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ON THE CONDUCTORS OF p-CYCLIC KUMMER
EXTENSIONS OF LOCAL NUMBER FIELDS

BY SUGURU HAMADA

Introduction. Let p be a prime number, Q, be the rational p-adic number
field, and K be a finite extension over Q, containing a primitive p"-th root of
unity.

An explicit formula of the norm residue symbol for the elements of K is
known (H. Hasse [3], M. Kneser [4], and L. R. Safarevi¢ 5.

In this paper, using the explicit formula we describe the conductor of Kummer
extension K(*"+/A)/K in some cases by means of the “exponents” of A in its
Safarevi&’s representation (Theorem 1 and 2).

When n=1 the result is found in H. Hasse [1] (Remark 2). In §1, for
convenience, we write down the outline of the Safarevi€’s representation of the
elements of K and the explicit formula, following H. Hasse [3] and M. Kneser
[4]. In §2, we give our theorems, in §3 we prove our theorems, and in §4 we
give some remarks and examples.

§1. Notations.

Z: the ring of rational integers. p: a prime number. Q,: the rational p-adic
number field. Z,: the ring of integral elements of @, {,:a primitive p"-th
root of unity. K: a finite extension of Q,, containing {,. K*: the multiplicative
group of non-zero elements of K. p: the maximal ideal of K. =x: a prime
element of K. H,: the multiplicative group 1+p™ (m=1, 2, ---). ord*: for a
principal unit » of K we write ord*(y)=m if and only if y€H, and & Hpyi

~ : for elements A, B of K* we write A~ B if and only if AeBK*?™.

pm pm
2. the group of p™-primary numbers of K. T : the inertia field of K/Q,. I:
the ring of integral elements of 7. R: the multiplicative representatives of the
residue class field of K, RCI. R*: R*=R—{0}. ord: the p-adic order function
on T. Sp: the trace mapping from T to Q,.

T : the completion of the maximal unramified extension of Q,. I: the ring
of integral elements of T. R: the multiplicative representatives of the residue
class field of T, Rci. P: the Frobenius automorphism of the extension T/Q,.
P : the additive endomorphism of [ defined by B@=a’—a (@<l). e: the
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ramification index of the extension K/Q,. en: the ramification index of the
extension K/T({n), where £,={2""™ (1=m=n). We have e;+e=e,p, e;=e,p™ .

F:F={ill1si<e,p, (i, p)=1}.
Tny, Ty Tp=1—C,, m;=1—{,. We have
nd"=—gB"'p=rl=—m,p  mod pr*i.
e, k, €, €1 e;=¢,p*"! where (e,, p)=1 (k=n),

e P=¢P"7?  mod pi1P*! (¢, R¥)
and
—p=er® mod pe*! (e€ R¥).

Now, for convenience, we write down the outline of Safarevit’s represent-
ation of elements of K following H. Hasse [3]. Generally, if a system
S={n:Irer, k=1, 2, ---} is given so that 7,()=1—rx* mod p**’, then every
element p< H, is written uniquely as follows:

W p=IL @,  mES,

Such a system S is given by Safarevi®’s E-function and E*-function. The defini-
tions and some properties of these functions are as follows. We define:

w
Ela, x)= TI (l—a™x™#m™/m  where acR, x€p
m=1
(m, pr=1

and p is the Mobius function.

E(a, x)= 20 E(a, ), where a=Xa,p*cl (a,€R).

Then
2) E(a, x)=1—ax mod x*
and E(a+8, x)=E(a, x)-E(B, x)

Elaa, x)=E(a, x)* where a, ! and a<€Z,
Next, for e« we define
EXa)=E(p"@, Fn)=E(@, o))"

where B(@)=a (@), {,=E(, #,) and E(&, #,) is defined by the same formula
as before. Then

) E¥@)=1—a?"'z?  modp?*! (a=R) and
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E¥(a+ B)=EXa)E*(B)
E*aa)=E*a)® where «a, fc] and a€Z,.

