
S. HAMADA
KODAI MATH. J.
3 (1980), 415-428

ON THE CONDUCTORS OF p-CYCLIC KUMMER

EXTENSIONS OF LOCAL NUMBER FIELDS

BY SUGURU HAMADA

Introduction. Let p be a prime number, Qp be the rational p-aάic number
field, and K be a finite extension over Qp containing a primitive pn-th root of
unity.

An explicit formula of the norm residue symbol for the elements of K is
known (H. Hasse [3], M. Kneser [4], and I. R. Safarevic [5]).

In this paper, using the explicit formula we describe the conductor of Kummer
extension K(p7lVA^)/K in some cases by means of the "exponents" of A in its
Safarevic's representation (Theorem 1 and 2).

When n=l the result is found in H. Hasse [1] (Remark 2). In § 1, for
convenience, we write down the outline of the Safarevic's representation of the
elements of K and the explicit formula, following H. Hasse [3] and M. Kneser
[4]. In § 2, we give our theorems, in § 3 we prove our theorems, and in § 4 we
give some remarks and examples.

§ 1. Notations.

Z: the ring of rational integers, p: a prime number. Qp: the rational p-aάlc
number field. Zp: the ring of integral elements of Qp. ζn: a primitive pn-th
root of unity. K: a finite extension of Qp, containing ζ n . Kx: the multiplicative
group of non-zero elements of K. p: the maximal ideal of K. π: a prime
element of K. Hm: the multiplicative group l+p™ (m=l, 2, •••). ord x : for a
principal unit η of K we write ord x(^)=m if and only if rj^Hm and 7]&Hm+1.

~ : for elements A, B of Kx we write A~B if and only if A^BKxpVl.
pm pm

Ω: the group of £π-primary numbers of K. T: the inertia field of K/Qp. I:
the ring of integral elements of T. R: the multiplicative representatives of the
residue class field of K, Rdl. Rx: Rx=R—{0}. ord: the £-adic order function
on T. Sp: the trace mapping from T to Qp.

T: the completion of the maximal unramified extension of Qp. ϊ: the ring
of integral elements of T. R: the multiplicative representatives of the residue
class field of T, Rdϊ. P: the Frobenius automorphism of the extension T/Qp.
$ : the additive endomorphism of / defined by $ ( ά ) = ά p — ά ( ά e / ) . e: the
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ramification index of the extension K/Qp. em: the ramification index of the
extension K/T(ζm), where ζT O=ζΓ~m ( l ^ m ^ n ) . We have e1+e=e1p, ei=empm-\

F:F={ϊ|l^i<^,(i, p)=l] .

πn, τri: πn=l—ζn, π1=l—ζ1. We have

πξnΞΞ-πp

n

n~1p=πp

1 = -π1p mod peiP+1.

e0, *, ε0, ε : βi^oί*" 1 where (e0, ί ) = l Oc^n),

and
— p = επe mod})e+

Now, for convenience, we write down the outline of Safarevic's represent-
ation of elements of K following H. Hasse [3]. Generally, if a system
S= {rjk(j)\ϊ^R, k=l, 2, •••} is given so that 7jk(γ)=l—γπk moάpk+\ then every
element η e Hx is written uniquely as follows:

(i) ? = Π ΐ * ( r ) , Vkir^s.

Such a system S is given by Safarevic's ^-function and £*-function. The defini-
tions and some properties of these functions are as follows. We define:

E(a, x)= Π (l-a

mxm)μWlm, where a^R,
m=l

(m,p)=l

and μ is the Mobius function.

E(a, x)= Σ ^(α v, x)v, where a=Σavp
v^I (

Then

(2) £(α, x ) Ξ l - α χ m o d i 2

and E(a+β, x)=E(a, x)Έ(β, x)

E(aa, x)=E(a, x)a where α, β e / and C

Next, for α ε / we define

E*{a)=E{pnά, πn)=E(ά, πny
n

where $(ά)=α (ά£/), ζn=jB(l, 7rn) and jE(ά, πn) is defined by the same formula
as before. Then

(3) E*(a)=l-avn-ιπv m o d ^ + 1 (αei?) and
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E*(a+β)=E*(a)E*(β)

E*(aa)=E*(a)a where a, β^I and β £ Z p .

