ON THE CONDUCTORS OF p-CYCLIC KUMMER EXTENSIONS OF LOCAL NUMBER FIELDS

By Suguru Hamada

Introduction. Let p be a prime number, \mathbf{Q}_{p} be the rational p-adic number field, and K be a finite extension over \mathbf{Q}_{p} containing a primitive p^{n}-th root of unity.

An explicit formula of the norm residue symbol for the elements of K is known (H. Hasse [3], M. Kneser [4], and I. R. Šafarevič [5]).

In this paper, using the explicit formula we describe the conductor of Kummer extension $K\left({ }^{p^{n}} \sqrt{A}\right) / K$ in some cases by means of the "exponents" of A in its Šafarevič's representation (Theorem 1 and 2).

When $n=1$ the result is found in H. Hasse [1] (Remark 2). In § 1, for convenience, we write down the outline of the Šafarevič's representation of the elements of K and the explicit formula, following H. Hasse [3] and M. Kneser [4]. In §2, we give our theorems, in § 3 we prove our theorems, and in $\S 4$ we give some remarks and examples.

§ 1. Notations.

\mathbf{Z} : the ring of rational integers. p : a prime number. \mathbf{Q}_{p} : the rational p-adic number field. $\quad \mathbf{Z}_{p}$: the ring of integral elements of $\boldsymbol{Q}_{p} . \quad \zeta_{n}$: a primitive p^{n}-th root of unity. K : a finite extension of \mathbf{Q}_{p}, containing ζ_{n}. K^{\times}: the multiplicative group of non-zero elements of K. \mathfrak{p} : the maximal ideal of K. π : a prime element of $K . \quad H_{m}$: the multiplicative group $1+\mathfrak{p}^{m}(m=1,2, \cdots)$. $\operatorname{ord}^{\times}$: for a principal unit η of K we write $\operatorname{ord}^{\times}(\eta)=m$ if and only if $\eta \in H_{m}$ and $\eta \notin H_{m+1}$.
$\underset{p^{m}}{\sim}$: for elements A, B of K^{\times}we write $A \underset{p^{m}}{\sim} B$ if and only if $A \in B K^{\times p^{m}}$. Ω : the group of p^{n}-primary numbers of $K . T$: the inertia field of $K / \mathbf{Q}_{p} . I$: the ring of integral elements of $T . R$: the multiplicative representatives of the residue class field of $K, R \subset I . R^{\times}: R^{\times}=R-\{0\}$. ord : the p-adic order function on $T . S_{p}$: the trace mapping from T to \mathbf{Q}_{p}.
\bar{T} : the completion of the maximal unramified extension of $\boldsymbol{Q}_{p} . \quad \bar{I}$: the ring of integral elements of $\bar{T} . \quad \bar{R}$: the multiplicative representatives of the residue class field of $\bar{T}, \bar{R} \subset \bar{I}$. P : the Frobenius automorphism of the extension T / \boldsymbol{Q}_{p}. \mathfrak{B} : the additive endomorphism of \bar{I} defined by $\mathfrak{B}(\bar{\alpha})=\bar{\alpha}^{P}-\bar{\alpha}(\bar{\alpha} \in \bar{I})$. e : the

Received September 18, 1979
ramification index of the extension $K / \mathbf{Q}_{p} . \quad e_{m}$: the ramification index of the extension $K / T\left(\zeta_{m}\right)$, where $\zeta_{m}=\zeta_{n}^{p^{n-m}}(1 \leqq m \leqq n)$. We have $e_{1}+e=e_{1} p, e_{1}=e_{m} p^{m-1}$.

$$
F: F=\left\{i \mid 1 \leqq i<e_{1} p,(i, p)=1\right\} .
$$

$\pi_{n}, \pi_{1}: \pi_{n}=1-\zeta_{n}, \pi_{1}=1-\zeta_{1}$. We have

$$
\pi_{n}^{p n} \equiv-\pi_{n}^{p^{n-1}} p \equiv \pi_{1}^{p}=-\pi_{1} p \quad \bmod \mathfrak{p}^{e_{1} p+1} .
$$

$e_{0}, \kappa, \varepsilon_{0}, \varepsilon: e_{1}=e_{0} p^{\kappa-1}$ where $\left(e_{0}, p\right)=1(\kappa \geqq n)$,
and

$$
\pi^{e_{1} p} \equiv \varepsilon_{0}^{p \kappa} \pi_{1}^{p} \quad \bmod p^{e_{1} p+1}\left(\varepsilon_{0} \in R^{\times}\right)
$$

$$
-p \equiv \varepsilon \pi^{e} \quad \bmod p^{e+1}\left(\varepsilon \in R^{\times}\right) .
$$

Now, for convenience, we write down the outline of Šafarevič's representation of elements of K following H. Hasse [3]. Generally, if a system $S=\left\{\eta_{k}(\gamma) \mid \gamma \in R, k=1,2, \cdots\right\}$ is given so that $\eta_{k}(\gamma) \equiv 1-\gamma \pi^{k} \bmod \mathfrak{p}^{k+1}$, then every element $\eta \in H_{1}$ is written uniquely as follows:

$$
\begin{equation*}
\eta=\prod_{k=1}^{\infty} \eta_{k}(\gamma), \quad \eta_{k}(\gamma) \in S \tag{1}
\end{equation*}
$$

Such a system S is given by Šafarevič's E-function and E^{*}-function. The definitions and some properties of these functions are as follows. We define:

$$
E(\alpha, x)=\prod_{\substack{m=1 \\(m, p)=1}}^{\infty}\left(1-\alpha^{m} x^{m}\right)^{\mu(m) / m}, \quad \text { where } \quad \alpha \in R, x \in \mathfrak{p}
$$

and μ is the Möbius function.

$$
E(\alpha, x)=\sum_{\nu=0}^{\infty} E\left(\alpha_{\nu}, x\right)^{p}, \quad \text { where } \alpha=\Sigma \alpha_{\nu} p^{\nu} \in I\left(\alpha_{\nu} \in R\right)
$$

Then

$$
\begin{equation*}
E(\alpha, x) \equiv 1-\alpha x \bmod x^{2} \tag{2}
\end{equation*}
$$

and

$$
\begin{aligned}
& E(\alpha+\beta, x)=E(\alpha, x) \cdot E(\beta, x) \\
& E(a \alpha, x)=E(\alpha, x)^{a} \quad \text { where } \quad \alpha, \beta \in I \quad \text { and } \quad a \in \mathbf{Z}_{p}
\end{aligned}
$$

Next, for $\alpha \in I$ we define

$$
E^{*}(\alpha)=E\left(p^{n} \bar{\alpha}, \tilde{\pi}_{n}\right)=E\left(\bar{\alpha}, \tilde{\pi}_{n}\right)^{p^{n}}
$$

where $\mathfrak{P}(\bar{\alpha})=\alpha(\bar{\alpha} \in I), \zeta_{n}=E\left(1, \tilde{\pi}_{n}\right)$ and $E\left(\bar{\alpha}, \tilde{\pi}_{n}\right)$ is defined by the same formula as before. Then

$$
\begin{equation*}
E^{*}(\alpha) \equiv 1-\alpha^{p^{n-1}} \pi_{1}^{p} \quad \bmod p^{e_{1} p+1}(\alpha \in R) \quad \text { and } \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& E^{*}(\alpha+\beta)=E^{*}(\alpha) E^{*}(\beta) \\
& E^{*}(a \alpha)=E^{*}(\alpha)^{a} \quad \text { where } \quad \alpha, \beta \in I \quad \text { and } \quad a \in \mathbf{Z}_{p}
\end{aligned}
$$

Moreover, $\left\{E^{*}(\alpha) \mid \alpha \in I\right\} \cdot K^{\times p^{n}}=\Omega$.
The following congruences are well known (H. Hasse [2]). For an integral element α of K, let $\eta \equiv 1-\alpha \pi^{2} \bmod \mathfrak{p}^{2+1}$ then

$$
\eta^{p} \equiv\left\{\begin{array}{lll}
1-\alpha^{p} \pi^{\imath p} & \bmod \mathfrak{p}^{2 p+1} & \text { if } i<e_{1} \tag{4}\\
1-\left(\alpha^{p}-\varepsilon \alpha\right) \pi^{e_{1} p} & \bmod \mathfrak{p}^{e_{1} p+1} & \text { if } i=e_{1} \\
1-\alpha p \pi^{2} & \bmod \mathfrak{p}^{2+e+1} & \text { if } i>e_{1}
\end{array}\right.
$$

Now, as in Notations, let $F=\left\{i \mid 1 \leqq i<e_{1} p,(i, p)=1\right\}$ then the e integers $k\left(e_{1}<k \leqq e_{1} p\right)$ are written uniquely

$$
k=i p^{\kappa_{i}}\left(i \in F, \kappa_{i} \geqq 0, \kappa_{e_{0}}=\kappa\right)
$$

and every positive integer k is written uniquely as follows:

$$
\begin{aligned}
& \text { if } \quad k \leqq e_{1} \text { then } k=i p^{\nu i}\left(i \in F, 0 \leqq \nu_{i}<\kappa_{\imath}\right) \\
& \text { if } \quad k>e_{1} \text { then } k=i p^{\kappa_{i}}+\nu_{i}^{\prime} e\left(i \in F, \nu_{i}^{\prime} \geqq 0\right) .
\end{aligned}
$$