Moreover, {E¥(a)|acl}-K*?"=2Q,
The following congruences are well known (H. Hasse [2]). For an integral
element a of K, let p=1—az* mod p**' then

1—aP?zn*? mod p*?**  if i<e
@) p?={ 1—(a?—ea)z®®  mod p:?*' if i=e¢,
l—apr® mod p*tett if i>e;.

Now, as in Notations, let F={i|1=i<e,p, (i, p)=1} then the ¢ integers k(e;<k=e,p)
are written uniquely

k=ip*t (I€F, £;=0, £e,=r)
and every positive integer k is written uniquely as follows:
if k=e, then k=1p" (I€F, 0=v;<k,)
if k>e, then Fk=ip‘ityie (I€F, v;=0).

From (2) and (4) we have
(5) E(ap”, n9)=E(a, )7 =1 —ax®)?"

=l—a”'z*  mod p**!
(@€R, 1=k=e;, k=ip™).
The above congruences hold also for y;=k, if i#e, (.e. e;<k<e;p,
k=ip*). And
(6) E(ap"i“"’li, ni)El_ap‘ip”:n.zp‘i mod pk+1 .

(a€R, e;p<k, k=ipit+vie (i#e,), v;>0). For the exceptional k=e,p+1v’e (v'=0)
corresponding to i=e,, we have from (3) and (4)

) EXap”)=EX@)?" =(1—a?" 'z0)?" =1—a?" ' p"z?

mod p** (e R).

Since R?™=R (m=1), a desired system S has been given and from (1) every
n€ H, is represented by E-function and E*-function. Consequently every element
Ae K™ is represented uniquely as follows:

(é) Azn“pigE(al, ) EXa) (a€Z, peR*, a,, a=] a,,: mod p* reduced.)

Now, for every m (1=m=n), we have
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® 7o I1 E(a,, )E*(a) ~ =z p' I E(a;, z")E(a’)
i€eF pm i€EF

if and only if a=a’ mod p™, a;=a;, mod p™ (i€ F), and a=a’ mod p™, P where
the last congruence means that there exist J, #=I such that a—a’=p™d+B(O).

In the following we write IT instead of g and ~ instead of ~.
1 kA pn

[EXPLICIT FORMULA] (H. Hasse [3], M. Kneser [4] and . R. Safarevic (51)
Let A, B be two elements of K* such that

Awn“I;IE(at, HEX(a), Bwnbl;[E(ﬂ,, =EX*(B)

then the norm residue symbol (A, B) 1s given by
©) If p#2 (4, By=Lpees-remn
where 1%_ZFE(jai‘B,, 7T1'+j)"\’].;.[E<7k; THEX().

10) If p=2 (A, By={pep-ram

where
(—1® I [EGaig,, =) T1 B2e+ j2-9al B, )|
1, JEF p,vzl

~HE7:, HEXT) .

§2. Theorems.
We write also zal;[E(az, ) E*a)={ao, a3, -, @) Where a,=a.

The aim of this paper is to describe, in some cases, the conductor p’ of the
extension K(’ A )/K by means of conditions on a,, @, (€F).

From the facts in §1, the extension K(X'A)/K is unramified if and only if
a;=0 mod p™ for all ieF and 1=0.

Thus we consider only the case when for some » (1=r=n) there exists i
(=0 or i1eF) such that a;%0 mod p". And we denote i, the least suffix i for
which «;%=0 mod p". If 1, exists then .4, ---, i, exist and

elp_lgirg gin—lgingo .

When 1, exists we set f,=e;p+(n—r)e—i,+1.
Moreover, for convenience, we set i,.,=1, and f,.,=e;p—e—i,.;+1. Then
fn>fa+: holds. This definition is natural in the following sense; if i,,, is the

least suffix i for which a;%%0 mod p**!, we have i,,,=1,; here if i,,,<i, we can
tn+1

take B=<0, -, \0/ , t, O, > instead of A; for this B we have ip.;=i,.
Now, it follows from §1 that the extension KX’ A)/K is a totally ramified
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extension of degree p” if and only if i, exists.

