ON THE CONDUCTORS OF *p*-CYCLIC KUMMER EXTENSIONS OF LOCAL NUMBER FIELDS

By Suguru Hamada

Introduction. Let p be a prime number, \mathbf{Q}_p be the rational p-adic number field, and K be a finite extension over \mathbf{Q}_p containing a primitive p^n -th root of unity.

An explicit formula of the norm residue symbol for the elements of K is known (H. Hasse [3], M. Kneser [4], and I. R. Šafarevič [5]).

In this paper, using the explicit formula we describe the conductor of Kummer extension $K({}^{p^n}\sqrt{A})/K$ in some cases by means of the "exponents" of A in its Šafarevič's representation (Theorem 1 and 2).

When n=1 the result is found in H. Hasse [1] (Remark 2). In §1, for convenience, we write down the outline of the Šafarevič's representation of the elements of K and the explicit formula, following H. Hasse [3] and M. Kneser [4]. In §2, we give our theorems, in §3 we prove our theorems, and in §4 we give some remarks and examples.

§1. Notations.

Z: the ring of rational integers. p: a prime number. \mathbf{Q}_p : the rational *p*-adic number field. \mathbf{Z}_p : the ring of integral elements of \mathbf{Q}_p . ζ_n : a primitive p^n -th root of unity. K: a finite extension of \mathbf{Q}_p , containing ζ_n . K^{\times} : the multiplicative group of non-zero elements of K. \mathfrak{p} : the maximal ideal of K. π : a prime element of K. H_m : the multiplicative group $1+\mathfrak{p}^m$ ($m=1, 2, \cdots$). ord[×]: for a principal unit η of K we write $\operatorname{ord}^{\times}(\eta)=m$ if and only if $\eta \in H_m$ and $\eta \notin H_{m+1}$.

 \sim_{p^m} : for elements A, B of K^{\times} we write $A \sim B$ if and only if $A \in BK^{\times p^m}$. \mathcal{Q} : the group of p^n -primary numbers of K. T: the inertia field of K/\mathbf{Q}_p . I: the ring of integral elements of T. R: the multiplicative representatives of the residue class field of K, $R \subset I$. R^{\times} : $R^{\times} = R - \{0\}$. ord: the p-adic order function

on T. S_p : the trace mapping from T to \mathbf{Q}_p .

 \overline{T} : the completion of the maximal unramified extension of Q_p . \overline{I} : the ring of integral elements of \overline{T} . \overline{R} : the multiplicative representatives of the residue class field of \overline{T} , $\overline{R} \subset \overline{I}$. P: the Frobenius automorphism of the extension T/Q_p . \mathfrak{P} : the additive endomorphism of \overline{I} defined by $\mathfrak{P}(\overline{\alpha}) = \overline{\alpha}^P - \overline{\alpha} \quad (\overline{\alpha} \in \overline{I})$. e: the

Received September 18, 1979

ramification index of the extension K/\mathbf{Q}_p . e_m : the ramification index of the extension $K/T(\zeta_m)$, where $\zeta_m = \zeta_n^{p^{n-m}} (1 \le m \le n)$. We have $e_1 + e = e_1 p$, $e_1 = e_m p^{m-1}$.

$$F: F = \{i \mid 1 \leq i < e_1 p, (i, p) = 1\}$$
.

 $\pi_n, \pi_1: \pi_n = 1 - \zeta_n, \pi_1 = 1 - \zeta_1$. We have

$$\pi_n^{p^n} \equiv -\pi_n^{p^{n-1}} p \equiv \pi_1^p = -\pi_1 p \qquad \text{mod } \mathfrak{p}^{e_1 p+1}$$

 e_0 , κ , ε_0 , $\varepsilon: e_1 = e_0 p^{\kappa-1}$ where $(e_0, p) = 1$ $(\kappa \ge n)$,

$$\pi^{e_1p} \equiv \varepsilon_0^{p^{\kappa}} \pi_1^p \qquad \text{mod } \mathfrak{p}^{e_1p+1} \ (\varepsilon_0 \in R^{\times})$$

and

$$-p \equiv \varepsilon \pi^e \mod \mathfrak{p}^{e+1} \ (\varepsilon \in R^{\times}).$$

Now, for convenience, we write down the outline of Šafarevič's representation of elements of K following H. Hasse [3]. Generally, if a system $S = \{\eta_k(\gamma) | \gamma \in \mathbb{R}, k=1, 2, \cdots\}$ is given so that $\eta_k(\gamma) \equiv 1 - \gamma \pi^k \mod \mathfrak{p}^{k+1}$, then every element $\eta \in H_1$ is written uniquely as follows:

(1)
$$\eta = \prod_{k=1}^{\infty} \eta_k(\gamma), \quad \eta_k(\gamma) \in S.$$

Such a system S is given by Šafarevič's E-function and E^* -function. The definitions and some properties of these functions are as follows. We define:

$$E(\alpha, x) = \prod_{\substack{m=1\\(m, p)=1}}^{\infty} (1 - \alpha^m x^m)^{\mu(m)/m}, \quad \text{where} \quad \alpha \in R, \ x \in \mathfrak{p}$$

and μ is the Möbius function.

$$E(\alpha, x) = \sum_{\nu=0}^{\infty} E(\alpha_{\nu}, x)^{\nu}, \quad \text{where } \alpha = \sum \alpha_{\nu} p^{\nu} \in I \ (\alpha_{\nu} \in R).$$

Then

(2)
$$E(\alpha, x) \equiv 1 - \alpha x \mod x^2$$

and $E(\alpha+\beta, x)=E(\alpha, x)\cdot E(\beta, x)$

$$E(a\alpha, x) = E(\alpha, x)^a$$
 where $\alpha, \beta \in I$ and $a \in \mathbf{Z}_x$

Next, for $\alpha \in I$ we define

$$E^*(\alpha) = E(p^n \bar{\alpha}, \tilde{\pi}_n) = E(\bar{\alpha}, \tilde{\pi}_n)^{p^n}$$

where $\mathfrak{P}(\bar{\alpha}) = \alpha$ ($\bar{\alpha} \in I$), $\zeta_n = E(1, \tilde{\pi}_n)$ and $E(\bar{\alpha}, \tilde{\pi}_n)$ is defined by the same formula as before. Then

(3)
$$E^*(\alpha) \equiv 1 - \alpha^{p^{n-1}} \pi_1^p \mod \mathfrak{p}^{e_1 p+1} \ (\alpha \in R)$$
 and

$$\begin{split} & E^*(\alpha \!+\!\beta) \!=\! E^*(\alpha) E^*(\beta) \\ & E^*(\alpha \alpha) \!=\! E^*(\alpha)^a \quad \text{where} \quad \alpha, \ \beta \!\in\! I \quad \text{and} \quad a \!\in\! \mathbf{Z}_p \,. \end{split}$$

Moreover, $\{E^*(\alpha) | \alpha \in I\} \cdot K^{\times p^n} = \Omega$.