Moreover, {£*(a)|ae/} Kxp7l=Ω.
The following congruences are well known (H. Hasse [2]). For an integral

element a of K, let η = l—aπ% modf)ι+1 then

(4)

l-apπτp mod^ + 1 if

l-(ap-εa)πe'p mod pe^p+1 if i=ex

. l-apπι mod^ + e + 1 if i>a1.

Now, as in Notations, let F={i\l^i<e1p, (z, p)—l) then thee integers
are written uniquely

k=ipκ* ( I ' G F , ΛTî O, Λ:eo=Λ:)

and every positive integer k is written uniquely as follows:

if k^ex then k=ιpH (ieF, O^

if ^ > ^ then k=ipH+Vie (i

From (2) and (4) we have

(5)

( α e ί , l^fe^βi, k=ipH).
The above congruences hold also for 1^=/^ if z^e0 (i.e. o,ι<k<e1py

k=ipKi). And

(6) K ^^^

?, exp<k9 k=ipKi+v'ie (iΦeo)f v'i>ΰ). For the exceptional k =
corresponding to i=eOf we have from (3) and (4)

(7)

1 ( α e ί ) .
Since Rp7ϊl=R (ra^l), a desired system 5 has been given and from (1) every

α is represented by E-iunction and E*-function. Consequently every element
X is represented uniquely as follows:

(S) A=napUE(al} ^)E*(a) ( C E Z , p^R\ alf cc^I aeo: mod pκ reduced.)pU

Now, for every m (l^m^n), we have
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(8) πV Π E(at, ^)E*(a) ~ πa'p' Π £(αί, *')£(«')

if and only if a^ar mod/)771, « ί=αί mod pm (z'eF), and αΞΞα' mod/?771, $ where
the last congruence means that there exist δ, 0 e / such that α — α ' =

In the following we write Π instead of Π and ~ instead of
i i(ΞF pτι

[EXPLICIT FORMULA] (H. Hasse [3], M. Kneser [4] and I. R. Safarevic [5])
Let A, B be two elements of Kx such that

then the norm residue symbol {A, B) is given by

(9) // pΦ2 04, B)=ζpcaβ~ba+Ώ

where TLE{ja^p πι+j)~nE(γk, πkW{γ).

(10) // p=2 (A, B)=ζ^aβ-ba+Ώ

where

ft hijaφj, π^) Π E((i2"-1+j2"-i)afμβf,
j<ΞF] μv^l

§ 2. Theorems.

We write also πaΐlE(aι, π ί)^*(α)=<«o, ocu - > α> where a^—a.

The aim of this paper is to describe, in some cases, the conductor pf of the

extension Kffl'A )/K by means of conditions on aOf ax (i^F).

From the facts in § 1, the extension KfflA )/K is unramiίled if and only if
tfiΞΞO mod/?71 for all i e F and i=0.

Thus we consider only the case when for some r ( l ^ r ^ n ) there exists i
(i=0 or i e F ) such that α ^ O mod/?r. And we denote ir the least suffix i for
which α ^ O mod/)7*. If ir exists then ir+i, •••, in exist and

When zr exists we set fr=e1p+(,n—r)e—ir+l.
Moreover, for convenience, we set in+i—in and fn+i—e1p—e—iΛ+1+l. Then

fn>fn+i holds. This definition is natural in the following sense; if ίn+1 is the
least suffix i for which αr^O mod pn+1, we have in+i^in', here if in+i<in we can

take B—<0, •••, 0 , •••, α H , •••> instead of A; for this B we have in+i—in-

Now, it follows from § 1 that the extension KfflA )/K is a totally ramified
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extension of degree pn if and only if iλ exists.

THEOREM 1. The extension KffiΆ )/K is a totally ramified extension of
degree pn if and only if there exists i (ι=0 or I G F ) such that α ^ O mod p.
And, then

{fu /,}

where pf is the conductor of the extension K(K?A )/K.
Moreover, /=Max {f1} /2} holds if and only if e+ι2Φii (i.e. fiΦfi) or

al2ε^atlp mod p2, where — p=επe mod pe+1

Remark. By the above remark, in the case n=l, our Theorem asserts that
/ = / i . Moreover, for n^2, e+i1=i2 and al2ε = allp mod p2 occures in these cases
when pΦ2 or p=2 and T=gQ2. For example, in these cases, let I^ί2<elf

e+i2=h and A~E(γp, π l 2 )£(l, π%1) where γε=l (γ^Rx).