THEOREM 1. The extension KK'A)/K is a totally ramified extension of
degree p™ if and only 1f there exists i 1=0 or 1€F) such that a; 0 mod p.
And, then

f=Max {f,, fo}

where p’ 1s the conductor of the extension KR/'A)/K.
Movreover, f=Max {fi, fz} holds if and only if e+i,#1, (e fo#[f) or
a,eFa,, p mod p?, where —p=ex® mod p*** (e€ R*).

Remark. By the above remark, in the case n=1, our Theorem asserts that
f=fi. Moreover, for n=2, e+i,=i, and a,,6=a,,p mod p* occures in these cases
when p+#2 or p=2 and T=Q,. For example, in these cases, let 1=i,<e,,
e+i,=1, and A~E(rp, n*2)E(l, n*1) where re=1 (= R*).

Now, THEOREM 1 can be generalized easily to the case when K®X'A)/K
contains an unramified subfield:

THEOREM 2. For integer m (1=m=n), if «;=0 mod p™! for all i€F and
1=0 and there exists some i (i€ F or 1=0) such that a; %0 mod p™, then

f:—<.MaX {fm; fm+1}

where p’ is the conductor of the extension KRVA)/K. Moreover, f=Max {fn,
fm+1} holds if and only if etiniFin (i e Jms1F fm) 07 a1m+15$azmp mod p™*,
where —p=en® mod p**! (e R*).

Remark. In the case m=n, our Theorem asserts that f=f,. In fact, Theorem
2 is proved by Theorem 1 as follows: By assumption,

ay=aip™ ' and a,=a,p™* (icF) for some a;=Z and aic=].
So we have A%E*(a) and L=K(*™ /A )=K(*™/E*() ) is unramified over K.
o

Let B=?"""%/A then K®/A)=K(*" ™"%/B) and B,-\+{<a3, al, -, inL
pn—m
where 7 is an integral element of the inertia field of L/Q,.
Now, the least suffix such that a{=0 mod p is i,. Applying Theorem 1 to
the totally ramified extension K(*" ™*v/B)/L we have f<Max {fm, fm:1}, Where

p” is the conductor of K(*""™*3/B)/L. And, remarking that a; , ¢=a, p; mod p*
is equivalent to a,,,,c=a;,p mod p™** we have also the necessary and sufficient
conditions for f=Max {fn, fm+1}. Since L/K is unramified, as for the conductor

of K®'A)/K we have Theorem 2.
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§3. Proof of Theorem 1.

Now, for the proof of Theorem 1, we prove some Lemmas. In the proofs
we use following facts.
For a principal unit B in K and positive integer 7,

(11) if B=1 mod pe1?*-berl then B._1.
pT
(J.P. Serre [5], p. 219, Proposition 9).
By (5), (6), and (7)
(12)  if (S) B=TIE(B,, z©)=1 mod p* (k=1) then E(B,, n/)=1 mop p* for all
J

jE€F and E*(f)=1 modp*. By (2) and (4)

(13) if s>e; then ord*E(ap™, n¥)=s+me (a=I, az£0 mod p, m=0: integer).
(14) if i<j (i, jEF, i#e,, j#eo)

ord*E(p™, n*)<ord*E(p™, n’) and when m=k—1 (especially when m=<n—1) this
inequality holds also for i=e, or j=e,.

In fact, let i#e¢, and j+e, since 1<j we have k;=k, if k,=¢, then the
result follows immediately, so let >k, If m=g;<k, then ord*E(p™, z%)
=ipm<jpm=o0rd*E(p™, n?), if k;<m=k, then ord*E(p™, nf)—ord*E(p™, rt)=jp=
+(m—r;)e—ip™>0, because jpi—ip™>e;—ep=—e, (m—rk)e=e, and if £;<k;<m
then ord*E(p™, n/)—ord*E(p™, n¥)=jp—ip*i4(k;—k;)e>0, because jpti—ip*i>
—e and (k;—«xj;)e=e. Furthermore, if m=r—1 then, since ord*E(p™, n*)=e,p™,
the inequality holds also for i=e, or j=e,.

LEMMA 1. Let n=1, for a given integer t (1=0 or t€F), let k=e,p+(n—1)e
—t+1 and

©) B=IIE(B, #)EX)=1  modp*.