From (2) and (4) we have

$$
\begin{align*}
E\left(\alpha p^{\nu i}, \pi^{i}\right) & =E\left(\alpha, \pi^{i}\right)^{p^{\nu} \imath} \equiv\left(1-\alpha \pi^{i}\right)^{p^{\nu} \imath} \tag{5}\\
& \equiv 1-\alpha^{p^{\nu} \imath} \pi^{k} \quad \bmod \mathfrak{p}^{k+1}
\end{align*}
$$

$\left(\alpha \in R, 1 \leqq k \leqq e_{1}, k=i p^{\nu i}\right)$.
The above congruences hold also for $\nu_{i}=\kappa_{2}$ if $i \neq e_{0}$ (i.e. $e_{1}<k<e_{1} p$, $\left.k=i p^{\kappa_{i}}\right)$. And

$$
\begin{equation*}
E\left(\alpha p^{\kappa_{i}+\nu_{i}^{\prime}}, \pi^{i}\right) \equiv 1-\alpha^{p^{\kappa} i} p^{\nu^{\prime}} \pi^{2^{\kappa_{i}}} \quad \bmod \mathfrak{p}^{k+1} \tag{6}
\end{equation*}
$$

$\left(\alpha \in R, e_{1} p<k, k=i p^{k_{i}}+\nu_{i}^{\prime} e\left(i \neq e_{0}\right), \nu_{i}^{\prime}>0\right)$. For the exceptional $k=e_{1} p+\nu^{\prime} e\left(\nu^{\prime} \geqq 0\right)$ corresponding to $i=e_{0}$, we have from (3) and (4)

$$
\begin{equation*}
E^{*}\left(\alpha p^{\nu^{\prime}}\right)=E^{*}(\alpha)^{p^{\nu^{\prime}}} \equiv\left(1-\alpha^{p^{n-1}} \pi_{1}^{p}\right)^{p^{\nu^{\prime}}} \equiv 1-\alpha^{p^{n-1}} p^{\nu^{\prime}} \pi_{1}^{p} \tag{7}
\end{equation*}
$$

$\bmod \mathfrak{p}^{k+1}(\alpha \in R)$.
Since $R^{p^{m}}=R(m \geqq 1)$, a desired system S has been given and from (1) every $\eta \in H_{1}$ is represented by E-function and E^{*}-function. Consequently every element $A \in K^{\times}$is represented uniquely as follows:
(Š) $\quad A=\pi^{a} \rho \prod_{i \in F} E\left(\alpha_{\imath}, \pi^{i}\right) E^{*}(\alpha)\left(a \in \mathbf{Z}, \rho \in R^{\times}, \alpha_{\imath}, \alpha \in I \alpha_{e_{0}}: \bmod p^{n}\right.$ reduced.)
Now, for every $m(1 \leqq m \leqq n)$, we have

$$
\begin{equation*}
\pi^{a} \rho \prod_{i \in F} E\left(\alpha_{\imath}, \pi^{i}\right) E^{*}(\alpha) \underset{p^{m}}{\sim} \pi^{a^{\prime}} \rho^{\prime} \prod_{i \in F} E\left(\alpha_{\imath}^{\prime}, \pi^{i}\right) E\left(\alpha^{\prime}\right) \tag{8}
\end{equation*}
$$

if and only if $a \equiv a^{\prime} \bmod p^{m}, \alpha_{i} \equiv \alpha_{\imath}^{\prime} \bmod p^{m}(i \in F)$, and $\alpha \equiv \alpha^{\prime} \bmod p^{m}, \mathfrak{B}$ where the last congruence means that there exist $\delta, \theta \in I$ such that $\alpha-\alpha^{\prime}=p^{m} \delta+\mathfrak{P}(\theta)$.

In the following we write \prod_{i} instead of $\prod_{i \in F}$ and \sim instead of $\underset{p^{n}}{\sim}$.
[EXPLICIT FORMULA] (H. Hasse [3], M. Kneser [4] and I. R. Šafarevič [5])
Let A, B be two elements of K^{\times}such that

$$
A \sim \pi^{a} \prod_{i} \mathrm{E}\left(\alpha_{i}, \pi^{i}\right) \mathrm{E}^{*}(\alpha), \quad B \sim \pi^{b} \prod_{j} \mathrm{E}\left(\beta_{j}, \pi^{j}\right) \mathrm{E}^{*}(\beta)
$$

then the norm residue symbol (A, B) is given by
(9) If $p \neq 2(A, B)=\zeta_{n}^{\operatorname{sp}(a \beta-b \alpha+\gamma)}$
where $\prod_{\imath, j \in F} \mathrm{E}\left(j \alpha_{i} \beta_{\jmath}, \pi^{\imath+j}\right) \sim \prod_{k} \mathrm{E}\left(\gamma_{k}, \pi^{k}\right) \mathrm{E}^{*}(\gamma)$.
(10) If $p=2(A, B)=\zeta_{n}^{\operatorname{sp}(a \beta-b \alpha+\gamma)}$
where

$$
\begin{array}{r}
(-1)^{a b}{ }_{2, j \in F}^{\infty}\left[\mathrm{E}\left(j \alpha_{i} \beta_{\jmath}, \pi^{2+j}\right) \prod_{\mu, \nu \geq 1}^{\infty} \mathrm{E}\left(\left(i 2^{\mu-1}+j 2^{\nu-1}\right) \alpha_{2}^{P \mu} \beta_{\jmath}^{P \nu}, \pi^{2^{\mu}{ }_{\imath}+2^{\nu j}}\right)\right] \\
\\
\left.\sim \prod_{k} \mathrm{E} \gamma_{k}, \pi^{k}\right) \mathrm{E}^{*}(\gamma) .
\end{array}
$$

§2. Theorems.

We write also $\pi^{a} \prod_{i} E\left(\alpha_{i}, \pi^{i}\right) E^{*}(\alpha)=\left\langle\alpha_{0}, \alpha_{1}, \cdots, \alpha\right\rangle$ where $\alpha_{0}=a$.
The aim of this paper is to describe, in some cases, the conductor \mathfrak{p}^{f} of the extension $K\left(\sum^{n} \bar{A}\right) / K$ by means of conditions on $\alpha_{0}, \alpha_{\imath}(i \in F)$.

From the facts in $\S 1$, the extension $K\left(\bar{p}^{n} \bar{A}\right) / K$ is unramified if and only if $\alpha_{i} \equiv 0 \bmod p^{n}$ for all $i \in F$ and $i=0$.

Thus we consider only the case when for some $r(1 \leqq r \leqq n)$ there exists i ($i=0$ or $i \in F$) such that $\alpha_{i} \neq 0 \bmod p^{r}$. And we denote i_{r} the least suffix i for which $\alpha_{i} \not \equiv 0 \bmod p^{r}$. If i_{r} exists then i_{r+1}, \cdots, i_{n} exist and

$$
e_{1} p-1 \geqq i_{r} \geqq \cdots \geqq i_{n-1} \geqq i_{n} \geqq 0 .
$$

When i_{r} exists we set $f_{r}=e_{1} p+(n-r) e-i_{r}+1$.
Moreover, for convenience, we set $i_{n+1}=i_{n}$ and $f_{n+1}=e_{1} p-e-i_{n+1}+1$. Then $f_{n}>f_{n+1}$ holds. This definition is natural in the following sense; if i_{n+1} is the least suffix i for which $\alpha_{i} \neq 0 \bmod p^{n+1}$, we have $i_{n+1} \leqq i_{n}$; here if $i_{n+1}<i_{n}$ we can take $B=\left\langle 0, \cdots, \stackrel{i_{n+1}}{0}, \cdots, \alpha_{\imath_{n}}, \cdots\right\rangle$ instead of A; for this B we have $i_{n+1}=i_{n}$.

Now, it follows from $\S 1$ that the extension $K\left(\eta^{n} \bar{A}\right) / K$ is a totally ramified
extension of degree p^{n} if and only if i_{1} exists.
Theorem 1. The extension $K\left(\sqrt{n}^{n}\right) / K$ is a totally ramified extension of degree p^{n} if and only if there exists $i(\imath=0$ or $\imath \in F)$ such that $\alpha_{i} \neq 0 \bmod p$. And, then

$$
f \leqq \operatorname{Max}\left\{f_{1}, f_{2}\right\}
$$

where \mathfrak{p}^{f} is the conductor of the extension $K(\sqrt[p^{n}]{A}) / K$.
Moreover, $f=\operatorname{Max}\left\{f_{1}, f_{2}\right\}$ holds if and only if $e+\imath_{2} \neq \imath_{1}$ (2.e. $f_{2} \neq f_{1}$) or $\alpha_{\nu_{2}} \varepsilon \equiv \alpha_{\nu_{1}} p \bmod p^{2}$, where $-p \equiv \varepsilon \pi^{e} \bmod p^{e+1}\left(\varepsilon \in R^{\times}\right)$.