The following congruences are well known (H. Hasse [2]). For an integral element α of K, let $\eta \equiv 1 - \alpha \pi^i \mod \mathfrak{p}^{i+1}$ then

(4)
$$\eta^{p} \equiv \begin{cases} 1 - \alpha^{p} \pi^{ip} & \mod \mathfrak{p}^{ip+1} & \text{if } i < e_{1} \\ 1 - (\alpha^{p} - \varepsilon \alpha) \pi^{e_{1}p} & \mod \mathfrak{p}^{e_{1}p+1} & \text{if } i = e_{1} \\ 1 - \alpha p \pi^{i} & \mod \mathfrak{p}^{i+e+1} & \text{if } i > e_{1}. \end{cases}$$

Now, as in Notations, let $F = \{i | 1 \leq i < e_1 p, (i, p) = 1\}$ then the *e* integers $k (e_1 < k \leq e_1 p)$ are written uniquely

$$k=ip^{\kappa_i} \ (i\in F, \ \kappa_i\geq 0, \ \kappa_{e_0}=\kappa)$$

and every positive integer k is written uniquely as follows:

$$\begin{array}{lll} \text{if} \quad k \leq e_1 \quad \text{then} \quad k = \imath p^{\nu_i} \ (i \in F, \ 0 \leq \nu_i < \kappa_i) \\ \\ \text{if} \quad k > e_1 \quad \text{then} \quad k = \imath p^{\kappa_i} + \nu_i' e \ (i \in F, \ \nu_i' \geq 0) \,. \end{array}$$

From (2) and (4) we have

(5)
$$E(\alpha p^{\nu_i}, \pi^i) = E(\alpha, \pi^i)^{p^{\nu_i}} \equiv (1 - \alpha \pi^i)^{p^{\nu_i}}$$

$$\equiv 1 - \alpha^{p^{\nu_i}} \pi^k \mod \mathfrak{p}^{k+1}$$

 $(\alpha \in R, 1 \leq k \leq e_1, k = i p^{\nu_i}).$

The above congruences hold also for $\nu_i = \kappa_i$ if $i \neq e_0$ (i.e. $e_1 < k < e_1 p$, $k = i p^{\kappa_i}$). And

(6)
$$E(\alpha p^{\kappa_i + \nu'_i}, \pi^i) \equiv 1 - \alpha^{p^{\kappa_i}} p^{\nu'_i} \pi^{i p^{\kappa_i}} \mod \mathfrak{p}^{k+1}$$

 $(\alpha \in R, e_1 p < k, k = i p^{\kappa_i} + \nu'_i e \ (i \neq e_0), \nu'_i > 0)$. For the exceptional $k = e_1 p + \nu' e \ (\nu' \ge 0)$ corresponding to $i = e_0$, we have from (3) and (4)

(7)
$$E^{*}(\alpha p^{\nu'}) = E^{*}(\alpha)^{p^{\nu'}} \equiv (1 - \alpha^{p^{n-1}} \pi_{1}^{p})^{p^{\nu'}} \equiv 1 - \alpha^{p^{n-1}} p^{\nu'} \pi_{1}^{p}$$

 $\operatorname{mod} \mathfrak{p}^{k+1} \ (\alpha \in R).$

Since $R^{p^m} = R$ $(m \ge 1)$, a desired system S has been given and from (1) every $\eta \in H_1$ is represented by E-function and E^* -function. Consequently every element $A \in K^{\times}$ is represented uniquely as follows:

$$(\check{S}) \qquad A = \pi^a \rho \prod_{i \in F} E(\alpha_i, \pi^i) E^*(\alpha) \ (a \in \mathbf{Z}, \ \rho \in R^{\times}, \ \alpha_i, \ \alpha \in I \ \alpha_{e_0} \colon \text{mod } p^e \text{ reduced.})$$

Now, for every m $(1 \le m \le n)$, we have

(8)
$$\pi^{a} \rho \prod_{i \in F} E(\alpha_{i}, \pi^{i}) E^{*}(\alpha) \underset{p^{m}}{\sim} \pi^{a'} \rho' \prod_{i \in F} E(\alpha'_{i}, \pi^{i}) E(\alpha')$$

if and only if $a \equiv a' \mod p^m$, $\alpha_i \equiv \alpha'_i \mod p^m$ $(i \in F)$, and $\alpha \equiv \alpha' \mod p^m$, \mathfrak{P} where the last congruence means that there exist $\delta, \theta \in I$ such that $\alpha - \alpha' = p^m \delta + \mathfrak{P}(\theta)$.

In the following we write \prod_{i} instead of $\prod_{i \in F}$ and \sim instead of \sum_{p^n} .

[EXPLICIT FORMULA] (H. Hasse [3], M. Kneser [4] and I. R. Šafarevič [5]) Let A, B be two elements of K^{\times} such that

$$A \sim \pi^{a} \prod_{i} E(\alpha_{i}, \pi^{i}) E^{*}(\alpha), \qquad B \sim \pi^{b} \prod_{j} E(\beta_{j}, \pi^{j}) E^{*}(\beta)$$

then the norm residue symbol (A, B) is given by

(9) If $p \neq 2$ (A, B)= $\zeta_n^{\text{Sp}(\alpha\beta-b\alpha+\gamma)}$ where $\prod_{i,j\in F} E(j\alpha_i\beta_j, \pi^{i+j}) \sim \prod_k E(\gamma_k, \pi^k)E^*(\gamma).$

(10) If p=2 (A, B)= $\zeta_n^{\text{Sp}(a\beta-b\alpha+\gamma)}$

where

$$(-1)^{ab} \prod_{i,j\in F}^{\infty} \left[\mathbb{E}(j\alpha_i\beta_j, \pi^{i+j}) \prod_{\mu,\nu\geq 1}^{\infty} \mathbb{E}((i2^{\mu-1}+j2^{\nu-1})\alpha_i^{P^{\mu}}\beta_j^{P^{\nu}}, \pi^{2^{\mu}i+2^{\nu}j}) \right] \\ \sim \prod_k \mathbb{E}\gamma_k, \pi^k) \mathbb{E}^*(\gamma) \,.$$

§2. Theorems.

We write also $\pi^{a} \prod E(\alpha_{i}, \pi^{i}) E^{*}(\alpha) = \langle \alpha_{0}, \alpha_{1}, \cdots, \alpha \rangle$ where $\alpha_{0} = a$.

The aim of this paper is to describe, in some cases, the conductor \mathfrak{p}^f of the extension $K(\mathbb{N}^{\mathcal{T}}\overline{A})/K$ by means of conditions on α_0 , α_i $(i \in F)$.

From the facts in §1, the extension $K(\sqrt[p^n]{A})/K$ is unramified if and only if $\alpha_i \equiv 0 \mod p^n$ for all $i \in F$ and i=0.

Thus we consider only the case when for some $r \ (1 \le r \le n)$ there exists $i \ (i=0 \text{ or } i \in F)$ such that $\alpha_i \not\equiv 0 \mod p^r$. And we denote i_r the least suffix i for which $\alpha_i \not\equiv 0 \mod p^r$. If i_r exists then i_{r+1}, \dots, i_n exist and

$$e_1p-1 \ge i_r \ge \cdots \ge i_{n-1} \ge i_n \ge 0$$

When i_r exists we set $f_r = e_1 p + (n-r)e - i_r + 1$.

Moreover, for convenience, we set $i_{n+1}=i_n$ and $f_{n+1}=e_1p-e-i_{n+1}+1$. Then $f_n > f_{n+1}$ holds. This definition is natural in the following sense; if i_{n+1} is the least suffix *i* for which $\alpha_i \not\equiv 0 \mod p^{n+1}$, we have $i_{n+1} \leq i_n$; here if $i_{n+1} < i_n$ we can

take $B = \langle 0, \dots, 0, \dots, \alpha_{i_n}, \dots \rangle$ instead of A; for this B we have $i_{n+1} = i_n$. Now, it follows from §1 that the extension $K(\mathbb{R}^n \overline{A})/K$ is a totally ramified

extension of degree p^n if and only if i_1 exists.

THEOREM 1. The extension $K(\mathbb{R}^{\mathbb{N}}\overline{A})/K$ is a totally ramified extension of degree p^n if and only if there exists $i \ (i=0 \text{ or } i\in F)$ such that $\alpha_i \not\equiv 0 \mod p$. And, then

$$f \leq \text{Max} \{f_1, f_2\}$$

where \mathfrak{p}^{f} is the conductor of the extension $K(\sqrt[pn]{A})/K$.