Then, (i) when t=0, §,=0 mod p" for all j€F and f=0 mod p", P.

(ii) When 1=t<e, ;=0 mod p™* for all j&€F and B=0 mod p"*, B and
moreover B;=0 mod p™ if j=<e,p—t.

(ill) When e<t<e;p, B;=0 mod p™* for all jeF, B=0 mod p"% P and
moreover

{ 0 mod p™? if j=eipte—t
0 mod p™ if jSep—t.

Remark. For n=1, the parts of mod p™! and p"? in the Lemma 1 and its
proof may be omitted.

Proof. (i) follows immediately from (11) and (8).
(ii) Since t<e we have k>ep+(n—2)e+1 and B/\{l by (11) and so by
pn-

(8), B;=0 mod p™* for all j&F and f=0 mod p"~?, P.
Next we show that 8,=0 mod p™ if j<e,p—t. For, let 8,70 mod p" for
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some j, j=e,p—t then since ¢;p—t>e, we have ord*E(B,, z/)<ord*E(p™~!, x1?"t)
=e¢,p—t+(n—1)e<k by (13) and (14), this contradicts to the assumption
E(B,, #)=1 mod p*.

(ili) Since t<e,;p=2e¢ we have k>e;p+(n—3)e+1. It follows that B ~_1

pn—z
and ;=0 mod p"~* for all jeF, f=0 mod p"% P. Next we show that j3,=0
mod p* ! if j<e,p+e—t. Let 8,70 mod p™* for some j, j=<e,p+e—t, then

ord*E(8,, a)<ord*E(p™?, 1P+ t=g,p+e—1+(n—2)e<k,

by (13) and (14) but this contradicts to our assumption.

Finally we show that 8,=0 mod p™if j=<e;p—t. Let ;%0 mod p” for some
7, j=e,p—t, then ord*E(B,, n?)Sord”E(p™?, n*) where 1=e,p—t. We show that
ord*E(p™ !, n¥)=m< k then the proof is completed.

Since i<e, it follows that x;=1. Now, in the case x,=n—1, we have

k—m=i+(n—Le+1—>Gp*i+(n—1—k,)e)=1—ip*i+re+1
by (6). If x,=1 then
E—m=—i(p—1)+e+1>—e,(p—1)+e+1>0,

if ;=2 then k—m>0 because ip“i=<e,p=2e.

And in the case x,>n—1, we have m=1ip" '=<e, by (5), and k—m=i+(n—1)e
+1—ip™t. If n=1 then clearly k—m>0 and if n=2 we have k—m>0 since
ipri<iptitige, Ze. Q.E.D.

Proof of Theorem 1 in the case p+2.
In the following, when the conductor of KR/'A )/K is p/ we write f=5(A).

LEMMA 2. Let n=1 and p+2 then
(i) if A~r® (eeZ, az=0 mod p),

fA)=e;p+(n—Le+1,
(ii) 1f A~E(a,, ©%) I€F, a;€1, a;70 mod p),
f(A)=e,;p+(n—1)e—i+1.

Proof. (i) Let B=1 mod p@?*™-bett then B~ 1 by (11) so we have (4, B)
=1 and f(A)<e,;p+(n—1)e+1. Next, let B=E*@p" ') where 6= R* and Sp(0)=1
mod p. Then B=1 mod p&1?*-0e by (7) and (4, B)={P@?" =1, So we have

f(A)=Ze, p+(n—1e+1.
(ii) Proof of f(A)<e,p+(n—1)e—i+1. Let
() B=ITE(B, )EX(H=1  modprr+er-vesi
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We show that E(ja:B,, n**/)~.1 for all j€F by showing that «;8,=0 mod p™ or
ord*E(ja.B,, **?)>e,p+(n—1)e. Then we have the result by the explicit formula
9).

Case 1; 1<i<e. By Lemma 1, if j<e,p—: then B8;=0 mod p" so we have
a;8,=0 mod p*. If j>e,p—1 then j>e; and §,=0 mod p**' by Lemma 1 so we
have ord*E(ja;f8,, n**)=1+j+(n—1)e>e;p+(n—1)e by (13).