Remark. By the above remark, in the case $n=1$, our Theorem asserts that $f=f_{1}$. Moreover, for $n \geqq 2, e+i_{1}=i_{2}$ and $\alpha_{i_{2}} \varepsilon \equiv \alpha_{i_{1}} p \bmod p^{2}$ occures in these cases when $p \neq 2$ or $p=2$ and $T \supsetneqq \boldsymbol{Q}_{2}$. For example, in these cases, let $1 \leqq i_{2}<e_{1}$, $e+i_{2}=i_{1}$ and $A \sim E\left(\gamma p, \pi^{2_{2}}\right) E\left(1, \pi^{i_{1}}\right)$ where $\gamma \varepsilon=1\left(\gamma \in R^{\times}\right)$.

Now, Theorem 1 can be generalized easily to the case when $K\left(\eta^{n} \bar{A}\right) / K$ contains an unramified subfield:

Theorem 2. For integer $m(1 \leqq m \leqq n)$, if $\alpha_{i} \equiv 0 \bmod p^{m-1}$ for all $i \in F$ and $i=0$ and there exists some $i(i \in F$ or $i=0)$ such that $\alpha_{i} \not \equiv 0 \bmod p^{m}$, then

$$
f \leqq \operatorname{Max}\left\{f_{m}, f_{m+1}\right\}
$$

where \mathfrak{p}^{f} is the conductor of the extension $K(\sqrt[n]{A}) / K$. Moreover, $f=\operatorname{Max}\left\{f_{m}\right.$, $\left.f_{m+1}\right\}$ holds if and only if $e+i_{m+1} \neq \imath_{m}$ (i.e. $f_{m+1} \neq f_{m}$) or $\alpha_{\imath_{m+1}} \varepsilon \equiv \alpha_{\imath_{m}} p \bmod p^{m+1}$, where $-p \equiv \varepsilon \pi^{e} \bmod p^{e+1}\left(\varepsilon \in R^{\times}\right)$.

Remark. In the case $m=n$, our Theorem asserts that $f=f_{n}$. In fact, Theorem 2 is proved by Theorem 1 as follows: By assumption,

$$
\alpha_{0}=\alpha_{0}^{\prime} p^{m-1} \quad \text { and } \quad \alpha_{2}=\alpha_{2}^{\prime} p^{m-1}(i \in F) \text { for some } \quad \alpha_{0}^{\prime} \in \boldsymbol{Z} \quad \text { and } \quad \alpha_{i}^{\prime} \in I
$$

So we have $A \widetilde{p^{m-1}} E^{*}(\alpha)$ and $L=K(\sqrt[p^{m-1}]{A})=K\left(\sqrt[p^{m-1}]{E^{*}(\alpha)}\right)$ is unramified over K.
Let $B=\sqrt[p^{m-1}]{A}$ then $K(\sqrt[p^{n}]{A})=K\left(p^{n-m+1} \bar{B}\right)$ and $B \overparen{p^{n-m+1}}\left\langle\alpha_{0}^{\prime}, \alpha_{1}^{\prime}, \cdots, \gamma\right\rangle$ in L where γ is an integral element of the inertia field of L / \boldsymbol{Q}_{p}.

Now, the least suffix such that $\alpha_{1}^{\prime} \neq 0 \bmod p$ is i_{m}. Applying Theorem 1 to the totally ramified extension $K(\sqrt[p^{n-m+1}]{\bar{B}}) / L$ we have $f \leqq \operatorname{Max}\left\{f_{m}, f_{m+1}\right\}$, where p^{f} is the conductor of $K(\sqrt[p^{n-m+1}]{B}) / L$. And, remarking that $\alpha_{\imath_{m+1}}^{\prime} \varepsilon \equiv \alpha_{m} p_{i}^{\prime} \bmod p^{2}$ is equivalent to $\alpha_{\imath_{m+1}} \varepsilon \equiv \alpha_{i_{m}} p \bmod p^{m+1}$ we have also the necessary and sufficient conditions for $f=\operatorname{Max}\left\{f_{m}, f_{m+1}\right\}$. Since L / K is unramified, as for the conductor of $K(\sqrt[n]{A}) / K$ we have Theorem 2.

§ 3. Proof of Theorem 1.

Now, for the proof of Theorem 1, we prove some Lemmas. In the proofs we use following facts.

For a principal unit B in K and positive integer r,
(11) if $B \equiv 1 \bmod \mathfrak{p}^{e_{1} p+(r-1) e+1}$ then $B \underset{p^{r}}{\sim} 1$.
(J. P. Serre [5], p. 219, Proposition 9).

By (5), (6), and (7)
(12) if (ᄃ) $B=\prod_{j} E\left(\beta_{j}, \pi^{j}\right) \equiv 1 \bmod \mathfrak{p}^{k}(k \geqq 1)$ then $E\left(\beta_{j}, \pi^{j}\right) \equiv 1 \operatorname{mop} \mathfrak{p}^{k}$ for all $j \in F$ and $E^{*}(\beta) \equiv 1 \bmod \mathfrak{p}^{k}$. By (2) and (4)
(13) if $s>e_{1}$ then $\operatorname{ord}^{\times} E\left(\alpha p^{m}, \pi^{s}\right)=s+m e(\alpha \in I, \alpha \not \equiv 0 \bmod p, m \geqq 0:$ integer $)$.
(14) if $i<j\left(i, j \in F, i \neq e_{0}, j \neq e_{0}\right)$
$\operatorname{ord}^{\times} E\left(p^{m}, \pi^{i}\right)<\operatorname{ord}^{\times} E\left(p^{m}, \pi^{j}\right)$ and when $m \leqq \kappa-1$ (especially when $m \leqq n-1$) this inequality holds also for $i=e_{0}$ or $j=e_{0}$.

In fact, let $i \neq e_{0}$ and $j \neq e_{0}$, since $\imath<j$ we have $\kappa_{i} \geqq \kappa_{j}$, if $\kappa_{2}=\kappa_{j}$ then the result follows immediately, so let $\kappa_{i}>\kappa_{\text {, }}$. If $m \leqq \kappa_{j}<\kappa_{\imath}$ then $\operatorname{ord}^{\times} E\left(p^{m}, \pi^{i}\right)$ $=i p^{m}<j p^{m}=\operatorname{ord}^{\times} E\left(p^{m}, \pi^{j}\right)$, if $\kappa_{j}<m \leqq \kappa_{\imath}$ then $\operatorname{ord}^{\times} E\left(p^{m}, \pi^{j}\right)-\operatorname{ord}^{\times} E\left(p^{m}, \pi^{i}\right)=j p^{k_{j}}$ $+\left(m-\kappa_{j}\right) e-i p^{m}>0$, because $j p^{\kappa_{j}}-i p^{m}>e_{1}-e_{1} p=-e,\left(m-\kappa_{j}\right) e \geqq e$, and if $\kappa_{j}<\kappa_{i}<m$ then $\operatorname{ord}^{\times} E\left(p^{m}, \pi^{j}\right)-\operatorname{ord}^{\times} E\left(p^{m}, \pi^{i}\right)=j p^{k_{j}}-i p^{k_{i}}+\left(\kappa_{i}-\kappa_{j}\right) e>0$, because $j p^{\kappa_{j}}-i p^{k_{i}}>$ $-e$ and $\left(\kappa_{i}-\kappa_{j}\right) e \geqq e$. Furthermore, if $m \leqq \kappa-1$ then, since $\operatorname{ord}^{\times} E\left(p^{m}, \pi^{e_{0}}\right)=e_{0} p^{m}$, the inequality holds also for $i=e_{0}$ or $j=e_{0}$.

Lemma 1. Let $n \geqq 1$, for a given integer $t(t=0$ or $t \in F)$, let $k=e_{1} p+(n-1)$ e $-t+1$ and

$$
\begin{equation*}
B=\prod_{\jmath} E\left(\beta_{\jmath}, \pi^{j}\right) E^{*}(\beta) \equiv 1 \quad \bmod \mathfrak{p}^{k} \tag{Š}
\end{equation*}
$$

Then, (i) when $t=0, \beta \equiv 0 \bmod p^{n}$ for all $\jmath \in F$ and $\beta \equiv 0 \bmod p^{n}$, \mathfrak{P}.
(ii) When $1 \leqq t<e, \beta_{j} \equiv 0 \bmod p^{n-1}$ for all $\jmath \in F$ and $\beta \equiv 0 \bmod p^{n-1}, \mathfrak{B}$ and moreover $\beta_{j} \equiv 0 \bmod p^{n}$ if $j \leqq e_{1} p-t$.
(iii) When $e<t<e_{1} p, \quad \beta_{j} \equiv 0 \bmod p^{n-2}$ for all $j \in F, \beta \equiv 0 \bmod p^{n-2}, \mathfrak{P}$ and moreover

$$
\beta_{j} \equiv \begin{cases}0 \bmod p^{n-1} & \text { if } j \leqq e_{1} p+e-t \\ 0 \bmod p^{n} & \text { if } j \leqq e_{1} p-t .\end{cases}
$$

Remark. For $n=1$, the parts of $\bmod p^{n-1}$ and p^{n-2} in the Lemma 1 and its proof may be omitted.