Now, THEOREM 1 can be generalized easily to the case when K(K/~A)/K
contains an unramified subfield:

THEOREM 2. For integer m ( l ^ m ^ n ) , if at=0 mod p™-1 for all i^F and
z—0 and there exists some i ( i e F or i=0) such that a^O modpm, then

/ ^ M a x {/OT, fm+1}

where pf is the conductor of the extension K{%ΓA)/K. Moreover, /=Max {/m,
fm+1} holds if and only if e+im+1Φιm (i.e. fm+1φfm) or alm+1ε^a%mp mod pm+1,
where —p=επe mod})e+1

Remark. In the case m=n, our Theorem asserts that f—fn. In fact, Theorem
2 is proved by Theorem 1 as follows: By assumption,

ao=a/opm~1 and at=a[pm-1 ( i e F ) for some a'^Z and α e / .

So we have A,-^E*(a) and L=K(pm v M )=K(p7n~yE*(a)) is unramified over K.
pτn-1

Let ^ - ^ " Λ / X then K(^A^)=K(pn~m+^/W) and S, XαJ, αί, ••• , r> in L
pΠ-771 + l

where 7* is an integral element of the inertia field of L/Qp.

Now, the least suffix such that a'^0 mod p is im. Applying Theorem 1 to

the totally ramified extension K(pTl~m+t/B~)/L we have /^Max {fm, fm+1}, where

pf is the conductor of K(pn~m+t/B~)/L. And, remarking that aim+1ε = ampi moάp2

is equivalent to ^ιm+1^ = (ximp mod ^?m+1 we have also the necessary and sufficient

conditions for /=Max {/m, /m +i}. Since L/K is unramified, as for the conductor

of K(ZTA)/K we have Theorem 2.
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§3. Proof of Theorem 1.

Now, for the proof of Theorem 1, we prove some Lemmas. In the proofs
we use following facts.

For a principal unit B in K and positive integer r,

(11) if B = l modt) ei p + c r- 1 ) e + 1 then B^l.

(J. P. Serre [5], p. 219, Proposition 9).
By (5), (6), and (7)

(12) if (S) B=TlE(βJf πj)=l mod{>* (k^l) then E(βJr πj)=l mop))* for all

J E F and E*(β)=l mod})*. By (2) and (4)
(13) if s>e1 then ordxE(apm, πs)=s+me ( α e ί , αξέO mod p, m^O: integer).
(14) if i<j (i, ε F , iΦe0, jΦe0)
ordxE(pm, π^Kord* E(pm, πj) and when m^/c—l (especially when m<n—l) this
inequality holds also for i=e0 or j=e0.

In fact, let iΦe0 and jΦe0, since ι<j we have κ{^κp if κx—κ3 then the
result follows immediately, so let κx>κ3. If m^κ3 <κ% then ord x £(£ m , π*)
=ipm<jpm=ordxE(pm, πj), if Kj<m^κ% then ord x £(£ m , 7r0-ord x E(ί m , Kl)=jp^
+(m—Kj)e—ipm>0, because jpκi—ipm>e1—eλp= — e, (m—Kj)e^e, and if /Cj<fCi<m
then ord x £(£ m , ^ ' ) - o r d x £ : ( ί m , πi)=jpκJ-ipki+(ιci-Kj)e>0, because jpκJ-ipκί>
—e and {tci—ιcJ)e>1e, Furthermore, if m^tc—l then, since ord x £(£ m , ne°)=eop

m

f

the inequality holds also for i=£ 0 or ; = β 0 .