Case 2; e<1<e;p. By Lemma 1, if j=e,p—i then «;8;,=0 mod p", if
e, p—i<j=e;p+e—:1 then a;8;=0 mod p**andsoord*E(ja;B,, n**)>e,p+(n—1)e
by (13), and if e;p+e—i<j then @;8;=0 mod p** and ord*E(ja;B,, n**)>e,p
+et+(n—2)e=e,p+(n—1)e by (13).

Proof of f{A)=e,p+(n—1)e—i+41. It is enough to show that there exists
B such tnat

B=1 mod pup+-be-r and (4, B)#1.

Case 1; 1=1<e. Let B=E(B,, n’) where j=e¢,p—1 (JEF, j>e,) and §,=dp™*
(0e R* will be determined below). Then E(B,, z/)=1 mod pt1?-**(-0¢ phy (13),
and E(ja,B, n*)=1—ja:dp™ 'wP=1—3,0 p™'eZ*z? mod p*1?*-Derl wwhere ja,
=0, mod p (0,=R*) and ¢, is that of Notations. On the other hand, by (7)
E*((8,0e25)7™ "D p=1)=1—§,5¢2* p"~ 7% mod p*17+*-Ve+1. So, we have E(ja,B,, 7**)
~E*((0,062%)P" " P pn-1) and in explicit formula (9), we have 7=(8,0e2")?" "V pn-1,
Now, if we choose & so that Sp((6,0¢2%)?"""")=1 mod p then B=1 mod p*:1?+»-De-2
and (4, B)={PM =2 %1,

Case 2; i>e. Let B=E(B,, n’) where j=e,p+e—i (j€F and j>e,) and
B;=0p"? (b=R* will be determied below). Then we have E(ja;$, =**7)
=1—ja;0pm i1 e=1+ ja;0e 1 p" In®1P=1—§,0e2" p" " 'x? mod p°1P*™-Ve*l  where
—jae =0, mod p (d,=R*) and e is that of Notations. Thus, just as Case 1,
we have in (9) 7y=(3,0¢E")?" " P pr-1 Therefore, if we choose 6 so that Sp(y)
=p*! mod p”, we have B=1 mod pe1?*-De-* and (4, B)={PP =" =1.

Q.E.D.

From Lemma 2, we have following two Lemmas immediately.

LEMMA 3. Let n=1 and p+2. Then we have
(i) iof A~r® a=Z and ord a=m (0=m=n—1),

fA)y=e;p+(n—m—1)e+1.

(i) 1f A=E(a,, 7%, 1€F, ax<I and ord a,=m (0=<m=n—1),
fA)=e,p+(n—m—1)e—1+1.

Proof. (i) Let a=a’p™ (a’€Z, a’%0 mod p) and A’=z*. Then KRX'A)

=K(*""X/A4’) and the conductor of K(?" x/A’) is perpt-m+berl hy T emma 2 (i)
(using n—m instead of n), so we have f(A)=e,p+(n—m—1)e+1. Just as (i) we
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have (i) from Lemma 2 (ii). Q.E.D.

LEMMA 4. Let nzl and p#2. Then
(1) f@®)>f(E(aw, o)) and f(z®)> fEX(@))

where acZ, a;l (1€F), 0=ord a=n—1, ord a<ord a, and a<l 1s arbitrary.
(i)  AE(ay, a0)>f(Ela,, ) and  f(E(a,, ©9)>[(EX(a))

wherei, jeF (i1<j), a,, acl and 0=ord a,=n—1, orda,=ord a, and a 1s arbitrary.

Proof. We have the result immediately from Lemma 3 and the fact E*(«)
is p"-primary.

Now, by local class field theory and by definition of conductor, we have:
For elements By, -+, B, of K

(15) (B, B)=Max {f(B)), ---, f(Bn}
and
f(By- By=f(By) if fAB)>AB) =2, -,7).

In fact, by local class field theory and by definition of conductor, the conductor
of L=KX/'B,, -, ¥'B,) is pMaxt/DP /D1 where f®=fB,) (1=<i<r). Since
K® B, - B,) is a subfield of L we have f(B; - B))<Max {f®, ---, f™}.