Moreover, $f=Max \{f_1, f_2\}$ holds if and only if $e+\iota_2 \neq \iota_1$ (i.e. $f_2 \neq f_1$) or $\alpha_{\iota_2} \varepsilon \equiv \alpha_{\iota_1} p \mod p^2$, where $-p \equiv \varepsilon \pi^e \mod \mathfrak{p}^{e+1}$ ($\varepsilon \in R^{\times}$).

Remark. By the above remark, in the case n=1, our Theorem asserts that $f=f_1$. Moreover, for $n\geq 2$, $e+i_1=i_2$ and $\alpha_{i_2}\varepsilon\equiv\alpha_{i_1}p \mod p^2$ occures in these cases when $p\neq 2$ or p=2 and $T\cong Q_2$. For example, in these cases, let $1\leq i_2 < e_1$, $e+i_2=i_1$ and $A\sim E(\gamma p, \pi^{i_2})E(1, \pi^{i_1})$ where $\gamma\varepsilon=1$ ($\gamma\in R^{\times}$).

Now, THEOREM 1 can be generalized easily to the case when $K(\sqrt[p^n]{A})/K$ contains an unramified subfield:

THEOREM 2. For integer m $(1 \le m \le n)$, if $\alpha_i \equiv 0 \mod p^{m-1}$ for all $i \in F$ and i=0 and there exists some i $(i \in F \text{ or } i=0)$ such that $\alpha_i \not\equiv 0 \mod p^m$, then

$$f \leq Max \{f_m, f_{m+1}\}$$

where \mathfrak{p}^{f} is the conductor of the extension $K(\mathfrak{P}^{m}\overline{A})/K$. Moreover, $f=\operatorname{Max} \{f_{m}, f_{m+1}\}$ holds if and only if $e+i_{m+1}\neq i_{m}$ (i.e. $f_{m+1}\neq f_{m}$) or $\alpha_{i_{m+1}}\varepsilon \equiv \alpha_{i_{m}}p \mod p^{m+1}$, where $-p\equiv \varepsilon\pi^{e} \mod \mathfrak{p}^{e+1}$ ($\varepsilon \in \mathbb{R}^{\times}$).

Remark. In the case m=n, our Theorem asserts that $f=f_n$. In fact, Theorem 2 is proved by Theorem 1 as follows: By assumption,

$$\alpha_0 = \alpha'_0 p^{m-1}$$
 and $\alpha_i = \alpha'_i p^{m-1}$ $(i \in F)$ for some $\alpha'_0 \in \mathbb{Z}$ and $\alpha'_i \in I$.

So we have $A_{p^{m-1}}E^*(\alpha)$ and $L=K(p^{m-1}\sqrt{A})=K(p^{m-1}\sqrt{E^*(\alpha)})$ is unramified over K.

Let $B = p^{m-1} \sqrt{A}$ then $K(\sqrt[p^n]{A}) = K(p^{n-m+1} \sqrt{B})$ and $B_{p^{n-m+1}} \langle \alpha'_0, \alpha'_1, \cdots, \gamma \rangle$ in L

where γ is an integral element of the inertia field of L/Q_p .

Now, the least suffix such that $\alpha'_1 \neq 0 \mod p$ is i_m . Applying Theorem 1 to the totally ramified extension $K(p^{n-m+1}\sqrt{B})/L$ we have $f \leq Max \{f_m, f_{m+1}\}$, where \mathfrak{p}^f is the conductor of $K(p^{n-m+1}\sqrt{B})/L$. And, remarking that $\alpha'_{i_{m+1}} \varepsilon \equiv \alpha_m p'_i \mod p^2$ is equivalent to $\alpha_{i_{m+1}} \varepsilon \equiv \alpha_{i_m} p \mod p^{m+1}$ we have also the necessary and sufficient conditions for $f = Max \{f_m, f_{m+1}\}$. Since L/K is unramified, as for the conductor of $K(\mathfrak{P}^{m}A)/K$ we have Theorem 2.

§3. Proof of Theorem 1.

Now, for the proof of Theorem 1, we prove some Lemmas. In the proofs we use following facts.

For a principal unit B in K and positive integer r,

(11) if $B \equiv 1 \mod \mathfrak{p}^{e_1 p + (r-1)e+1}$ then $B \sim 1$.

(J. P. Serre [5], p. 219, Proposition 9). By (5), (6), and (7)

(12) if (Š) $B = \prod_{j} E(\beta_{j}, \pi^{j}) \equiv 1 \mod \mathfrak{p}^{k}$ $(k \geq 1)$ then $E(\beta_{j}, \pi^{j}) \equiv 1 \mod \mathfrak{p}^{k}$ for all

 $j \in F$ and $E^*(\beta) \equiv 1 \mod \mathfrak{p}^k$. By (2) and (4)

(13) if $s > e_1$ then $\operatorname{ord}^{\times} E(\alpha p^m, \pi^s) = s + me \ (\alpha \in I, \ \alpha \not\equiv 0 \mod p, \ m \ge 0$: integer).

(14) if i < j (*i*, $j \in F$, $i \neq e_0$, $j \neq e_0$)

ord[×] $E(p^m, \pi^i) < \text{ord}^*E(p^m, \pi^j)$ and when $m \leq \kappa - 1$ (especially when $m \leq n - 1$) this inequality holds also for $i=e_0$ or $j=e_0$.

In fact, let $i \neq e_0$ and $j \neq e_0$, since i < j we have $\kappa_i \ge \kappa_j$, if $\kappa_i = \kappa_j$ then the result follows immediately, so let $\kappa_i > \kappa_j$. If $m \le \kappa_j < \kappa_i$ then $\operatorname{ord}^{\times} E(p^m, \pi^i) = ip^m < jp^m = \operatorname{ord}^{\times} E(p^m, \pi^j)$, if $\kappa_j < m \le \kappa_i$ then $\operatorname{ord}^{\times} E(p^m, \pi^j) - \operatorname{ord}^{\times} E(p^m, \pi^i) = jp^{\kappa_j} + (m - \kappa_j)e - ip^m > 0$, because $jp^{\kappa_j} - ip^m > e_1 - e_1p = -e$, $(m - \kappa_j)e \ge e$, and if $\kappa_j < \kappa_i < m$ then $\operatorname{ord}^{\times} E(p^m, \pi^j) - \operatorname{ord}^{\times} E(p^m, \pi^i) = jp^{\kappa_j} - ip^{\kappa_i} + (\kappa_i - \kappa_j)e > 0$, because $jp^{\kappa_j} - ip^{\kappa_i} > -e$ and $(\kappa_i - \kappa_j)e \ge e$. Furthermore, if $m \le \kappa - 1$ then, since $\operatorname{ord}^{\times} E(p^m, \pi^{e_0}) = e_0p^m$, the inequality holds also for $i = e_0$ or $j = e_0$.

LEMMA 1. Let $n \ge 1$, for a given integer t (t=0 or t \in F), let $k=e_1p+(n-1)e_1$ -t+1 and

$$(\check{S}) \qquad \qquad B = \prod_{j} E(\beta_{j}, \pi^{j}) E^{*}(\beta) \equiv 1 \qquad \text{mod } \mathfrak{p}^{k} \,.$$

Then, (i) when t=0, $\beta_{j}\equiv 0 \mod p^{n}$ for all $j \in F$ and $\beta \equiv 0 \mod p^{n}$, \mathfrak{P} .

(ii) When $1 \leq t < e$, $\beta_j \equiv 0 \mod p^{n-1}$ for all $j \in F$ and $\beta \equiv 0 \mod p^{n-1}$, \mathfrak{P} and moreover $\beta_j \equiv 0 \mod p^n$ if $j \leq e_1 p - t$.