Proof. (i) follows immediately from (11) and (8).
(ii) Since $t<e$ we have $k>e_{1} p+(n-2) e+1$ and $B \widetilde{p^{n-1}} 1$ by (11) and so by (8), $\beta_{j} \equiv 0 \bmod p^{n-1}$ for all $j \in F$ and $\beta \equiv 0 \bmod p^{n-1}$, \mathfrak{P}.

Next we show that $\beta_{\rho} \equiv 0 \bmod p^{n}$ if $j \leqq e_{1} p-t$. For, let $\beta_{\rho} \not \equiv 0 \bmod p^{n}$ for
some $j, j \leqq e_{1} p-t$ then since $e_{1} p-t>e_{1}$ we have $\operatorname{ord}^{\times} E\left(\beta_{j}, \pi^{j}\right) \leqq \operatorname{ord}^{\times} E\left(p^{n-1}, \pi^{e_{1} p-t}\right)$ $=e_{1} p-t+(n-1) e<k$ by (13) and (14), this contradicts to the assumption $E\left(\beta_{3}, \pi^{j}\right) \equiv 1 \bmod \mathfrak{p}^{k}$.
(iii) Since $t<e_{1} p \leqq 2 e$ we have $k>e_{1} p+(n-3) e+1$. It follows that $B \overparen{p^{n-2}} 1$ and $\beta_{j} \equiv 0 \bmod p^{n-2}$ for all $j \in F, \beta \equiv 0 \bmod p^{n-2}, \mathfrak{P}$. Next we show that $\beta_{j} \equiv 0$ $\bmod p^{n-1}$ if $j \leqq e_{1} p+e-t$. Let $\beta_{\jmath} \not \equiv 0 \bmod p^{n-1}$ for some $j, \jmath \leqq e_{1} p+e-t$, then

$$
\operatorname{ord}^{\times} E\left(\beta_{3}, \pi^{j}\right) \leqq \operatorname{ord}^{\times} E\left(p^{n-2}, \pi^{e_{1} p+e-t}\right)=e_{1} p+e-t+(n-2) e<k,
$$

by (13) and (14) but this contradicts to our assumption.
Finally we show that $\beta_{j} \equiv 0 \bmod p^{n}$ if $j \leqq e_{1} p-t$. Let $\beta_{j} \not \equiv 0 \bmod p^{n}$ for some $j, j \leqq e_{1} p-t$, then $\operatorname{ord}^{\times} E\left(\beta_{j}, \pi^{j}\right) \leqq \operatorname{ord}^{\times} E\left(p^{n-1}, \pi^{i}\right)$ where $\imath=e_{1} p-t$. We show that $\operatorname{ord}^{\times} E\left(p^{n-1}, \pi^{i}\right)=m<k$ then the proof is completed.

Since $i<e_{1}$ it follows that $\kappa_{i} \geqq 1$. Now, in the case $\kappa_{2} \leqq n-1$, we have

$$
k-m=i+(n-1) e+1-\left(i p^{\kappa_{i}}+\left(n-1-\kappa_{\imath}\right) e\right)=\imath-i p^{\kappa_{i}}+\kappa_{i} e+1
$$

by (6). If $\kappa_{2}=1$ then

$$
k-m=-i(p-1)+e+1>-e_{1}(p-1)+e+1>0,
$$

if $\kappa_{i} \geqq 2$ then $k-m>0$ because $i \phi^{x_{i}} \leqq e_{1} p \leqq 2 e$.
And in the case $\kappa_{2}>n-1$, we have $m=i p^{n-1} \leqq e_{1}$ by (5), and $k-m=i+(n-1) e$ $+1-i p^{n-1}$. If $n=1$ then clearly $k-m>0$ and if $n \geqq 2$ we have $k-m>0$ since $i p^{n-1} \leqq i p^{x_{i}-1} \leqq e_{1} \leqq e$.
Q.E.D.

Proof of Theorem 1 in the case $p \neq 2$.
In the following, when the conductor of $K\left(p^{n} \bar{A}\right) / K$ is \mathfrak{p}^{f} we write $f=f(A)$.
Lemma 2. Let $n \geqq 1$ and $p \neq 2$ then
(i) if $A \sim \pi^{a}(a \in \boldsymbol{Z}, a \neq 0 \bmod p)$,

$$
f(A)=e_{1} p+(n-1) e+1,
$$

(ii) \quad if $A \sim E\left(\alpha_{i}, \pi^{i}\right)\left(i \in F, \alpha_{i} \in I, \alpha_{i} \neq 0 \bmod p\right)$,

$$
f(A)=e_{1} p+(n-1) e-i+1 .
$$

Proof. (i) Let $B \equiv 1 \bmod \mathfrak{p}^{e_{1} p+(n-1) e+1}$ then $B \sim 1$ by (11) so we have (A, B) $=1$ and $f(A) \leqq e_{1} p+(n-1) e+1$. Next, let $B=E^{*}\left(\delta p^{n-1}\right)$ where $\delta \in R^{\times}$and $\mathrm{Sp}(\delta) \equiv 1$ $\bmod p$. Then $B \equiv 1 \bmod p^{e_{1} p+(n-1) e}$ by (7) and $\left.(A, B)=\zeta_{n}^{\operatorname{sp} p\left(a \delta p^{n-1}\right.}\right) \neq 1$. So we have

$$
f(A) \leqq e_{1} p+(n-1) e+1 .
$$

(ii) Proof of $f(A) \leqq e_{1} p+(n-1) e-i+1$. Let

$$
\text { (̌) } \quad B=\prod_{\jmath} E\left(\beta_{j}, \pi^{j}\right) E^{*}(\beta) \equiv 1 \quad \bmod \mathfrak{p}^{e_{1} p+(n-1) e-\imath+1}
$$

We show that $E\left(j \alpha_{i} \beta_{\jmath}, \pi^{2+j}\right) \sim 1$ for all $\jmath \in F$ by showing that $\alpha_{i} \beta_{\jmath} \equiv 0 \bmod p^{n}$ or $\operatorname{ord}^{\times} E\left(j \alpha_{2} \beta_{\jmath}, \pi^{2+j}\right)>e_{1} p+(n-1) e$. Then we have the result by the explicit formula (9).

Case $1 ; 1 \leqq i<e$. By Lemma 1 , if $\jmath \leqq e_{1} p-\imath$ then $\beta_{j} \equiv 0 \bmod p^{n}$ so we have $\alpha_{i} \beta_{j} \equiv 0 \bmod p^{n}$. If $j>e_{1} p-\imath$ then $\jmath>e_{1}$ and $\beta_{j} \equiv 0 \bmod p^{n-1}$ by Lemma 1 so we have $\operatorname{ord}^{\times} E\left(\jmath \alpha_{i} \beta_{\jmath}, \pi^{2+j}\right) \geqq \imath+\jmath+(n-1) e>e_{1} p+(n-1) e$ by (13).

Case 2; $e<l<e_{1} p . \quad$ By Lemma 1, if $\jmath \leqq e_{1} p-i$ then $\alpha_{i} \beta_{j} \equiv 0 \bmod p^{n}$, if $e_{1} p-i<\jmath \leqq e_{1} p+e-\imath$ then $\alpha_{i} \beta_{j} \equiv 0 \bmod p^{n-1}$ and so $\operatorname{ord}^{\times} E\left(j \alpha_{i} \beta_{\jmath}, \pi^{2+j}\right)>e_{1} p+(n-1) e$ by (13), and if $e_{1} p+e-i<j$ then $\alpha_{i} \beta_{j} \equiv 0 \bmod p^{n-2}$ and $\operatorname{ord}^{\times} E\left(j \alpha_{i} \beta_{j}, \pi^{2+j}\right)>e_{1} p$ $+e+(n-2) e=e_{1} p+(n-1) e$ by (13).

Proof of $f(A) \geqq e_{1} p+(n-1) e-i+1$. It is enough to show that there exists B such tnat

$$
B \equiv 1 \quad \bmod \mathfrak{p}^{e_{1} p+(n-1) e-\imath} \quad \text { and } \quad(A, B) \neq 1 .
$$

Case $1 ; 1 \leqq \imath<$. Let $B=E\left(\beta_{\jmath}, \pi^{j}\right)$ where $j=e_{1} p-\imath\left(\jmath \in F, j>e_{1}\right)$ and $\beta_{\jmath}=\delta p^{n-1}$ ($\delta \in R^{\times}$will be determined below). Then $E\left(\beta_{\jmath}, \pi^{j}\right) \equiv 1 \bmod \mathfrak{p}^{e_{1} p-\imath+(n-1) e}$ by (13), and $E\left(j \alpha_{i} \beta_{\jmath}, \pi^{2+j}\right) \equiv 1-\jmath \alpha_{i} \delta p^{n-1} \pi^{e_{1} p} \equiv 1-\delta_{0} \delta p^{n-1} \varepsilon_{0}^{p \kappa} \pi_{1}^{p} \bmod \mathfrak{p}^{e_{1} p+(n-1) e+1}$ where $j \alpha_{2}$ $\equiv \delta_{0} \bmod p\left(\delta_{0} \in R^{\times}\right)$and ε_{0} is that of Notations. On the other hand, by (7) $E^{*}\left(\left(\delta_{0} \delta \varepsilon_{0}^{p \kappa}\right)^{p-(n-1)} p^{n-1}\right) \equiv 1-\delta_{0} \delta \varepsilon_{0}^{p \kappa} p^{n-1} \pi_{1}^{p} \bmod p^{e_{1} p+(n-1) e+1}$. So, we have $E\left(\jmath \alpha_{2} \beta_{\jmath}, \pi^{2+j}\right)$ $\sim E^{*}\left(\left(\delta_{0} \delta \varepsilon_{0}^{p \kappa}\right)^{p-(n-1)} p^{n-1}\right)$ and in explicit formula (9), we have $\gamma=\left(\delta_{0} \delta \varepsilon_{0}^{p \kappa}\right)^{p-(n-1)} p^{n-1}$. Now, if we choose δ so that $\operatorname{Sp}\left(\left(\delta_{0} \delta \varepsilon_{0}^{p \kappa}\right)^{p-(n-1)}\right) \equiv 1 \bmod p$ then $B \equiv 1 \bmod \mathfrak{p}^{e_{1} p+(n-1) e-2}$ and $(A, B)=\zeta_{n}^{\mathrm{S}_{n}(\gamma)}=\zeta_{n}^{p_{n}^{n-1}} \neq 1$.