Next, let fO>f® (j=2, ..., ¥). Since K&'B,- By, ¥'B,, -, ¥ B,)=L, we
have Max {f(B;--- B,), f®, -+, f™}=f and it follows that f(B, - B)=f*=/f(B)).

LEMMA 5. Let n=2 and p+2.

If A,~E(a,, ©?) (i,€F, a,€l, orda,,=1) A~E(a,, =) (LWeEF, a, €],
orda,,=0) and fi=e;p+(n—2)e—i,+1, fi=ep+(n—1e—1n+1 then we have
flAA)SEMax {fy, fi}. Moreover, f(A,A)=Max {f, fi} 1f and only if eti.#u
or a,eFa,,p mod p® and e+i,=i,.

Proof. ByLemma3(ii), f(A,)=f,and f(A,)=f;. By (15)we have f=Max{f,, fi}
where f=f(A,A4;). And if f,#f, (.e. e+i,#1,) then f=Max{f,, fi} by (15).

Next, we show that if e+i,=i, (i.e. fo=/1) and a,,6Fa,,p mod p® then
f=r=r.

Since f=f,=f, it is enough to show that there exists B such that B=1
mod p72~* and (A,A4,, B)+1.

Since e+i,=1i; and 1,, i, F it follows that e¢,>i,=1. Let j,=e;p—1, then
J.€F and j,>e;.

By the assumption a,,¢¥a,,p mod p* there exists d, (§,€R*) such that
Jolo,—a, e p)=08,p mod p*> and for this J, we choose 6 (§=R*) satisfying
Sp ((0,0¢2")?" " )=1 mod p. Now, let B=E(B,, n’?) where B,,=0p"* then
B=1 mod p’/2%,

And,

E(jos, B8,y w12 =1— foa,, 0™ 2w t1P mod perprm-ert
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E(].zallﬁjz, 7.:114-]2)5l__]'zallapn—zn.elpi-e mod p€1p+(n—l) e+1
Thus,
E(jo0u, 8, w20 E(j2a, B,y Tt 2)=1— (a0, —a, &7 p)opm PP

=1—0,0eE" p*n? mod pé1Ptm-be+l
On the other hand, by (7),

EX(3,0e85)7™ "0 pr-t)=1—8,8e8° p 1n?  mod peiptrbert

p-(n-D

So we have, in explicit formula (9), 7=(6,0¢2") p*! where

E(ja0u,B,, w2 E(jetn, By, TR~ oo EX(P).

And Sp ()=Sp ((3,0¢3)? " Pp»)=p""! mod p", so we have (A.A,, B)={PP
=C£"-1¢1.
Finally, we show that if e+i,=i; and a,,e=a,p mod p* then we have
féfz'—l-
Now, let n=2 and (S) B=IIE(B,, #/)E*(8)=1 mod p/27* then we have 3,=0
J

mod p*~% for all jeF and
{ 0 mod p™* if j<eip—i,
"lomodpr i j<ep—e—is.

The proof is quite similar to that of Lemma 1.
Therefore,

l;IE(jazzﬁ;, w2 E(jau, B, w1) ~ E(ja, By, T2 E(Ja, B,y 71112,

where j,=e,p—is, i.e. if j#j, E(ja,B, n***/)~1 and E(ja,fB, ='**)~1. In
fact, if j<e;p—1, then «,,8;=0 mod p*, if j>e;p—i, then «,,8,=0 mod p"~* and
ord*E(ja.,B,, n***)>e;p+(n—1e. And if j=<e,p—e—1, then a, ;=0 mod p",
if ep—e—i,<j<e,p—i, then «, ;=0 modp®*' and ord*E(ja,,B, n**’)
>e p—e—i,+i,-+H(n—1)e=e,p+(n—1)e, because e+i,=1;. And if e;p—1,<j then
a,,8;=0 mod p** and

ord*E(ja,, B, ) >i+ep—1+(n—2)e=e; p+(n—1De.
Now,
E(jsa.,8,, 7D E(aB,, 7t )=(1— j50.,8,,7 71— joat, B,,7°17%°)
=1—jua,—e ", p)By,m™?  mod prrrrThert,
While by the assumption a,,—¢ 'a,,p=0 mod p* and $3,,=0 mod p*~* so we have
E(js00,8,,, w2 E(jya.,f,,, wt1*72)~1 by (12). Consequently 7=0 mod p”, B in (9).