LEMMA 1. Let n ^ l , /or α ^ ^ n integer t (t=0 or t^F), let k=e1p+(n—l)e
— t + 1 and

(S) B=τiE(βj, πj)E*(β)=l mod ^ .

n, (i) 2̂ /ιen ί=0, ^ = 0 mod pn for all j^F and β=0 mod pn, %
(ii) When l^t<e, βj^O mod p71'1 for all j^F and β=0 mod pn~\ Sβ

moreover βj=O mod pn if jύβip—t.
(iii) T /̂î n e<t<expy βj=O mod pn~2 for all J'ZΞF, β=0 mod pn~2, $ and

moreover
, 0 modi 7 1 " 1 if jSeλp-\-e-t

βj=\
1 0 mod£ n if j^erf—t.

Remark. For n=l, the parts of mod p71'1 and ^ π " 2 in the Lemma 1 and its
proof may be omitted.

Proof, (i) follows immediately from (11) and (8).
(ii) Since t<e we have k>e1p+(n—2)e+l and B,—Λ by (11) and so by

pn-i

(8), ^ Ξ O modi 7 1 " 1 for all J G F and ^ Ξ O modi 7 1" 1, 5β.
Next we show that βj=O mod pn if ]^keλp—t. For, let /3^0 mod ί71 for
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some j , j^βip—t then since e1p—t>eι we have orά*E(βJt πj)^orάxE(pn~\ πeiV~ι)
=βiί—ί+(n—l)e<^ by (13) and (14), this contradicts to the assumption
E(βj, πj)=l modi)*.

(iii) Since t<e,p^2e we have k>e1p+(n-3)e-s

Γl. It follows that B^^l
pil-2

and βj=O moάpn-2 for all J G F , β=0 mod pn~\ % Next we show that β ;=0
modi71"1 if j1kexp+e—t. Let /3^0 mod/?71"1 for some , j^e^+e—t, then

by (13) and (14) but this contradicts to our assumption.
Finally we show that βj=O mod/?71 if j^eλp—t. Let β^Q modi* for some

j , jύerf—t, then ordxE(βJf πJ)^oτάxE{pn~\ πι) where ι^eλp-t. We show that
ordx£(ί71"1, π^—mOi then the proof is completed.

Since z<£i it follows that /c^l. Now, in the case fcι^n—l, we have

by (6). If κ%=l then

if Ki^l then k-m>0 because ip'^erf^e.
And in the case κx>n—1, we have m=ipn~1^e1 by (5), and k—m—i+(n—l)e

+ 1—i/)71"1. If n = l then clearly k—m>0 and if n^2 we have k—m>0 since
ipn-^ip'i-^e^e. Q. E. D.

Proof of Theorem 1 zn ί/ie cαs^

In the following, when the conductor of Zf(J?M )/iί is jj ̂  we write f=f(A).

LEMMA 2. Let nΞ>l αncί
(i) f/ yl~ττα (aεZ, α^O mod p),

f(A)=eiP+(n-ϊ)e+l,

(ii) ι/ A^E(al} πι) (iεF, ^ e / , αi^O mod />),

/. (i) Let 5 = 1 modί)e^+ ( n-1 ) e + 1 then 5 ~ 1 by (11) so we have 04, B)
=1 and /(y l )^^ i+(n- l )e+l . Next, let B=E*(δpn~ι) where <5GΞ#X and SP(5)Ξ1

mod/). Then 5 = 1 mod})βip+cn-1)β by (7) and {A, B)=ζ%vCaδpn'1)Φl. So we have

(ii) Proof of fiA^erf+ίn-Ve-i+L Let

(S) B=Y[E(βp πj)E*(β) = l
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We show that E(jaiβJy πι+j)^l for all JZΞF by showing that atβj=0 mod pn or
orάxE(jaιβJ) πι+i)>βxp+in—^e. Then we have the result by the explicit formula
(9).

Case 1; l^i<e. By Lemma 1, if j^exp—ι then βj=O mod pn so we have
aiβj=0 modpn. If j>2ιp—ι then j>ex and βj=O mod p71'1 by Lemma 1 so we
have ordxE(jaiβj, πι+j)^ιJrj+(n-l)e>e1p+(n-l)e by (13).

