essential codimension 2m—n and does not admit um-

bilical sections because of (3.14), combining with Theorem A is § 0, we have

THEOREM 3.4. Let M be an n-dimensionaί complete generic submanifold of a

complex projective space CPm with flat normal connection. If the f-structure

induced on M is normal and if the mean curvature vector of M is parallel in the

normal bundle, then M is of the form

π(SPί(rι)X ••• xSp*(rN)), plf •••, pN are odd numbers ^ 1 ,

P1+P2+ ••• +pN = n + l, r\+r\+ - +r%=l, N=2m-n + l,

where SPί(rι) is a pi-dimensional sphere with radius rτ.
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