Thus, we have shown (A,A, B)={r"=1 for any B, such that B=1
mod p/z7t Q.E.D.
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Now, we prove Theorem 1 in the case p+2.
Let A_n*T1E(a,, n*)E*(a) and f=f(A). When n=1 and 7,=0 by Lemma 2,
pn 3

Lemma 4 (i) and (15), we have f=f(z%)=e,p+1=f..
If i,:=1, A_TII E(a,, #)E*() and by Lemma 4 and (15) f=f(E(a,,, ©*))
D iz

=e,p—10,+1=f, and f;=Max{f,, fz} because f,<f, by the definition i,.,=1,.
Next let n=2, if 0=i,=1; we have f=e;p+(n—1l)e+1l=f, by Lemma 2,
Lemma 4 and (15), and fi=Max{f,, fi} because i,=1,. If 0=i,<i, then A=A,A,
where

z%: 1,=1 (ord a=1)
AZ‘{ 2 T Ea,, 7): i,>1 (ord a=ord a,=1) .

1<ty
and

A= 11 E(a,, 7)E*(@) (0=ord au, =ord ).
iz

Thus we have f(A,)=e,p+(n—2)e+1=f, by Lemma 3, Lemma 4 and (15),
f(A)=e,p-+(n—1)e—i,+1=f; by Lemma 2, Lemma 4 and (15).

Since e+i,#1,;, f1#f, and we have f=Max{f,, fi} by (15).

If 1=<i,<i, then A=A,A,A, where

n%: 1,=1 (ord a=2)
AF{ 7¢I B, 791 ,>1 (ord ai22),
1<ig

A= TI E(a,, ©*) (ord a;=1)

19511

and
A= IgI E(a,, n)E*(a) (0=ord a,,=ord a,).
121]

Now, since ord a=2 and ord a;=2 (1<1,) we have f(A;)=e,;p+(n—3)e+1 by
Lemma 3 and (15) and e, p+(n—3)e+1<Max{f,, fi} because

fi—(ep+(n—3)e+1)=2¢—1,=2¢— (e, p—1)>0.

And f(A,)=fs f(A)=f1 by Lemma 4 and (15). Therefore f=f(A;A,A;)
<Max{f;, fi} by (15). Moreover if e+4i,+1; or if e+i,=i, and a,,e¥a,,p mod p?,
then A,A,=FE(a,,, n'?)E(a,,, n*')B where

Bz}}, E(a,, n)E*(a).

By Lemma 5 f(E(a,,, n*9)E(a,, n*))=Max{f,, fi} and f(B)<Max{f,, fi} by
Lemma 4 and (15), so we have f(A,A;)=Max{f,, fi} and f=(A;A,A))=Max{f,, fi}.
If eti,=i; and ay,e=a, p mod p* then f(E(a,,, n*?)E(a,,, n*1))<Max{f,, fi} by
Lemma 5, and f=f(A;A,A,)<Max{f,, fi} from (15).

Finally, in the case 1=i,=1,, A=A,A, where
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7% ;=1 (ord a=2)
AS“{ ﬂ“EE(a,, 791 4,>1 (ord =2, ord a;=2)
1<i1

and
A1=_£[ E(a,, nY)E*(a) (ord ay=ord a,,=0).
iz

Just as before, we have f=jf, because f(A;)=Ze,p+(n—3)e+1< fi=f(A,), and
fi=Max{f,, fi} because i;=1,.
Thus the proof of Theorem 1 in the case p+#2 is completed.