Case $2 ; i>e$. Let $B=E\left(\beta_{\jmath}, \pi^{j}\right)$ where $\jmath=e_{1} p+e-i \quad\left(\jmath \in F\right.$ and $\left.j>e_{1}\right)$ and $\beta_{j}=\delta p^{n-2} \quad\left(\delta \in R^{\times}\right.$will be determied below). Then we have $E\left(\jmath \alpha_{i} \beta_{\jmath}, \pi^{\imath+j}\right)$ $\equiv 1-j \alpha_{i} \delta p^{n-2} \pi^{e_{1} p+e} \equiv 1+j \alpha_{i} \delta \varepsilon^{-1} p^{n-1} \pi^{e_{1} p} \equiv 1-\delta_{0} \delta \varepsilon_{0}^{p \kappa} p^{n-1} \pi_{1}^{p} \bmod p^{e_{1} p+(n-1) e+1} \quad$ where $-j \alpha_{i} \varepsilon^{-1} \equiv \delta_{0} \bmod p\left(\delta_{0} \in R^{\times}\right)$and ε is that of Notations. Thus, just as Case 1 , we have in (9) $\gamma=\left(\delta_{0} \delta \varepsilon_{0}^{p k}\right)^{p-(n-1)} p^{n-1}$. Therefore, if we choose δ so that $\operatorname{Sp}(\gamma)$ $\equiv p^{n-1} \bmod p^{n}$, we have $B \equiv 1 \bmod p^{e_{1} p+(n-1) e-2}$ and $(A, B)=\zeta_{n}^{\operatorname{sp}(r)}=\zeta_{n}^{p n-1} \neq 1$.

> Q. E. D.

From Lemma 2, we have following two Lemmas immediately.
Lemma 3. Let $n \geqq 1$ and $p \neq 2$. Then we have
(i) if $A \sim \pi^{a}, a \in \boldsymbol{Z}$ and ord $a=m(0 \leqq m \leqq n-1)$,

$$
f(A)=e_{1} p+(n-m-1) e+1 .
$$

(ii) If $A=\mathrm{E}\left(\alpha_{\imath}, \pi^{i}\right), \imath \in F, \alpha_{i} \in I$ and ord $\alpha_{\imath}=m(0 \leqq m \leqq n-1)$,

$$
f(A)=e_{1} p+(n-m-1) e-\imath+1 .
$$

Proof. (i) Let $a=a^{\prime} p^{m}\left(a^{\prime} \in \boldsymbol{Z}, a^{\prime} \not \equiv 0 \bmod p\right)$ and $A^{\prime}=\pi^{a^{\prime}}$. Then $K\left(\sqrt{n}^{n} \bar{A}\right)$ $=K\left(\sqrt{p^{n-m}} / \overline{A^{\prime}}\right)$ and the conductor of $K\left(\sqrt[p^{n-m}]{A^{\prime}}\right)$ is $\mathfrak{p}^{e_{1} p+(n-m+1) e+1}$ by Lemma 2 (i) (using $n-m$ instead of n), so we have $f(A)=e_{1} p+(n-m-1) e+1$. Just as (i) we
have (ii) from Lemma 2 (ii).
Q.E. D.

Lemma 4. Let $n \geqq 1$ and $p \neq 2$. Then
(i) $\quad f\left(\pi^{a}\right)>f\left(E\left(\alpha_{\imath}, \pi^{i}\right)\right)$ and $f\left(\pi^{a}\right)>f\left(E^{*}(\alpha)\right)$
where $a \in \boldsymbol{Z}, \alpha_{i} \in I(i \in F), 0 \leqq \operatorname{ord} a \leqq n-1$, ord $a \leqq \operatorname{ord} \alpha_{\imath}$ and $\alpha \in I$ is arbutrary.
(ii) $\quad f\left(E\left(\alpha_{\imath}, \pi^{i}\right)\right)>f\left(E\left(\alpha_{\jmath}, \pi^{j}\right)\right)$ and $f\left(E\left(\alpha_{\imath}, \pi^{i}\right)\right)>f\left(E^{*}(\alpha)\right)$
where $i, j \in F(i<j), \alpha_{\imath}, \alpha \in I$ and $0 \leqq \operatorname{ord} \alpha_{\imath} \leqq n-1$, ord $\alpha_{\imath} \leqq \operatorname{ord} \alpha_{\rho}$ and α is arbutrary.
Proof. We have the result immediately from Lemma 3 and the fact $E^{*}(\alpha)$ is p^{n}-primary.

Now, by local class field theory and by definition of conductor, we have: For elements B_{1}, \cdots, B_{r} of K

$$
\begin{equation*}
f\left(B_{1} \cdots B_{r}\right) \leqq \operatorname{Max}\left\{f\left(B_{1}\right), \cdots, f\left(B_{r}\right)\right\} \tag{15}
\end{equation*}
$$

and

$$
f\left(B_{1} \cdots B_{r}\right)=f\left(B_{1}\right) \quad \text { if } \quad f\left(B_{1}\right)>f\left(B_{\imath}\right) \quad(\imath=2, \cdots, r) .
$$

In fact, by local class field theory and by definition of conductor, the conductor of $L=K\left(\sqrt[p^{n}]{B_{1}}, \cdots, \sqrt[p^{n}]{\bar{B}_{r}}\right) \quad$ is $p^{\operatorname{Max}\left(f^{(1)}, \ldots, f^{(r)}\right)}$ where $f^{(i)}=f\left(B_{\imath}\right) \quad(1 \leqq i \leqq r)$. Since $K\left(\sqrt{n}_{\left.\overline{B_{1} \cdots B_{r}}\right)}\right)$ is a subfield of L we have $f\left(B_{1} \cdots B_{r}\right) \leqq \operatorname{Max}\left\{f^{(1)}, \cdots, f^{(r)}\right\}$.

Next, let $f^{(1)}>f^{(i)}(i=2, \cdots, r)$. Since $K\left(\sqrt[p^{n}]{B_{1} \cdots B_{r}}, \sqrt[p^{n}]{B_{2}}, \cdots, \sqrt[p \eta]{B_{r}}\right)=L$, we have $\operatorname{Max}\left\{f\left(B_{1} \cdots B_{r}\right), f^{(2)}, \cdots, f^{(r)}\right\}=f^{(1)}$ and it follows that $f\left(B_{1} \cdots B_{r}\right)=f^{(1)}=f\left(B_{1}\right)$.

Lemma 5. Let $n \geqq 2$ and $p \neq 2$.
If $A_{2} \sim E\left(\alpha_{\imath_{2}}, \pi^{\imath_{2}}\right) \quad\left(i_{2} \in F, \alpha_{\imath_{2}} \in I\right.$, ord $\left.\alpha_{\imath_{2}}=1\right) \quad A_{1} \sim E\left(\alpha_{\imath_{1}}, \pi^{\imath_{1}}\right) \quad\left(\imath_{1} \in F, \alpha_{\imath_{1}} \in I\right.$, ord $\left.\alpha_{\imath_{1}}=0\right)$ and $f_{2}=e_{1} p+(n-2) e-i_{2}+1, \quad f_{1}=e_{1} p+(n-1) e-\imath_{1}+1$ then we have $f\left(A_{2} A_{1}\right) \leqq \operatorname{Max}\left\{f_{2}, f_{1}\right\}$. Moreover, $f\left(A_{2} A_{1}\right)=\operatorname{Max}\left\{f_{2}, f_{1}\right\}$ if and only if $e+\imath_{2} \neq l_{1}$ or $\alpha_{\imath_{2}} \varepsilon \equiv \alpha_{\imath_{1}} p \bmod p^{2}$ and $e+i_{2}=i_{1}$.

Proof. By Lemma 3(ii), $f\left(A_{2}\right)=f_{2}$ and $f\left(A_{1}\right)=f_{1}$. By (15) we have $f \leqq \operatorname{Max}\left\{f_{2}, f_{1}\right\}$ where $f=f\left(A_{2} A_{1}\right)$. And if $f_{2} \neq f_{1}$ (i. e. $\left.e+i_{2} \neq i_{1}\right)$ then $f=\operatorname{Max}\left\{f_{2}, f_{1}\right\}$ by (15).