(iii) When $e < t < e_1 p$, $\beta_j \equiv 0 \mod p^{n-2}$ for all $j \in F$, $\beta \equiv 0 \mod p^{n-2}$, \mathfrak{P} and moreover

$$\beta_j \equiv \begin{cases} 0 \mod p^{n-1} & \text{if } j \leq e_1 p + e - t \\ 0 \mod p^n & \text{if } j \leq e_1 p - t \end{cases}$$

Remark. For n=1, the parts of mod p^{n-1} and p^{n-2} in the Lemma 1 and its proof may be omitted.

Proof. (i) follows immediately from (11) and (8).

(ii) Since t < e we have $k > e_1 p + (n-2)e + 1$ and $B \underset{p^{n-1}}{\longrightarrow} 1$ by (11) and so by

(8), $\beta_j \equiv 0 \mod p^{n-1}$ for all $j \in F$ and $\beta \equiv 0 \mod p^{n-1}$, \mathfrak{P} . Next we show that $\beta_j \equiv 0 \mod p^n$ if $j \leq e_1 p - t$. For, let $\beta_j \equiv 0 \mod p^n$ for some j, $j \leq e_1 p - t$ then since $e_1 p - t > e_1$ we have $\operatorname{ord}^{\times} E(\beta_j, \pi^j) \leq \operatorname{ord}^{\times} E(p^{n-1}, \pi^{e_1 p - t}) = e_1 p - t + (n-1)e < k$ by (13) and (14), this contradicts to the assumption $E(\beta_j, \pi^j) \equiv 1 \mod \mathfrak{p}^k$.

(iii) Since $t < e_1 p \le 2e$ we have $k > e_1 p + (n-3)e + 1$. It follows that $B_{p^{n-2}} = 1$ and $\beta_j \equiv 0 \mod p^{n-2}$ for all $j \in F$, $\beta \equiv 0 \mod p^{n-2}$, \mathfrak{P} . Next we show that $\beta_j \equiv 0 \mod p^{n-1}$ if $j \le e_1 p + e - t$. Let $\beta_j \equiv 0 \mod p^{n-1}$ for some j, $j \le e_1 p + e - t$, then

ord[×] $E(\beta_{j}, \pi^{j}) \leq$ ord[×] $E(p^{n-2}, \pi^{e_{1}p+e-t}) = e_{1}p+e-t+(n-2)e < k$,

by (13) and (14) but this contradicts to our assumption.

Finally we show that $\beta_j \equiv 0 \mod p^n$ if $j \leq e_1 p - t$. Let $\beta_j \equiv 0 \mod p^n$ for some $j, j \leq e_1 p - t$, then $\operatorname{ord}^{\times} E(\beta_j, \pi^j) \leq \operatorname{ord}^{\times} E(p^{n-1}, \pi^i)$ where $i = e_1 p - t$. We show that $\operatorname{ord}^{\times} E(p^{n-1}, \pi^i) = m < k$ then the proof is completed.

Since $i < e_1$ it follows that $\kappa_i \ge 1$. Now, in the case $\kappa_i \le n-1$, we have

$$k-m=i+(n-1)e+1-(ip^{\kappa_i}+(n-1-\kappa_i)e)=i-ip^{\kappa_i}+\kappa_ie+1$$

by (6). If $\kappa_i = 1$ then

$$k-m=-i(p-1)+e+1>-e_1(p-1)+e+1>0$$

if $\kappa_i \geq 2$ then k-m>0 because $ip^{\kappa_i} \leq e_1 p \leq 2e$.

And in the case $\kappa_i > n-1$, we have $m=ip^{n-1} \le e_1$ by (5), and k-m=i+(n-1)e+1- ip^{n-1} . If n=1 then clearly k-m>0 and if $n\ge 2$ we have k-m>0 since $ip^{n-1} \le ip^{\kappa_i-1} \le e_1 \le e$. Q.E.D.

Proof of Theorem 1 in the case $p \neq 2$. In the following, when the conductor of $K(\sqrt[p^n]{A})/K$ is \mathfrak{p}^f we write f=f(A).

LEMMA 2. Let $n \ge 1$ and $p \ne 2$ then (i) if $A \sim \pi^a$ $(a \in \mathbb{Z}, a \equiv 0 \mod p)$,

$$f(A) = e_1 p + (n-1)e + 1$$
,

(ii) if $A \sim E(\alpha_i, \pi^i)$ $(i \in F, \alpha_i \in I, \alpha_i \not\equiv 0 \mod p)$,

$$f(A) = e_1 p + (n-1)e - i + 1$$
.

Proof. (i) Let $B \equiv 1 \mod \mathfrak{p}^{e_1 p + (n-1)e+1}$ then $B \sim 1$ by (11) so we have (A, B) = 1 and $f(A) \leq e_1 p + (n-1)e+1$. Next, let $B = E^*(\delta p^{n-1})$ where $\delta \in R^{\times}$ and $\operatorname{Sp}(\delta) \equiv 1 \mod p$. Then $B \equiv 1 \mod \mathfrak{p}^{e_1 p + (n-1)e}$ by (7) and $(A, B) = \zeta_n^{\operatorname{Sp}(a\delta p^{n-1})} \neq 1$. So we have

$$f(A) \leq e_1 p + (n-1)e + 1.$$

(ii) Proof of $f(A) \leq e_1 p + (n-1)e - i + 1$. Let

$$(\check{S}) \quad B = \prod_{j} E(\beta_{j}, \pi^{j}) E^{*}(\beta) \equiv 1 \qquad \text{mod } \mathfrak{p}^{e_{1}p + (n-1)e^{-1+1}}$$

We show that $E(j\alpha_i\beta_j, \pi^{i+j}) \ge 1$ for all $j \in F$ by showing that $\alpha_i\beta_j \equiv 0 \mod p^n$ or $\operatorname{ord}^{\times} E(j\alpha_i\beta_j, \pi^{i+j}) > e_1p + (n-1)e$. Then we have the result by the explicit formula (9).

Case 1; $1 \le i < e$. By Lemma 1, if $j \le e_1 p - i$ then $\beta_j \equiv 0 \mod p^n$ so we have $\alpha_i \beta_j \equiv 0 \mod p^n$. If $j > e_1 p - i$ then $j > e_1$ and $\beta_j \equiv 0 \mod p^{n-1}$ by Lemma 1 so we have $\operatorname{ord}^{\times} E(j\alpha_i\beta_i, \pi^{i+j}) \ge i + j + (n-1)e > e_1p + (n-1)e$ by (13).

Case 2; $e < i < e_1 p$. By Lemma 1, if $j \le e_1 p - i$ then $\alpha_i \beta_j \equiv 0 \mod p^n$, if $e_1 p - i < j \le e_1 p + e^{-i}$ then $\alpha_i \beta_j \equiv 0 \mod p^{n-1}$ and so $\operatorname{ord}^{\times} E(j \alpha_i \beta_j, \pi^{i+j}) > e_1 p + (n-1)e$ by (13), and if $e_1 p + e^{-i} < j$ then $\alpha_i \beta_j \equiv 0 \mod p^{n-2}$ and $\operatorname{ord}^{\times} E(j \alpha_i \beta_j, \pi^{i+j}) > e_1 p + e^{+(n-2)e} = e_1 p + (n-1)e$ by (13).

Proof of $f(A) \ge e_1 p + (n-1)e - i + 1$. It is enough to show that there exists B such that

$$B \equiv 1 \mod \mathfrak{p}^{e_1 p + (n-1)e^{-\iota}}$$
 and $(A, B) \neq 1$.