PROOF OF THEOREM 1 IN THE CASE p=2.
The difference with the case p+2 is that, in the explicit formula (10) another

term ﬁ1E((2f“lz+2”‘1j)a{"'ﬁf”, 7*#**#"7) is multiplied to each E(ja;8,, =**7). But
2, v=
for all «,, B, which appear in the proofs of Lemma 2 and Lemma 5 in the case
P#2, 71;w=0 mod p", B for all g, v (u=1, v=1) where
E((2#~Y4-2"71 )al? B, w2 *29) ~v oo EX(1y, )

Therefore the multiplied term gives no influence to the class of 7 mod p”, P.
Thus, having Lemma 3, 4 which are corollaries of Lemma 2, Theorem 1 holds
also for p=2.

§4. Remarks and examples.

Remark 1. By elementary but rather complicated calculations of the explicit
formula we can prove Theorem 1 without (15).

Remark 2. Let n=1 and A-_TIIE(a,, n*)E*(a) then Theorem 1 asserts that
D 1

the conductor of K(&/A)/K is p®1?~*1*1, On the other hand, the number i, is
characterized by the following congruences:

A=1 modpt and Az#l mod pr*!
p p

where, generally, the notation A=1 mod p* (m=1, k=1) means that there exists
p‘lﬂ

a principal unit » of K such that A»p~?™=1 mod p*. This result is known (H.
Hasse [1], I, p. 90, Satz. 10). While, when n=2 it is impossible in general to

determine the conductor of K(R”A)/K by analogous congruences.
For example, let K=Q,(&) (p+2) and

A'\Zz E(azz» ﬂz?)E(all) ')
yJ

where
ord ap,=1 (2=i,Ze.—1=5p-1)
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and
orda,,=0 (n=e+1l=p(p—1)+1).

Then A_=_21 mod p*2? and A—x’;l mod p*2?** for i,=2, ---, p—1.
p p

While, since fi=e;p>fa=e;p—i,+1 for any 1, 2=i,=<p—1), the conductor
of K(*¥/A)/K is p*1? by Theorem 1.

Example 1. Let K2, and = be a prime of K.

(i) Let A=zn“y where a=Z, a#0 mod p and 7 is a unit of K, then the
conductor of K(RVA)/K is perp+m-besi,

For, since 7,=0 we have f=Max{f,, f.} =fi=e;p+(n—1)e+1 by Theorm 1.

(ii) Let n=2 and A=r?(1—z7) (e<j<e,p), then the conductor of KX'A )/K
is par+m-vets

For, since i,=0 and i,=; we have e+1,<1y and f=Max{f,, fi} =fo=
e p+(n—2)e+1.

Example 2. Let K=Q,((,) then the conductor of KX'(,)/K (1=m=n) is

pe1p+(m-1)e

For, let l—n:=C,,=1;[E(az, ) E*(a) (a; 70 mod p) then
szcgn-mzl;[E(alpn—m, Tci)E(apn-m) .

Therefore, since 1,_, does not exist and i,-»+;=1, we have f=f,-nsi=e;p+(m—1)e
by Theorem 2.

Example 3. For some Kummer extensions we can get the ramification sub-
groups from conductors obtained by Theorem 1. For example, let K=, (n=1)
and L=K® A%) where i=0 or i€F and A,=r" (@€Z, a#*0 mod p),
A,=E(a,, ©*) @€F, a;s1, ;70 mod p). Now, let G=<o>=Gal(L/K) and G, be
the ;-th ramification subgroup of this extension :

G:GOZ :Gm1:<0>£Gml+1: =Gm2:<0'p>£
ZGmn:<Upn_l>gcmn+1:{l} .
Then, we have m,=e,p*—1 for k=1, 2, ---, n.

Proof. Since L/K is a totally ramified cyclic extension of degree »", we
only need to calculate m,. Now, by Theorem 1 (or by Lemma 2) we have
FO=e;p+(s—1De—i+1 (1=s=n) where p’“ is the conductor of K(*/A%). Thus,

1

fO=ap—itl=ga- E#G,:m&l and so my=e;p—i.
0 J=

f®= #_é_ mzzo $G;=f P +(my—m)p* and s0 my,=e;p+m,,
0 J=
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because f®—f®=¢. By repeating this process, we have

my=ep* '+ept i+ - +eptm=e pt—i,

because e,(p—1)=e. Q.E.D.
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