Next, we show that if $e+i_{2}=i_{1}$ (i.e. $f_{2}=f_{1}$) and $\alpha_{2_{2}} \varepsilon \equiv \alpha_{2_{1}} p \bmod p^{2}$ then $f=f_{2}=f_{1}$.

Since $f \leqq f_{2}=f_{1}$ it is enough to show that there exists B such that $B \equiv 1$ $\bmod p^{f_{2}-1}$ and $\left(A_{2} A_{1}, B\right) \neq 1$.

Since $e+i_{2}=i_{1}$ and $i_{2}, i_{1} \in F$ it follows that $e_{1}>i_{2} \geqq 1$. Let $\jmath_{2}=e_{1} p-\imath_{2}$ then $j_{2} \in F$ and $j_{2}>e_{1}$.

By the assumption $\alpha_{\imath_{2}} \varepsilon \equiv \alpha_{\imath_{1}} p \bmod p^{2}$, there exists $\delta_{0}\left(\delta_{0} \in R^{\times}\right)$such that $j_{2}\left(\alpha_{\nu_{2}}-\alpha_{\nu_{1}} \varepsilon^{-1} p\right) \equiv \delta_{0} p \bmod p^{2}$ and for this δ_{0} we choose $\delta\left(\delta \in R^{\times}\right)$satisfying $\mathrm{Sp}\left(\left(\delta_{0} \delta \varepsilon_{0}^{p_{0}^{\kappa}}\right)^{p-(n-1)}\right) \equiv 1 \bmod p$. Now, let $B=E\left(\beta_{J_{2}}, \pi^{\jmath_{2}}\right)$ where $\beta_{J_{2}}=\delta p^{n-2}$ then $B \equiv 1 \bmod \mathfrak{p}^{f_{2}-1}$.

And,

$$
E\left(j_{2} \alpha_{\nu_{2}} \beta_{\rho_{2}}, \pi^{2_{1}+\rho_{2}}\right) \equiv 1-j_{2} \alpha_{\nu_{2}} \delta p^{n-2} \pi^{e_{1} p} \quad \bmod \mathfrak{p}^{e_{1} p+(n-1) e+1}
$$

$$
E\left(j_{2} \alpha_{\imath_{1}} \beta_{\jmath_{2}}, \pi^{\imath_{1}+j_{2}}\right) \equiv 1-j_{2} \alpha_{\imath_{1}} \delta p^{n-2} \pi^{e_{1} p+e} \quad \bmod \mathfrak{p}^{e_{1} p+(n-1) e+1}
$$

Thus,

$$
\begin{aligned}
& E\left(j_{2} \alpha_{2_{2}} \beta_{j_{2}}, \pi^{\imath_{2}+j_{2}}\right) E\left(j_{2} \alpha_{\nu_{1}} \beta_{j_{2}}, \pi^{\imath_{1}+\jmath_{2}}\right) \equiv 1-\jmath_{2}\left(\alpha_{2_{2}}-\alpha_{\imath_{1}} \varepsilon^{-1} p\right) \delta p^{n-2} \pi^{e_{1} p} \\
& \quad \equiv 1-\delta_{0} \delta \varepsilon_{0}^{p \kappa} p^{n-1} \pi_{1}^{p} \quad \bmod p^{e_{1} p+(n-1) e+1}
\end{aligned}
$$

On the other hand, by (7),

$$
E^{*}\left(\left(\delta_{0} \delta \varepsilon_{0}^{p \kappa}\right)^{p-(n-1)} p^{n-1}\right) \equiv 1-\delta_{0} \delta \varepsilon_{0}^{p \kappa} p^{n-1} \pi_{1}^{p} \quad \bmod p^{e_{1} p+(n-1) e+1} .
$$

So we have, in explicit formula (9), $\gamma=\left(\delta_{0} \delta \delta_{0}^{p \kappa}\right)^{p-(n-1)} p^{n-1}$ where

$$
E\left(j_{2} \alpha_{\imath_{2}} \beta_{J_{2}}, \pi^{\imath_{2}+j_{2}}\right) E\left(j_{2} \alpha_{\imath_{1}} \beta_{J_{2}}, \pi^{\imath_{1}+j_{2}}\right) \sim \cdots E^{*}(\gamma) .
$$

And $\operatorname{Sp}(\gamma) \equiv \operatorname{Sp}\left(\left(\delta_{0} \delta \varepsilon_{0}^{p k}\right)^{p-(n-1)} p^{n-1}\right) \equiv p^{n-1} \bmod p^{n}$, so we have $\left(A_{2} A_{1}, B\right)=\zeta_{n}^{\operatorname{sp}(\gamma)}$ $=\zeta_{n}^{p-1} \neq 1$.

Finally, we show that if $e+i_{2}=i_{1}$ and $\alpha_{\imath_{2}} \varepsilon \equiv \alpha_{\imath_{1}} p \bmod p^{2}$ then we have $f \leqq f_{2}-1$.

Now, let $n \geqq 2$ and (̌) $B=\prod_{\rho} E\left(\beta_{\jmath}, \pi^{j}\right) E^{*}(\beta) \equiv 1 \bmod \mathfrak{p}^{f_{2}-1}$ then we have $\beta_{j} \equiv 0$ $\bmod p^{n-2}$ for all $j \in F$ and

$$
\beta_{j} \equiv\left\{\begin{array}{lll}
0 \bmod p^{n-1} & \text { if } & j<e_{1} p-i_{2} \\
0 \bmod p^{n} & \text { if } & j \leqq e_{1} p-e-i_{2}
\end{array}\right.
$$

The proof is quite similar to that of Lemma 1.
Therefore,

$$
\prod_{J} E\left(j \alpha_{\imath_{2}} \beta_{3}, \pi^{\imath_{2}+j}\right) E\left(j \alpha_{\imath_{1}} \beta_{\jmath}, \pi^{\imath_{1}+j}\right) \sim E\left(j_{2} \alpha_{\iota_{2}} \beta_{\rho_{2}}, \pi^{\imath_{2}+j_{2}}\right) E\left(j_{2} \alpha_{\imath_{1}} \beta_{\rho_{2}}, \pi^{\imath_{1}+\jmath_{2}}\right)
$$

where $j_{2}=e_{1} p-i_{2}$, i. e. if $j \neq j_{2}, E\left(j \alpha_{\imath_{2}} \beta_{\jmath}, \pi^{\imath_{2}+j}\right) \sim 1$ and $E\left(\jmath_{\imath_{1}} \beta_{\jmath}, \pi^{\imath_{1}+\jmath}\right) \sim 1$. In fact, if $j<e_{1} p-i_{2}$ then $\alpha_{\iota_{2}} \beta_{j} \equiv 0 \bmod p^{n}$, if $j>e_{1} p-i_{2}$ then $\alpha_{\imath_{2}} \beta_{j} \equiv 0 \bmod p^{n-1}$ and $\operatorname{ord}^{\times} E\left(j \alpha_{\imath_{2}} \beta_{j}, \pi^{\imath_{2}+j}\right)>e_{1} p+(n-1) e$. And if $j \leqq e_{1} p-e-\imath_{2}$ then $\alpha_{\imath_{1}} \beta_{j} \equiv 0 \bmod p^{n}$, if $e_{1} p-e-i_{2}<j<e_{1} p-i_{2}$ then $\alpha_{\imath_{1}} \beta_{j} \equiv 0 \quad \bmod p^{n-1} \quad$ and $\operatorname{ord}^{\times} E\left(j \alpha_{\imath_{1}} \beta_{3}, \pi^{\imath_{1}+j}\right)$ $>e_{1} p-e-i_{2}+i_{1}+(n-1) e=e_{1} p+(n-1) e$, because $e+i_{2}=\imath_{1}$. And if $e_{1} p-\imath_{2}<\jmath$ then $\alpha_{\imath_{1}} \beta_{j} \equiv 0 \bmod p^{n-2}$ and

$$
\operatorname{ord}^{\times} E\left(j \alpha_{\imath_{1}} \beta_{3}, \pi^{\imath_{1}+j}\right)>i_{1}+e_{1} p-\imath_{2}+(n-2) e=e_{1} p+(n-1) e .
$$

Now,

$$
\begin{gathered}
E\left(\jmath_{2} \alpha_{2_{2}} \beta_{\jmath_{2}}, \pi^{\imath_{2}+\jmath_{2}}\right) E\left(j_{2} \alpha_{\imath_{1}} \beta_{\jmath_{2}}, \pi^{\imath_{1}+\jmath_{2}}\right) \equiv\left(1-\jmath_{2} \alpha_{\nu_{2}} \beta_{\jmath_{2}} \pi^{e_{1} p}\right)\left(1-\jmath_{2} \alpha_{\imath_{1}} \beta_{\jmath_{2}} \pi^{e_{1} p+e}\right) \\
=1-j_{2}\left(\alpha_{\imath_{2}}-\varepsilon^{-1} \alpha_{\nu_{1}} p\right) \beta_{\jmath_{2}} \pi^{e_{1} p} \quad \bmod p^{e_{1} p+(n-1) e+1} .
\end{gathered}
$$

While by the assumption $\alpha_{\imath_{2}}-\varepsilon^{-1} \alpha_{\iota_{1}} p \equiv 0 \bmod p^{2}$ and $\beta_{J_{2}} \equiv 0 \bmod p^{n-2}$ so we have $E\left(j_{2} \alpha_{\nu_{2}} \beta_{\jmath_{2}}, \pi^{2_{2}+j_{2}}\right) E\left(j_{2} \alpha_{\nu_{1}} \beta_{\jmath_{2}}, \pi^{\imath_{1}+\jmath_{2}}\right) \sim 1$ by (12). Consequently $\gamma \equiv 0 \bmod p^{n}, \mathfrak{P}$ in (9).