Case 1; $1 \leq i < e$. Let $B = E(\beta_j, \pi^j)$ where $j = e_1 p - i (j \in F, j > e_1)$ and $\beta_j = \delta p^{n-1}$ ($\delta \in R^{\times}$ will be determined below). Then $E(\beta_j, \pi^j) \equiv 1 \mod \mathfrak{p}^{e_1 p - i + (n-1)e}$ by (13), and $E(j\alpha_i\beta_j, \pi^{i+j}) \equiv 1 - j\alpha_i\delta p^{n-1}\pi^{e_1 p} \equiv 1 - \delta_0\delta p^{n-1}\varepsilon_0^{p^\kappa}\pi_1^p \mod \mathfrak{p}^{e_1 p + (n-1)e+1}$ where $j\alpha_i \equiv \delta_0 \mod p (\delta_0 \in R^{\times})$ and ε_0 is that of Notations. On the other hand, by (7) $E^*((\delta_0\delta\varepsilon_0^{p^\kappa})^{p^{-(n-1)}}p^{n-1}) \equiv 1 - \delta_0\delta\varepsilon_0^{p^\kappa}p^{n-1}\pi_1^p \mod \mathfrak{p}^{e_1 p + (n-1)e+1}$. So, we have $E(j\alpha_i\beta_j, \pi^{i+j}) \sim E^*((\delta_0\delta\varepsilon_0^{p^\kappa})^{p^{-(n-1)}}p^{n-1})$ and in explicit formula (9), we have $\gamma = (\delta_0\delta\varepsilon_0^{p^\kappa})^{p^{-(n-1)}}p^{n-1}$. Now, if we choose δ so that $Sp((\delta_0\delta\varepsilon_0^{p^\kappa})^{p^{-(n-1)}}) \equiv 1 \mod p$ then $B \equiv 1 \mod \mathfrak{p}^{e_1 p + (n-1)e-i}$ and $(A, B) = \zeta_n^{Sp(j)} = \zeta_n^{p^{n-1}} \neq 1$.

Case 2; i > e. Let $B = E(\beta_j, \pi^j)$ where $j = e_1 p + e^{-i}$ $(j \in F$ and $j > e_1$) and $\beta_j = \delta p^{n-2}$ $(\delta \in \mathbb{R}^{\times}$ will be determined below). Then we have $E(j\alpha_i\beta_j, \pi^{i+j})$ $\equiv 1 - j\alpha_i \delta p^{n-2} \pi^{e_1 p+e} \equiv 1 + j\alpha_i \delta \varepsilon^{-1} p^{n-1} \pi^{e_1 p} \equiv 1 - \delta_0 \delta \varepsilon_0^{p^k} p^{n-1} \pi_1^p \mod \mathfrak{p}^{e_1 p + (n-1)e+1}$ where $-j\alpha_i \varepsilon^{-1} \equiv \delta_0 \mod p$ $(\delta_0 \in \mathbb{R}^{\times})$ and ε is that of Notations. Thus, just as Case 1, we have in (9) $\gamma = (\delta_0 \delta \varepsilon_0^{p^k})^{p^{-(n-1)}} p^{n-1}$. Therefore, if we choose δ so that $\operatorname{Sp}(\gamma) \equiv p^{n-1} \mod p^n$, we have $B \equiv 1 \mod \mathfrak{p}^{e_1 p + (n-1)e-i}$ and $(A, B) = \zeta_n^{p_0(\gamma)} = \zeta_n^{p^{n-1}} \neq 1$. Q. E. D.

From Lemma 2, we have following two Lemmas immediately.

LEMMA 3. Let $n \ge 1$ and $p \ne 2$. Then we have (i) if $A \sim \pi^a$, $a \in \mathbb{Z}$ and ord a=m $(0 \le m \le n-1)$,

$$f(A) = e_1 p + (n - m - 1)e + 1$$
.

(ii) if $A = \mathbb{E}(\alpha_i, \pi^i)$, $i \in F$, $\alpha_i \in I$ and $\operatorname{ord} \alpha_i = m$ $(0 \le m \le n-1)$, $f(A) = e_1 p + (n-m-1)e^{-i} + 1$.

Proof. (i) Let $a=a'p^m$ $(a' \in \mathbb{Z}, a' \neq 0 \mod p)$ and $A'=\pi^{a'}$. Then $K(\sqrt[p^n]{A}) = K(\sqrt[p^{n-m}]{A'})$ and the conductor of $K(\sqrt[p^{n-m}]{A'})$ is $\mathfrak{p}^{e_1p+(n-m+1)e+1}$ by Lemma 2 (i) (using n-m instead of n), so we have $f(A)=e_1p+(n-m-1)e+1$. Just as (i) we

have (ii) from Lemma 2 (ii).

LEMMA 4. Let $n \ge 1$ and $p \ne 2$. Then

(i) $f(\pi^a) > f(E(\alpha_i, \pi^i))$ and $f(\pi^a) > f(E^*(\alpha))$

where $a \in \mathbb{Z}$, $\alpha_i \in I$ $(i \in F)$, $0 \leq \text{ord } a \leq n-1$, ord $a \leq \text{ord } \alpha_i$ and $\alpha \in I$ is arbitrary.

(ii)
$$f(E(\alpha_i, \pi^i)) > f(E(\alpha_j, \pi^j))$$
 and $f(E(\alpha_i, \pi^i)) > f(E^*(\alpha))$

where i, $j \in F$ (i < j), α_i , $\alpha \in I$ and $0 \leq \text{ord } \alpha_i \leq n-1$, $\text{ord } \alpha_i \leq \text{ord } \alpha_j$ and α is arbitrary.

Proof. We have the result immediately from Lemma 3 and the fact $E^*(\alpha)$ is p^n -primary.

Now, by local class field theory and by definition of conductor, we have: For elements B_1, \cdots, B_r of K

(15)
$$f(B_1 \cdots B_r) \leq \operatorname{Max} \{f(B_1), \cdots, f(B_r)\}$$

and

$$f(B_1 \cdots B_r) = f(B_1)$$
 if $f(B_1) > f(B_i)$ ($i=2, \dots, r$).

In fact, by local class field theory and by definition of conductor, the conductor of $L = K(\sqrt[p^n]{B_1}, \dots, \sqrt[p^n]{B_r})$ is $\mathfrak{p}^{\operatorname{Max}(f^{(1)}, \dots, f^{(r)})}$ where $f^{(i)} = f(B_i)$ $(1 \le i \le r)$. Since $K(\sqrt[p^n]{B_1} \dots B_r)$ is a subfield of L we have $f(B_1 \dots B_r) \le \operatorname{Max} \{f^{(1)}, \dots, f^{(r)}\}$.

Next, let $f^{(1)} > f^{(i)}$ $(i=2, \dots, r)$. Since $K(\sqrt[p]{B_1 \dots B_r}, \sqrt[p]{B_2}, \dots, \sqrt[p]{B_r}) = L$, we have Max $\{f(B_1 \dots B_r), f^{(2)}, \dots, f^{(r)}\} = f^{(1)}$ and it follows that $f(B_1 \dots B_r) = f^{(1)} = f(B_1)$. LEMMA 5. Let $n \ge 2$ and $p \ne 2$.

If $A_2 \sim E(\alpha_{i_2}, \pi^{i_2})$ $(i_2 \in F, \alpha_{i_2} \in I, \text{ ord } \alpha_{i_2} = 1)$ $A_1 \sim E(\alpha_{i_1}, \pi^{i_1})$ $(i_1 \in F, \alpha_{i_1} \in I, \text{ ord } \alpha_{i_1} = 0)$ and $f_2 = e_1 p + (n-2)e - i_2 + 1$, $f_1 = e_1 p + (n-1)e - i_1 + 1$ then we have $f(A_2A_1) \leq \text{Max} \{f_2, f_1\}$. Moreover, $f(A_2A_1) = \text{Max} \{f_2, f_1\}$ if and only if $e + i_2 \neq i_1$ or $\alpha_{i_2} \in \neq \alpha_{i_1} p \mod p^2$ and $e + i_2 = i_1$.