Case 2; e<ι<exp. By Lemma 1, if j^-erf—i then aiβj=0 modpn, if
e1p-i<j^e1p

J

re-ι then aiβj=0 modp71'1 and soordxE(j ctiβj, π^^erf+in—tye
by (13), and if erf+e—iKj then αiβj=0 mod pn~2 and ord*E(jarfj, πτJrj)>eλp
+ e+(n-2)e=e1p+(n-l)e by (13).

Proof of /(A)^£i£+(n—l)e—z+1. It is enough to show that there exists
B such tnat

fel mod^ l P + c n- 1 ) e- z and 0 4 , 5 ) ^ 1 .

Cαsg 1 l£ι<e. Let B=E(βJf πj) where j=eip-ι ( eF, i ^ ) and βJ=δpn-1

(δ(ΞRx will be determined below). Then £(β ; , 7ry) = l mod peiP-^+cn-i)β b y Q 3 ^
and Eijαφj, π^^l-jαiδp^π^^l-δoδp^εfπ^ mod^p+C7l-1)e+1 where M
= δ 0 mod p (δo^Rx) and ε0 is that of Notations. On the other hand, by (7)
E*((δoδεf y^p^ΞΞl-δoδεfp71-1^ mod})β^+Cn-1)β+1. So, we have E(jατβJf πι+j)
^E^iδoδεfy-^-^p71-1) and in explicit formula (9), we have r=(We? ι :)p" c n" 1 )ίn" 1

Now, if we choose δ so that Sp((Wenp"c n"1 }) = l modi then β = l mod})β^+Cn-1)β-4

and (4, S)=ζ§^»=ζSn-Vl.
Cαsδ 2; i>e. Let B=E(βJf πj) where ] — eλp+e—i (j^F and ;>e!) and

β.=dpn-2 (^e^χ w in be determied below). Then we have E(jαiβJy πι+j)
= l-jαίδpn-2πeip+e=l + jαiδε-1pn-1πeipΞΞl--δoδεp

o

κpn-1πp

ί modp*iP+<*-»*+i where

—jαίε~1=δ0 mod^ (δ0GRx) and ε is that of Notations. Thus, just as Case 1,
we have in (9) r=(WeJβ)3 >"c n"1 )ίn-1. Therefore, if we choose δ so that Sρ(r)
Ξ f 1 mod^π, we have β = l mocH)eiP+cn-1)e-1 and U, J3)=ζ| p C r )=ζ?n" 1^l.

Q. E. D.

From Lemma 2, we have following two Lemmas immediately.

LEMMA 3. Let n ^ l and pΦ2. Then we have
(i) if A^πa, a^Z and ord a=m (O^m^n—l),

(ii) z/ JΛ=E(αι, π*), I G F , α<G/ αnrf ordα ΐ=m (O^m^n—1),

f(A)=e1p+(n-m-l)e-ι+l.

(i) Let α - α ^ m (a 'eZ, α^O mod p) and ^ = ̂ α'. Then
=K(pn~V37) and the conductor of ^(^"V^ 7 ) is îp+c»-m+i)β+i b y L e m m a 2 (i)
(using n — m instead of n), so we have f(A)=e1p+(n — m—l)e+l. Just as (i) we
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have (ii) from Lemma 2 (ii). Q. E. D.

LEMMA 4. Let n ^ l and pφ2. Then

(i) Λπa)>f(E(a%, π1)) and f(πa)>f(E*(a))

where a^Z, a^I (i^F), O^ord a^n—1, ord aSovdaz and a^I is arbitrary.

(ii) f(E(alf * ' ))>/(£(«„ *')) and f(E(aτ, π'))> f(E*(a))

where i, j^F(i<j), aιt a&I and Q^ord at^n—1, ordaτ^ord aj and a is arbitrary.

Proof. We have the result immediately from Lemma 3 and the fact E*(a)
is ^-primary.

Now, by local class field theory and by definition of conductor, we have:
For elements Blf •••, Br of K

(15) AB1 - Br)^Max {/(£,), - , f(Br)}
and

if f(B1)>f(Bι) (ι=2, .

In fact, by local class field theory and by definition of conductor, the conductor
of L=K(Z/T1, ••-, %y~Br) is ()Max(/cυ,...,/cr)1 w h e r e jw^βj ( i g x ^ r ) . since

-Br) is a subίield of L we have f(B, ••• 5 r )^Max {/(1\ •••, / c r )}.