Thus, we have shown $\left(A_{2} A_{1}, B\right)=\zeta_{n}^{\operatorname{sp}(r)}=1$ for any B, such that $B \equiv 1$ $\bmod \mathfrak{p}^{f_{2}-1}$.
Q.E.D.

Now, we prove Theorem 1 in the case $p \neq 2$.
Let $A_{p^{n}} \pi^{a} \prod_{\imath} E\left(\alpha_{\imath}, \pi^{i}\right) E^{*}(\alpha)$ and $f=f(A)$. When $n=1$ and $i_{1}=0$ by Lemma 2, Lemma 4 (i) and (15), we have $f=f\left(\pi^{a}\right)=e_{1} p+1=f_{1}$.

If $i_{1} \geqq 1, A_{\widetilde{p}} \prod_{i \geqq i_{1}} E\left(\alpha_{\imath}, \pi^{i}\right) E^{*}(\alpha)$ and by Lemma 4 and (15) $f=f\left(E\left(\alpha_{\imath_{1}}, \pi^{\imath_{1}}\right)\right)$ $=e_{1} p-i_{1}+1=f_{1}$ and $f_{1}=\operatorname{Max}\left\{f_{1}, f_{2}\right\}$ because $f_{2}<f_{1}$ by the definition $i_{n+1}=i_{n}$. Next let $n \geqq 2$, if $0=i_{2}=i_{1}$ we have $f=e_{1} p+(n-1) e+1=f_{1}$ by Lemma 2, Lemma 4 and (15), and $f_{1}=\operatorname{Max}\left\{f_{2}, f_{1}\right\}$ because $i_{2}=l_{1}$. If $0=i_{2}<i_{1}$ then $A=A_{2} A_{1}$ where

$$
A_{2}=\left\{\begin{array}{l}
\pi^{a}: i_{1}=1 \quad(\text { ord } a=1) \\
\pi^{a} \prod_{2<i_{1}} E\left(\alpha_{2}, \pi^{i}\right): i_{1}>1 \quad\left(\text { ord } a=\operatorname{ord} \alpha_{2}=1\right) .
\end{array}\right.
$$

and

$$
A_{1}=\prod_{i \geq \imath_{1}} E\left(\alpha_{2}, \pi^{i}\right) E^{*}(\alpha) \quad\left(0=\operatorname{ord} \alpha_{\imath_{1}} \leqq \operatorname{ord} \alpha_{2}\right) .
$$

Thus we have $f\left(A_{2}\right)=e_{1} p+(n-2) e+1=f_{2}$ by Lemma 3, Lemma 4 and (15), $f\left(A_{1}\right)=e_{1} p+(n-1) e-i_{1}+1=f_{1}$ by Lemma 2, Lemma 4 and (15).

Since $e+i_{2} \neq i_{1}, f_{1} \neq f_{2}$ and we have $f=\operatorname{Max}\left\{f_{2}, f_{1}\right\}$ by (15).
If $1 \leqq i_{2}<i_{1}$ then $A=A_{3} A_{2} A_{1}$ where

$$
\begin{aligned}
& A_{3}=\left\{\begin{array}{l}
\pi^{a}: i_{2}=1 \quad(\text { ord } a \geqq 2) \\
\pi^{a}{ }_{2<i_{2}} E\left(\alpha_{\imath}, \pi^{i}\right): i_{2}>1 \quad\left(\text { ord } \alpha_{i} \geqq 2\right), ~
\end{array}\right. \\
& A_{2}=\prod_{\imath_{2} \unlhd \imath_{<i}} E\left(\alpha_{\imath}, \pi^{i}\right) \quad\left(\operatorname{ord} \alpha_{i}=1\right)
\end{aligned}
$$

and

$$
A_{1}=\prod_{i \geq \imath_{1}} E\left(\alpha_{\imath}, \pi^{i}\right) E^{*}(\alpha) \quad\left(0=\operatorname{ord} \alpha_{\imath_{1}} \leqq \operatorname{ord} \alpha_{\imath}\right)
$$

Now, since ord $a \geqq 2$ and ord $\alpha_{i} \geqq 2 \quad\left(\imath<\imath_{2}\right)$ we have $f\left(A_{3}\right) \leqq e_{1} p+(n-3) e+1$ by Lemma 3 and (15) and $e_{1} p+(n-3) e+1<\operatorname{Max}\left\{f_{2}, f_{1}\right\}$ because

$$
f_{1}-\left(e_{1} p+(n-3) e+1\right)=2 e-\imath_{1} \geqq 2 e-\left(e_{1} p-1\right)>0 .
$$

And $f\left(A_{2}\right)=f_{2}, f\left(A_{1}\right)=f_{1}$ by Lemma 4 and (15). Therefore $f=f\left(A_{3} A_{2} A_{1}\right)$ $\leqq \operatorname{Max}\left\{f_{2}, f_{1}\right\}$ by (15). Moreover if $e+i_{2} \neq i_{1}$ or if $e+i_{2}=i_{1}$ and $\alpha_{\imath_{2}} \varepsilon \not \equiv \alpha_{\imath_{1}} p \bmod p^{2}$, then $A_{2} A_{1}=E\left(\alpha_{\imath_{2}}, \pi^{\imath_{2}}\right) E\left(\alpha_{\imath_{1}}, \pi^{\imath_{1}}\right) B$ where

$$
B=\prod_{\substack{i>2_{2} \\ i \neq i_{1}}} E\left(\alpha_{\imath}, \pi^{i}\right) E^{*}(\alpha)
$$

By Lemma $5 f\left(E\left(\alpha_{2_{2}}, \pi^{\imath_{2}}\right) E\left(\alpha_{\imath_{1}}, \pi^{2_{1}}\right)\right)=\operatorname{Max}\left\{f_{2}, f_{1}\right\}$ and $f(B)<\operatorname{Max}\left\{f_{2}, f_{1}\right\}$ by Lemma 4 and (15), so we have $f\left(A_{2} A_{1}\right)=\operatorname{Max}\left\{f_{2}, f_{1}\right\}$ and $f=f\left(A_{3} A_{2} A_{1}\right)=\operatorname{Max}\left\{f_{2}, f_{1}\right\}$. If $e+i_{2}=i_{1}$ and $\alpha_{\imath_{2}} \varepsilon \equiv \alpha_{\imath_{1}} p \bmod p^{2}$ then $f\left(E\left(\alpha_{\imath_{2}}, \pi^{\imath_{2}}\right) E\left(\alpha_{\imath_{1}}, \pi^{\imath_{1}}\right)\right)<\operatorname{Max}\left\{f_{2}, f_{1}\right\}$ by Lemma 5, and $f=f\left(A_{3} A_{2} A_{1}\right)<\operatorname{Max}\left\{f_{2}, f_{1}\right\}$ from (15).

Finally, in the case $1 \leqq i_{2}=\imath_{1}, A=A_{3} A_{1}$ where

$$
A_{3}=\left\{\begin{array}{l}
\pi^{a}: i_{1}=1 \quad(\text { ord } a \geqq 2) \\
\pi^{a} \prod_{2<i_{1}} E\left(\alpha_{\imath}, \pi^{i}\right): i_{1}>1 \quad\left(\text { ord } a \geqq 2, \text { ord } \alpha_{i} \geqq 2\right)
\end{array}\right.
$$

and

$$
A_{1}=\prod_{i \geqq 1_{1}} E\left(\alpha_{2}, \pi^{i}\right) E^{*}(\alpha) \quad\left(\operatorname{ord} \alpha_{i} \geqq \operatorname{ord} \alpha_{\nu_{1}}=0\right) .
$$

Just as before, we have $f=f_{1}$ because $f\left(A_{3}\right) \leqq e_{1} p+(n-3) e+1<f_{1}=f\left(A_{1}\right)$, and $f_{1}=\operatorname{Max}\left\{f_{2}, f_{1}\right\}$ because $i_{2}=i_{1}$.