Proof. By Lemma 3 (ii), $f(A_2) = f_2$ and $f(A_1) = f_1$. By (15) we have $f \leq Max \{f_2, f_1\}$ where $f = f(A_2A_1)$. And if $f_2 \neq f_1$ (i. e. $e + i_2 \neq i_1$) then $f = Max \{f_2, f_1\}$ by (15).

Next, we show that if $e+i_2=i_1$ (i.e. $f_2=f_1$) and $\alpha_{i_2} \epsilon \not\equiv \alpha_{i_1} p \mod p^2$ then $f=f_2=f_1$.

Since $f \leq f_2 = f_1$ it is enough to show that there exists B such that $B \equiv 1 \mod \mathfrak{p}^{f_2-1}$ and $(A_2A_1, B) \neq 1$.

Since $e+i_2=i_1$ and i_2 , $i_1\in F$ it follows that $e_1>i_2\geq 1$. Let $j_2=e_1p-i_2$ then $j_2\in F$ and $j_2>e_1$.

By the assumption $\alpha_{i_2} \varepsilon \equiv \alpha_{i_1} p \mod p^2$, there exists δ_0 ($\delta_0 \in R^{\times}$) such that $j_2(\alpha_{i_2} - \alpha_{i_1} \varepsilon^{-1} p) \equiv \delta_0 p \mod p^2$ and for this δ_0 we choose δ ($\delta \in R^{\times}$) satisfying $\operatorname{Sp}((\delta_0 \delta \varepsilon_0^{p^K})^{p^{-(n-1)}}) \equiv 1 \mod p$. Now, let $B = E(\beta_{j_2}, \pi^{j_2})$ where $\beta_{j_2} = \delta p^{n-2}$ then $B \equiv 1 \mod \mathfrak{p}^{f_2-1}$.

And,

$$E(j_{2}\alpha_{i_{2}}\beta_{j_{2}}, \pi^{i_{1}+j_{2}}) \equiv 1 - j_{2}\alpha_{i_{2}}\delta p^{n-2}\pi^{e_{1}p} \mod \mathfrak{p}^{e_{1}p+(n-1)e+1}$$

Q. E. D.

$$E(j_{2}\alpha_{i_{1}}\beta_{j_{2}}, \pi^{i_{1}+j_{2}}) \equiv 1 - j_{2}\alpha_{i_{1}}\delta p^{n-2}\pi^{e_{1}p+e} \mod \mathfrak{p}^{e_{1}p+(n-1)e+1}$$

Thus,

$$E(j_{2}\alpha_{i_{2}}\beta_{j_{2}}, \pi^{i_{2}+j_{2}})E(j_{2}\alpha_{i_{1}}\beta_{j_{2}}, \pi^{i_{1}+j_{2}}) \equiv 1 - j_{2}(\alpha_{i_{2}} - \alpha_{i_{1}}\varepsilon^{-1}p)\delta p^{n-2}\pi^{e_{1}p}$$
$$\equiv 1 - \delta_{n}\delta\varepsilon_{n}^{p^{\kappa}}p^{n-1}\pi^{p} \mod p^{e_{1}p+(n-1)e+1}$$

On the other hand, by (7),

$$E^*((\delta_0\delta\varepsilon_0^{p^{\kappa}})^{p^{-(n-1)}}p^{n-1})\equiv 1-\delta_0\delta\varepsilon_0^{p^{\kappa}}p^{n-1}\pi_1^p \mod \mathfrak{p}^{e_1p+(n-1)e+1}.$$

So we have, in explicit formula (9), $\gamma = (\delta_0 \delta \varepsilon_0^{p^{\kappa}})^{p^{-(n-1)}} p^{n-1}$ where

$$E(j_2\alpha_{i_2}\beta_{j_2}, \pi^{i_2+j_2})E(j_2\alpha_{i_1}\beta_{j_2}, \pi^{i_1+j_2}) \sim \cdots E^*(\gamma).$$

And $\operatorname{Sp}(\gamma) \equiv \operatorname{Sp}((\delta_0 \delta \varepsilon_0^{p^{\kappa}})^{p^{-(n-1)}} p^{n-1}) \equiv p^{n-1} \mod p^n$, so we have $(A_2 A_1, B) = \zeta_n^{\operatorname{Sp}(\gamma)} = \zeta_n^{p^{n-1}} \neq 1$.

Finally, we show that if $e+i_2=i_1$ and $\alpha_{i_2}\varepsilon\equiv\alpha_{i_1}p \mod p^2$ then we have $f\leq f_2-1$.

Now, let $n \ge 2$ and (Š) $B = \prod_{j} E(\beta_{j}, \pi^{j}) E^{*}(\beta) \equiv 1 \mod \mathfrak{p}^{f_{2}-1}$ then we have $\beta_{j} \equiv 0 \mod p^{n-2}$ for all $j \in F$ and

$$\beta_{j} \equiv \begin{cases} 0 \mod p^{n-1} & \text{if } j < e_{1}p - i_{2} \\ 0 \mod p^{n} & \text{if } j \le e_{1}p - e - i_{2} \end{cases}$$

The proof is quite similar to that of Lemma 1.

Therefore,

$$\prod_{j} E(j\alpha_{\imath_{2}}\beta_{j}, \pi^{\imath_{2}+j}) E(j\alpha_{\imath_{1}}\beta_{j}, \pi^{\imath_{1}+j}) \sim E(j_{2}\alpha_{\imath_{2}}\beta_{j_{2}}, \pi^{\imath_{2}+j_{2}}) E(j_{2}\alpha_{\imath_{1}}\beta_{j_{2}}, \pi^{\imath_{1}+j_{2}}),$$

where $j_2 = e_1 p - i_2$, i.e. if $j \neq j_2$, $E(j\alpha_{i_2}\beta_j, \pi^{i_2+j}) \sim 1$ and $E(j\alpha_{i_1}\beta_j, \pi^{i_1+j}) \sim 1$. In fact, if $j < e_1 p - i_2$ then $\alpha_{i_2}\beta_j \equiv 0 \mod p^n$, if $j > e_1 p - i_2$ then $\alpha_{i_2}\beta_j \equiv 0 \mod p^{n-1}$ and $\operatorname{ord}^{\times} E(j\alpha_{i_2}\beta_j, \pi^{i_2+j}) > e_1 p + (n-1)e$. And if $j \leq e_1 p - e - i_2$ then $\alpha_{i_1}\beta_j \equiv 0 \mod p^n$, if $e_1 p - e - i_2 < j < e_1 p - i_2$ then $\alpha_{i_1}\beta_j \equiv 0 \mod p^{n-1}$ and $\operatorname{ord}^{\times} E(j\alpha_{i_1}\beta_j, \pi^{i_1+j}) > e_1 p - e - i_2 + i_1 + (n-1)e = e_1 p + (n-1)e$, because $e + i_2 = i_1$. And if $e_1 p - i_2 < j$ then $\alpha_{i_1}\beta_j \equiv 0 \mod p^{n-2}$ and

$${\rm ord}^{\times} E(j\alpha_{\imath_1}\beta_{\jmath}, \ \pi^{\imath_1+\jmath}) \! > \! i_1 \! + \! e_1 p \! - \! \imath_2 \! + \! (n\! -\! 2) e \! = \! e_1 p \! + \! (n\! -\! 1) e \, .$$

Now,

$$\begin{split} E(j_2\alpha_{i_2}\beta_{j_2}, \pi^{i_2+j_2})E(j_2\alpha_{i_1}\beta_{j_2}, \pi^{i_1+j_2}) &\equiv (1-j_2\alpha_{i_2}\beta_{j_2}\pi^{e_1p})(1-j_2\alpha_{i_1}\beta_{j_2}\pi^{e_1p+e}) \\ &= 1-j_2(\alpha_{i_2}-\varepsilon^{-1}\alpha_{i_1}p)\beta_{j_2}\pi^{e_1p} \mod \mathfrak{p}^{e_1p+(n-1)e+1}. \end{split}$$

While by the assumption $\alpha_{i_2} - \varepsilon^{-1} \alpha_{i_1} p \equiv 0 \mod p^2$ and $\beta_{j_2} \equiv 0 \mod p^{n-2}$ so we have $E(j_2 \alpha_{i_2} \beta_{j_2}, \pi^{i_2+j_2}) E(j_2 \alpha_{i_1} \beta_{j_2}, \pi^{i_1+j_2}) \sim 1$ by (12). Consequently $\gamma \equiv 0 \mod p^n$, \mathfrak{P} in (9).