Next, let /™>/<*> (i=2, •••, r). Since K(^B1-" Br, ^ F 2 , •••, Z/~Br)=L, we
have Max {/(Bi BΛ / ( 2 ) , •••, f™}=f™ and it follows t h a t / ( ^ •• Br)=f™=f(Bλ).

LEMMA 5. Let n ^ 2 αnJ pΦ2.

If A2~E(al2, π1*) ( i 2 eF, α l 2 e / , o r d α l 2 = l ) ^j—Efe,, π11) fee.P, α t l e / ,
ordαtj—0) αnίί f2=e1p+(n—2)e—z'2+l, fi=eχp+(n—l)e—ιλ+l then we have
/(i42i4i)gMax {/2, /i}. Moreover, / ( ^ 2 ^ ! ) = M a x {/2, / J ι/ and <m/;y ι/
or aι2ε^allp mod ^

Proof. ByLemma3(ii),/(Λ)=/2and/(Λ)=Λ. By (15) we have/^Max{/ 2, / J
where f=f(A2Aύ. And if / 2 ^ Λ (i.e. e+i2Φii) then /=Max{/ 2, / J by (15).

Next, we show that if 0+z2=zΊ (i.e. / 2 =/i) and a l 2e^aZ l i> mod/?2 then

Since fSfz—fi it is enough to show that there exists 5 such that 5 = 1
and U 2 ^ 2 , B)Φl.

Since e+i2=ii and z2, zΊeF it follows that ^i>z' 2^l. Let j2—eip—i<2 then
j and ii>ex.

By the assumption a%2ε^allp modp2, there exists ^0 (δo^Rx) such that
J2{^i2—oCt1e~1p)=dQp modp2 and for this <50 we choose δ(δ^Rx) satisfying
Sp((δoδεf)p~cn"1:>)=l modp. Now, let B=E(βJ2, π3*) where βJ2=δpn~2 then

And,

E(j2al2βj2, π^+^) = l-j2al2δpn-2πe^p mod j,«iP+c«-
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E(J2(XiJj2, πx^^)^\-j2aXlδpn-2πe^e mod^iP+c»-Dβ+i
Thus,

Eϋi***βw ^ l 2 + J 2 ) ^ O ' 2 α t l ^ 2 , π^+^) = l-j2(al2-atlε-1p)δpn-2πe^

^l-δoδεfp71-1^ mod j)«iP+c»-i)«+i

On the other hand, by (7),

E*((δoδεf)p'in'1^pn-1)=l-δoδεfpn-1πp

1 mod p«i*+c»-i>«+i.

So we have, in explicit formula (9), γ^iδoδεfy^'^p71-1 where

E{haHβH, π%*+>*)E{j%aHβw π*i+>*)~ ••• E*(r).

And S p C r t ^ S p a W s ? ^ " ^ " 1 ^ 7 1 - 1 ) ^ ^ 7 1 " 1 mod pn, so we have (A2Alf 5)=ζSpσ>

Finally, we show that if e+i2=h and α ^ ε Ξ ^ ί mod ί 2 then we have

Now, let n ^ 2 and (S) B=UE(βJf πj)E%β)=l modp-^2"1 then we have βj=O

moάp71-2 for all j^F and

, 0 mod/)71"1 if j<e!p—i2

βj=\
[ 0 mod/)7 1 if j^e1p—e—i2.

The proof is quite similar to that of Lemma 1.
Therefore,

τiE(jal2βj, π%*+*)EUa%ιβJ9 π^) - E(j\al2βJ2, π*+>*)Eti%aXlβJV πx^),

where j2=eίp-i2, i.e. if jΦj2, E(jal2βj, πι*+i)~l and E(jatlβJf πιi+')~L In
fact, if j<exp—i2 then atiβj=0 moάp71, if j>eιp—i2 then at2βj=0 mod ί71"1 and
ordx£(iαt2i8 J, ττl2+ 7 ' )>βi ί+(n- l )β . And if j^e1p-e-ι2 then a h i 8 ^ 0 mod ίΛ,
if e1p-e—U<]<e1p-i2 then α t l i8yΞθ mod^7 1"1 and ordx£(7all/3<7, ττ t l+i)
>e1p—e—i2+ii+(n—l)e=e1p+(n—l)e, because e+i2=ii. And if eλp—ι2<] then
atlβj=0 moάp71-2 and