Thus the proof of Theorem 1 in the case $p \neq 2$ is completed.
PROOF OF THEOREM 1 IN THE CASE $p=2$.
The difference with the case $p \neq 2$ is that, in the explicit formula (10) another term $\prod_{\mu, \nu=1}^{\infty} E\left(\left(2^{\mu-1} \imath+2^{\nu-1} j\right) \alpha_{2}^{P^{\mu}} \beta_{J}^{p^{\nu}}, \pi^{\left.2^{\mu_{2}+2^{\nu} j}\right)}\right.$ is multiplied to each $E\left(j \alpha_{i} \beta_{\jmath}, \pi^{2+j}\right)$. But for all $\alpha_{\imath}, \beta_{3}$ which appear in the proofs of Lemma 2 and Lemma 5 in the case $p \neq 2, \gamma_{\nu \rho \mu \nu} \equiv 0 \bmod p^{n}, \mathfrak{B}$ for all $\mu, \nu(\mu \geqq 1, \nu \geqq 1)$ where

$$
E\left(\left(2^{\mu-1} i+2^{\nu-1} j\right) \alpha_{\imath}^{p^{\mu}} \beta_{J}^{p^{\nu}}, \pi^{2 \mu_{2}+2^{\nu j}}\right) \sim \cdots E^{*}\left(\gamma_{2 \rho \mu \nu}\right)
$$

Therefore the multiplied term gives no influence to the class of $\gamma \bmod p^{n}, \mathfrak{P}$. Thus, having Lemma 3, 4 which are corollaries of Lemma 2, Theorem 1 holds also for $p=2$.

§4. Remarks and examples.

Remark 1. By elementary but rather complicated calculations of the explicit formula we can prove Theorem 1 without (15).

Remark 2. Let $n=1$ and $A_{\widetilde{p}} \prod_{\imath} E\left(\alpha_{\imath}, \pi^{i}\right) E^{*}(\alpha)$ then Theorem 1 asserts that the conductor of $K(\sqrt[p]{A}) / K$ is $p^{e_{1} p-\imath_{1}+1}$. On the other hand, the number i_{1} is characterized by the following congruences:

$$
A \underset{p}{\equiv 1} \bmod \mathfrak{p}^{\imath_{1}} \text { and } A \underset{p}{\neq 1} \bmod \mathfrak{p}^{2_{1}+1}
$$

where, generally, the notation $A \underset{p^{m}}{\equiv} 1 \bmod \mathfrak{p}^{k}(m \geqq 1, k \geqq 1)$ means that there exists a principal unit η of K such that $A \eta^{-p^{m}} \equiv 1 \bmod p^{k}$. This result is known (H. Hasse [1], I_{a}, p. 90 , Satz. 10). While, when $n \geqq 2$ it is impossible in general to determine the conductor of $K\left(\nabla^{n} \bar{A}\right) / K$ by analogous congruences.

For example, let $K=\boldsymbol{Q}_{p}\left(\zeta_{2}\right)(p \neq 2)$ and

$$
A_{\widetilde{p^{2}}} E\left(\alpha_{\iota_{2}}, \pi^{\imath_{2}}\right) E\left(\alpha_{\imath_{1}}, \pi^{\imath_{1}}\right)
$$

where

$$
\text { ord } \alpha_{\nu_{2}}=1 \quad\left(2 \leqq i_{2} \leqq e-1=p-1\right)
$$

and

$$
\text { ord } \alpha_{\imath_{1}}=0 \quad\left(\imath_{1}=e+1=p(p-1)+1\right) .
$$

Then $A \underset{p^{2}}{\equiv} \operatorname{lod} \underset{p^{2_{2} p}}{ }$ and $A \neq 1 \bmod \mathfrak{p}^{2_{2} p+1}$ for $i_{2}=2, \cdots, p-1$.
While, since $f_{1}=e_{1} p>f_{2}=e_{1} p-i_{2}+1$ for any $\imath_{2}\left(2 \leqq i_{2} \leqq p-1\right)$, the conductor of $K(\sqrt[p^{2}]{A}) / K$ is $\mathfrak{p}^{e_{1} p}$ by Theorem 1 .

Example 1. Let $K \ni \zeta_{n}$ and π be a prime of K.
(i) Let $A=\pi^{a} \eta$ where $a \in \boldsymbol{Z}, a \neq 0 \bmod p$ and η is a unit of K, then the conductor of $K(\sqrt[p^{n}]{A}) / K$ is $\mathfrak{p}^{e_{1} p+(n-1) e+1}$.

For, since $i_{1}=0$ we have $f=\operatorname{Max}\left\{f_{1}, f_{2}\right\}=f_{1}=e_{1} p+(n-1) e+1$ by Theorm 1.
(ii) Let $n \geqq 2$ and $A=\pi^{p}\left(1-\pi^{j}\right)\left(e<j<e_{1} p\right)$, then the conductor of $K\left(\sum_{n}^{A}\right) / K$ is $\mathfrak{p}^{e_{1} p+(n-2) e+1}$.

For, since $i_{2}=0$ and $i_{1}=\jmath$ we have $e+\imath_{2}<\imath_{1}$ and $f=\operatorname{Max}\left\{f_{2}, f_{1}\right\}=f_{2}=$ $e_{1} p+(n-2) e+1$.

Example 2. Let $K=\boldsymbol{Q}_{p}\left(\zeta_{n}\right)$ then the conductor of $K\left(g^{n} \zeta_{m}\right) / K(1 \leqq m \leqq n)$ is $p^{e_{1} p+(m-1) e}$.

For, let $1-\pi=\zeta_{n}=\prod_{\imath} E\left(\alpha_{2}, \pi^{i}\right) E^{*}(\alpha)\left(\alpha_{1} \not \equiv 0 \bmod p\right)$ then

$$
\zeta_{m}=\zeta_{k}^{p_{n}^{n-m}}=\prod_{\imath} E\left(\alpha_{\imath} p^{n-m}, \pi^{i}\right) E\left(\alpha p^{n-m}\right) .
$$

Therefore, since i_{n-m} does not exist and $i_{n-m+1}=1$, we have $f=f_{n-m+1}=e_{1} p+(m-1) e$ by Theorem 2.

Example 3. For some Kummer extensions we can get the ramification subgroups from conductors obtained by Theorem 1. For example, let $K \ni \zeta_{n}(n \geqq 1)$ and $L=K\left(v^{n} \overline{A_{i}^{\alpha_{i}}}\right)$ where $i=0$ or $i \in F$ and $A_{0}=\pi^{\alpha_{0}}\left(\alpha_{0} \in \boldsymbol{Z}, \alpha_{0} \neq 0 \bmod p\right)$, $A_{\imath}=E\left(\alpha_{\imath}, \pi^{i}\right) \quad\left(\imath \in F, \alpha_{i} \in I, \alpha_{i} \neq 0 \bmod p\right)$. Now, let $G=\langle\sigma\rangle=\operatorname{Gal}(L / K)$ and G_{\jmath} be the ρ-th ramification subgroup of this extension:

$$
\begin{aligned}
G=G_{0}=\cdots=G_{m_{1}}=\langle\sigma\rangle \ni G_{m_{1}+1}=\cdots & =G_{m_{2}}=\left\langle\sigma^{p}\right\rangle \supsetneq \cdots \\
& =G_{m_{n}}=\left\langle\sigma^{p^{n-1}}\right\rangle \ni G_{m_{n}+1}=\{1\} .
\end{aligned}
$$

Then, we have $m_{k}=e_{1} p^{k}-\imath$ for $k=1,2, \cdots, n$.
Proof. Since L / K is a totally ramified cyclic extension of degree p^{n}, we only need to calculate m_{k}. Now, by Theorem 1 (or by Lemma 2) we have $f^{(s)}=e_{1} p+(s-1) e-i+1(1 \leqq s \leqq n)$ where $\mathfrak{p}^{f^{(s)}}$ is the conductor of $K\left(\sqrt[p s]{A_{2}^{\alpha_{i}}}\right)$. Thus,

$$
\begin{array}{ll}
f^{(1)}=e_{1} p-i+1=\frac{1}{\# G_{0}} \sum_{j=0}^{m_{1}} \# G_{j}=m_{1}+1 & \text { and so } \quad m_{1}=e_{1} p-i . \\
f^{(2)}=\frac{1}{\# G_{0}} \sum_{j=0}^{m_{2}} \# G_{j}=f^{(1)}+\left(m_{2}-m_{1}\right) p^{-1} \quad \text { and so } \quad m_{2}=e_{1} p \div m_{1},
\end{array}
$$

because $f^{(2)}-f^{(1)}=e$. By repeating this process, we have

$$
m_{k}=e p^{k-1}+e p^{k-2}+\cdots+e p+m_{1}=e_{1} p^{k}-i,
$$

because $e_{1}(p-1)=e$.
Q.E. D.

References

[1] H. HAsse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraishen Zahlenkörper, Physica-Verlag (1970).
[2] H. Hasse, Zahlentheorie, Akademie-Verlag (1969).
[3] H. HAsse, Zur Arbeit von I. R. ŠAFAREVIČ über das allgemeine Reziprozitätsgesetz, Math. Nach. 5 (1951), 301-327.
[4] M. Kneser, Zum expliziten Reziprozitätsgesetz von I.R. ŠAFAREVIČ, Math. Nach. 6 (1951), 89-96.
[5] I.R. Šafarevič, A general reciprocity law, J. Math. Sbornik 26 (1950), 113-146. [6] J.P. Serre, Corps locaux, Hermann (1962).

Department of Mathematics, Miyagi University of Education, Sendai, Japan