Thus, we have shown $(A_2A_1, B) = \zeta_n^{\text{Sp}(7)} = 1$ for any B, such that $B \equiv 1 \mod \mathfrak{p}^{f_2-1}$. Q.E.D.

Now, we prove Theorem 1 in the case $p \neq 2$.

Let $A_{p^n} \pi^a \prod_i E(\alpha_i, \pi^i) E^*(\alpha)$ and f = f(A). When n = 1 and $i_1 = 0$ by Lemma 2,

Lemma 4 (i) and (15), we have $f=f(\pi^{a})=e_{1}p+1=f_{1}$.

If $i_1 \ge 1$, $A_{\underset{p}{p}i \ge i_1} E(\alpha_i, \pi^i) E^*(\alpha)$ and by Lemma 4 and (15) $f=f(E(\alpha_{i_1}, \pi^{i_1})) = e_1 p - i_1 + 1 = f_1$ and $f_1 = \operatorname{Max} \{f_1, f_2\}$ because $f_2 < f_1$ by the definition $i_{n+1} = i_n$. Next let $n \ge 2$, if $0 = i_2 = i_1$ we have $f = e_1 p + (n-1)e + 1 = f_1$ by Lemma 2, Lemma 4 and (15), and $f_1 = \operatorname{Max} \{f_2, f_1\}$ because $i_2 = i_1$. If $0 = i_2 < i_1$ then $A = A_2 A_1$ where

$$A_{2} = \begin{cases} \pi^{a} : i_{1} = 1 \quad (\text{ord } a = 1) \\ \pi^{a} \prod_{i < i_{1}} E(\alpha_{i}, \pi^{i}) : i_{1} > 1 \quad (\text{ord } a = \text{ord } \alpha_{i} = 1) \end{cases}$$

and

$$A_1 = \prod_{i \ge i_1} E(\alpha_i, \pi^i) E^*(\alpha) \quad (0 = \text{ord } \alpha_{i_1} \le \text{ord } \alpha_i).$$

Thus we have $f(A_2)=e_1p+(n-2)e+1=f_2$ by Lemma 3, Lemma 4 and (15), $f(A_1)=e_1p+(n-1)e-i_1+1=f_1$ by Lemma 2, Lemma 4 and (15).

Since $e+i_2 \neq i_1$, $f_1 \neq f_2$ and we have $f=Max\{f_2, f_1\}$ by (15).

If $1 \leq i_2 < i_1$ then $A = A_3 A_2 A_1$ where

$$A_{3} = \begin{cases} \pi^{a} : i_{2} = 1 \quad (\text{ord } a \ge 2) \\ \pi^{a} \prod_{i < i_{2}} E(\alpha_{i}, \pi^{i}) : i_{2} > 1 \quad (\text{ord } \alpha_{i} \ge 2) , \end{cases}$$
$$A_{2} = \prod_{i_{2} \le i < i_{1}} E(\alpha_{i}, \pi^{i}) \quad (\text{ord } \alpha_{i} = 1)$$

and

$$A_1 = \prod_{i \ge i_1} E(\alpha_i, \pi^i) E^*(\alpha) \quad (0 = \text{ord } \alpha_{i_1} \le \text{ord } \alpha_i).$$

Now, since ord $a \ge 2$ and ord $\alpha_i \ge 2$ $(i < i_2)$ we have $f(A_3) \le e_1 p + (n-3)e + 1$ by Lemma 3 and (15) and $e_1 p + (n-3)e + 1 < Max \{f_2, f_1\}$ because

$$f_1 - (e_1p + (n-3)e + 1) = 2e - i_1 \ge 2e - (e_1p - 1) > 0$$
.

And $f(A_2) = f_2$, $f(A_1) = f_1$ by Lemma 4 and (15). Therefore $f = f(A_3A_2A_1)$ $\leq Max\{f_2, f_1\}$ by (15). Moreover if $e + i_2 \neq i_1$ or if $e + i_2 = i_1$ and $\alpha_{i_2} \varepsilon \equiv \alpha_{i_1} p \mod p^2$, then $A_2A_1 = E(\alpha_{i_2}, \pi^{i_2})E(\alpha_{i_1}, \pi^{i_1})B$ where

$$B = \prod_{\substack{i > i_2 \\ i \neq i_1}} E(\alpha_i, \pi^i) E^*(\alpha) \,.$$

By Lemma 5 $f(E(\alpha_{i_2}, \pi^{i_2})E(\alpha_{i_1}, \pi^{i_1})) = Max\{f_2, f_1\}$ and $f(B) < Max\{f_2, f_1\}$ by Lemma 4 and (15), so we have $f(A_2A_1) = Max\{f_2, f_1\}$ and $f = f(A_3A_2A_1) = Max\{f_2, f_1\}$. If $e+i_2=i_1$ and $\alpha_{i_2}\varepsilon \equiv \alpha_{i_1}p \mod p^2$ then $f(E(\alpha_{i_2}, \pi^{i_2})E(\alpha_{i_1}, \pi^{i_1})) < Max\{f_2, f_1\}$ by Lemma 5, and $f = f(A_3A_2A_1) < Max\{f_2, f_1\}$ from (15).

Finally, in the case $1 \leq i_2 = i_1$, $A = A_3A_1$ where

$$A_{3} = \begin{cases} \pi^{a} : i_{1} = 1 \quad (\text{ord } a \ge 2) \\ \pi^{a} \prod_{i < i_{1}} E(\alpha_{i}, \pi^{i}) : i_{1} > 1 \quad (\text{ord } a \ge 2, \text{ ord } \alpha_{i} \ge 2) \end{cases}$$

and

$$A_1 = \prod_{i \ge i_1} E(\alpha_i, \pi^i) E^*(\alpha) \quad (\text{ord } \alpha_i \ge \text{ord } \alpha_{i_1} = 0).$$

Just as before, we have $f=f_1$ because $f(A_3) \leq e_1 p + (n-3)e + 1 < f_1 = f(A_1)$, and $f_1 = \max\{f_2, f_1\}$ because $i_2 = i_1$.

Thus the proof of Theorem 1 in the case $p \neq 2$ is completed.

PROOF OF THEOREM 1 IN THE CASE p=2.

The difference with the case $p \neq 2$ is that, in the explicit formula (10) another term $\prod_{\mu,\nu=1}^{\infty} E((2^{\mu-1}i+2^{\nu-1}j)\alpha_i^{P^{\mu}}\beta_j^{P^{\nu}}, \pi^{2^{\mu}i+2^{\nu}j})$ is multiplied to each $E(j\alpha_i\beta_j, \pi^{i+j})$. But for all α_i , β_j which appear in the proofs of Lemma 2 and Lemma 5 in the case $p \neq 2$, $\gamma_{ij\mu\nu} \equiv 0 \mod p^n$, \mathfrak{P} for all μ , ν ($\mu \ge 1$, $\nu \ge 1$) where

$$E((2^{\mu-1}i+2^{\nu-1}j)\alpha_{i}^{P^{\mu}}\beta_{j}^{P^{\nu}}, \pi^{2^{\mu}i+2^{\nu}j}) \sim \cdots E^{*}(\gamma_{ij\mu\nu})$$

Therefore the multiplied term gives no influence to the class of $\gamma \mod p^n$, \mathfrak{P} . Thus, having Lemma 3, 4 which are corollaries of Lemma 2, Theorem 1 holds also for p=2.