orάxE(jatlβJf πι

Now,

E{j2al2βJ2, πW

e^ mod ^

While by the assumption al2—e~1allp=^ mod £2 and ^ 2 = 0 mod pn~2 so we have
E(j2at2βw πι^+^)E(J2(xtlβj2, πιi+>*)~l by (12). Consequently γ=0 mod ̂ w, 5β in (9).

Thus, we have shown (A2Alf B)=ζ%>CΌ = l for any B, such that B = l
m o d ^ 2 " 1 . Q.E.D.
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Now, we prove Theorem 1 in the case pφ2.
Let Λ^πaUE(atf 7r*)£*(α) and f=f(A). When n = l and ̂ = 0 by Lemma 2,

Lemma 4 (i) and (15), we have f=f(πa)=e1p+l=f1.
If z ^ l , A^JIE(at, π^E^a) and by Lemma 4 and (15) f=f(E(atl, π^))

p i^ii

=e1p—i1+l=f1 and f1=Max{f1, f2} because / 2 < Λ by the definition in+i=in
Next let n^2, if 0=z 2 =ίi we have f=e1p+(n—l)e+l=f1 by Lemma 2,
Lemma 4 and (15), and fx—Max{/2, / J because z*2=Zi. If O=z2<zΊ then A—A2AX

where

ττα : zΊ=l (ord α = l )

π α Π -E(«i, 7Γ*): z'i>l (ord <2=ord at—l).

and
i42= Π E(aιt π%)E*{ά) (0=ord α t l ^ o r d <x%).

Thus we have /(i42)=e1.j&+(w—2)e+l=/2 by Lemma 3, Lemma 4 and (15),
f(A1)=e1p+(n—l)e—ίi+l=/i by Lemma 2, Lemma 4 and (15).

Since £+z2^zΊ, /i=£/2 and we have /=Max{/ 2, / J by (15).
If l^z'2<zΊ then A=AzA2Aλ where

πa : i 2 = l

ι<i2

A2= Tl,E(al)π
i) (ord«i=l)

and

A1= Π E(alf 7ri)£*(α) (O^ord α l ; ι ^ord α j .

Now, since o r d α ^ 2 and o r d α i ^ 2 (z<z2) we have f(A3)t^e1p
Jr(n—3)eJrl by

Lemma 3 and (15) and e1p+(n—3)eJrKMax{f2,f1} because

f1-(e1p+(n-3)e+l)=2e-ι1'^2e-(e1p-l)>0.

And /(i42)=/2, /Mi)=Λ by Lemma 4 and (15). Therefore / =
^Max{/2,/i} by (15). Moreover if e+ίzΦh or if e+i2—zΊ and al2ε^aZlp mod £2,
then Λ 2 ^ 1 =E(α: ϊ 2 , πι*)E(alv πll)B where

5 = Π £(α», 7r*)i;*(a).

By Lemma 5 f(E(aH> π%*)E(atl, πιi))=Max{f2, / J and /(5)<Max{/ 2, / J by
Lemma 4 and (15), so we have f(A2A1)=M3x{f2> / J and /=/(^43Λ2Λi)=Max{/2, / J .
If g+z2=zΊ and al2ε = atlp mod ^ 2 then f(E(al2, πl2)E(atl, πll))<Max{/2, / J by
Lemma 5, and / = / ( ^ 3 ^ 2 ^ i ) < M a x { / 2 , / J from (15).

Finally, in the case l^i 2 =Zi, A—AzAλ where
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πa Π E(aιt π1): zΊ>l (ord α^2, ord a ^

and

x= Π £(α», 7r*)^*(α) (ord α ^ o r d aτ = 0 ) .

Just as before, we have / = / i because /(i4 3 )^eiί+(w—3)e+l</i=/(i4 1 ), and
/i=Max{/2,/i} because z2=zΊ.