§4. Remarks and examples.

Remark 1. By elementary but rather complicated calculations of the explicit formula we can prove Theorem 1 without (15).

Remark 2. Let n=1 and $A_{p}\prod_{i} E(\alpha_{i}, \pi^{i})E^{*}(\alpha)$ then Theorem 1 asserts that the conductor of $K(\sqrt[q]{A})/K$ is $\mathfrak{p}^{e_{1}p-i_{1}+1}$. On the other hand, the number i_{1} is characterized by the following congruences:

$$A \equiv 1 \mod \mathfrak{p}^{\iota_1} \mod A \not\equiv 1 \mod \mathfrak{p}^{\iota_{1+1}}$$

where, generally, the notation $A \equiv 1 \mod \mathfrak{p}^k \ (m \ge 1, k \ge 1)$ means that there exists a principal unit η of K such that $A\eta^{-p^m} \equiv 1 \mod \mathfrak{p}^k$. This result is known (H. Hasse [1], I_a, p. 90, Satz. 10). While, when $n \ge 2$ it is impossible in general to determine the conductor of $K(\mathfrak{P}^{\gamma}A)/K$ by analogous congruences.

For example, let $K = Q_p(\zeta_2)$ $(p \neq 2)$ and

$$A_{\widetilde{p^2}} E(\alpha_{i_2}, \pi^{i_2}) E(\alpha_{i_1}, \pi^{i_1})$$

where

ord
$$\alpha_{i_2} = 1$$
 ($2 \leq i_2 \leq e_1 - 1 = p - 1$)

and

ord
$$\alpha_{i_1} = 0$$
 $(i_1 = e + 1 = p(p-1) + 1)$.

Then $A \equiv 1 \mod \mathfrak{p}^{i_2 p}$ and $A \not\equiv 1 \mod \mathfrak{p}^{i_2 p+1}$ for $i_2 = 2, \cdots, p-1$.

While, since $f_1 = e_1 p > f_2 = e_1 p - i_2 + 1$ for any i_2 $(2 \le i_2 \le p - 1)$, the conductor of $K(\frac{p_2^2 \sqrt{A}}{\sqrt{A}})/K$ is $\mathfrak{p}^{e_1 p}$ by Theorem 1.

Example 1. Let $K \ni \zeta_n$ and π be a prime of K.

(i) Let $A = \pi^a \eta$ where $a \in \mathbb{Z}$, $a \not\equiv 0 \mod p$ and η is a unit of K, then the conductor of $K(\sqrt[p]{A})/K$ is $\mathfrak{p}^{e_1p+(n-1)e+1}$.

For, since $i_1=0$ we have $f=Max\{f_1, f_2\}=f_1=e_1p+(n-1)e+1$ by Theorm 1.

(ii) Let $n \ge 2$ and $A = \pi^p (1 - \pi^j)$ $(e < j < e_1 p)$, then the conductor of $K(\sqrt[p^n]{A})/K$ is $\mathfrak{p}^{e_1 p + (n-2)e+1}$.

For, since $i_2=0$ and $i_1=j$ we have $e+i_2 < i_1$ and $f=Max \{f_2, f_1\}=f_2=e_1p+(n-2)e+1$.

Example 2. Let $K = Q_p(\zeta_n)$ then the conductor of $K(\sqrt[p^n]{\zeta_m})/K$ $(1 \le m \le n)$ is $\mathfrak{p}^{e_1 p + (m-1)e}$.

For, let $1-\pi = \zeta_n = \prod_i E(\alpha_i, \pi^i) E^*(\alpha) \ (\alpha_1 \not\equiv 0 \mod p)$ then

$$\zeta_m = \zeta_n^{p^{n-m}} = \prod_i E(\alpha_i p^{n-m}, \pi^i) E(\alpha p^{n-m}).$$

Therefore, since i_{n-m} does not exist and $i_{n-m+1}=1$, we have $f=f_{n-m+1}=e_1p+(m-1)e$ by Theorem 2.

Example 3. For some Kummer extensions we can get the ramification subgroups from conductors obtained by Theorem 1. For example, let $K \ni \zeta_n$ $(n \ge 1)$ and $L = K(\overline{k^n}/\overline{A_i^{\alpha_i}})$ where i=0 or $i \in F$ and $A_0 = \pi^{\alpha_0}$ $(\alpha_0 \in \mathbb{Z}, \alpha_0 \not\equiv 0 \mod p)$, $A_i = E(\alpha_i, \pi^i)$ $(i \in F, \alpha_i \in I, \alpha_i \not\equiv 0 \mod p)$. Now, let $G = \langle \sigma \rangle = \text{Gal}(L/K)$ and G_j be the *j*-th ramification subgroup of this extension:

$$G = G_0 = \dots = G_{m_1} = \langle \sigma \rangle \stackrel{\text{red}}{=} G_{m_1+1} = \dots = G_{m_2} = \langle \sigma^p \rangle \stackrel{\text{red}}{=} \dots$$
$$= G_{m_n} = \langle \sigma^{p^{n-1}} \rangle \stackrel{\text{red}}{=} G_{m_n+1} = \{1\} .$$

Then, we have $m_k = e_1 p^k - i$ for $k = 1, 2, \dots, n$.

Proof. Since L/K is a totally ramified cyclic extension of degree p^n , we only need to calculate m_k . Now, by Theorem 1 (or by Lemma 2) we have $f^{(s)} = e_1 p + (s-1)e^{-i+1}$ $(1 \le s \le n)$ where $\mathfrak{p}^{f^{(s)}}$ is the conductor of $K(p_{\sqrt{A_i^{\alpha}}})$. Thus,

$$f^{(1)} = e_1 p - i + 1 = \frac{1}{\#G_0} \sum_{j=0}^{m_1} \#G_j = m_1 + 1 \quad \text{and so} \quad m_1 = e_1 p - i \,.$$

$$f^{(2)} = \frac{1}{\#G_0} \sum_{j=0}^{m_2} \#G_j = f^{(1)} + (m_2 - m_1) p^{-1} \quad \text{and so} \quad m_2 = e_1 p + m_1 \,,$$

because $f^{(2)}-f^{(1)}=e$. By repeating this process, we have

$$m_k = ep^{k-1} + ep^{k-2} + \dots + ep + m_1 = e_1p^k - i$$

because $e_1(p-1)=e$.

Q. E. D.

References

- [1] H. HASSE, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraishen Zahlenkörper, Physica-Verlag (1970).
- [2] H. HASSE, Zahlentheorie, Akademie-Verlag (1969).
- [3] H. HASSE, Zur Arbeit von I. R. ŠAFAREVIČ über das allgemeine Reziprozitätsgesetz, Math. Nach. 5 (1951), 301-327.
- [4] M. KNESER, Zum expliziten Reziprozitätsgesetz von I.R. ŠAFAREVIČ, Math. Nach. 6 (1951), 89-96.
- [5] I.R. ŠAFAREVIČ, A general reciprocity law, J. Math. Sbornik 26 (1950), 113-146.
- [6] J.P. SERRE, Corps locaux, Hermann (1962).

DEPARTMENT OF MATHEMATICS, Miyagi University of Education, Sendai, Japan