Thus the proof of Theorem 1 in the case pφ2 is completed.

PROOF OF THEOREM 1 IN THE CASE p=2.

The difference with the case pΦ2 is that, in the explicit formula (10) another

term Π E((2^H+2"-1j)afμβf} π*
μ*+*uJ) is multiplied to each E(jaiβJf πι+j). But

μ, v=l

for all aτt βj which appear in the proofs of Lemma 2 and Lemma 5 in the case
pφ2, ruμv=0 moάpn, 5)3 for all μ, v (μ^l, v^l) where

E((2'"H+2V-Ij)aϊμβϊ>>, π%μMV>) - - E*(γιjμv)

Therefore the multiplied term gives no influence to the class of γ mod pn, ty.
Thus, having Lemma 3, 4 which are corollaries of Lemma 2, Theorem 1 holds
also for p—2.

§ 4. Remarks and examples.

Remark 1. By elementary but rather complicated calculations of the explicit
formula we can prove Theorem 1 without (15).

Remark 2. Let n—1 and A^J[E{ax, π*)^*(α) then Theorem 1 asserts that
p i

the conductor of K(χ/~A)/K is ρe^~ιi+\ On the other hand, the number iλ is
characterized by the following congruences:

Λ = l mod})11 and AΞ£1 mod^ 1 + 1

p v

where, generally, the notation A = l modp* (ra^l, k^l) means that there exists
pTΠ

a principal unit η of K such that Aη~pm~l modp*. This result is known (H.
Hasse [1], Iα, p. 90, Satz. 10). While, when n^2 it is impossible in general to
determine the conductor of KfflA )/K by analogous congruences.

For example, let K=Qp(ζ2) (pΦ2) and

where
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and

ordαtl=0 (ιί=e+l = p{p-l

T h e n AΞΞI mod})*** a n d AΞ£1 moάpι^p+1 for i 2 = 2 , •••, p - 1 .

While, since fi=e1p>f2=e1p—i2

Jrl for any ι2 (2^i2^p—l), the conductor
of K(PVΛ )/K is pw by Theorem 1.

Example 1. Let K^ζn and π be a prime of if.
(i) Let A—πaη where G E Z , α^O mod £ and ^ is a unit of K, then the

conductor of K{W^)/K is ^iP+cn-υe^
For, since ιΊ=0 we have /=Max{/i, / 2}=/i=eiί+(n—l)e+l by Theorm 1.
(ii) Let ?2^2 and ^ = τ r p ( l - ^ ) {e<j<eιp), then the conductor of K{V~A)IK

IS V)eiP+(Λ-2)e+iβ

For, since z'2=0 and h = ; we have e+ι2<ii and /=Max{/2,/i}=/2=

Example 2. Let K=Qp(ζn) then the conductor of K(Z?ζ^)/K ( l^m^n) is
-uβiP+cm-Dβ

For, let l - π = ζ n = Π ^ ( α z , ^)E*(a) (α^O mod/)) then

Therefore, since zn_m does not exist and zn_m + 1=l, we have /=/n-m+i=βi
by Theorem 2.

Example 3. For some Kummer extensions we can get the ramification sub-
groups from conductors obtained by Theorem 1. For example, let K^ζn (n^l)
and L=K{K/A^) where i=0 or Ϊ G F and ,40=πα° (aoeZ, ao^0 mod p),
Aι=E(aι, πι) ( IGF, α ^ / , α^O mod p). Now, let G=<σ>=Gal (L/ίQ and G, be
the 7-th ramification subgroup of this extension:

Then, we have mk=
ze1p

k—i for &=1, 2, •••, n.

Proof. Since L/K is a totally ramified cyclic extension of degree pn, we
only need to calculate mk. Now, by Theorem 1 (or by Lemma 2) we have

- l ^ - f - f l ( l ^ s ^ n ) where ί) / c s ) is the conductor of K(pl/A*i). Thus,

1 mi

2 ftG^mi+1 and so m1=e1p-i.

and so m^e^-f-
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because f^—fw=e. By repeating this process, we have

mk — epk~1Jrepk~2Jr ••• JrepJ

Γm1==e1p
k—i,

because e1(p—l)=e. Q. E. D.
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