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COEFFICIENTS OF INVERSES OF UNIVALENT FUNCTIONS
WITH QUASICONFORMAL EXTENSIONS

By GLENN SCHOBER

§1. Introduction.

Let Y’ denote the family of univalent functions
oo bﬂ
g@)=z+ % —-
n=12

in J={z: 1<|z| <co}. For 0=k<1 let ¥, be the family of functions in 3"
that admit %-quasiconformal extensions to d=1{z:|z|<1}. That is, each g2}
has a homeomorphic extension to 4, that is absolutely continuous on a.e. hori-

zontal and vertical line in 4 and satisfies
lg:l <k|g.] a.e. in 4.

If =0, then g is an entire univalent function. Consequently, X contains
only the identity function. As k—1, the families X are dense in 2’, and we
therefore define 2{=2". Since X} C2%, for k<k, the families 2’ interpolate
in a monotonic fashion from the identity function to the family 2.

R. Kiihnau [2] and O. Lehto [5] have obtained the sharp coefficient
estimates

€y b)) <k and |b,| Z(2/3)k

for functions ge2’. In this article we shall study the coefficients of their
inverse functions.

That is, if G is the inverse of a function g in 2}, i.e., G=g™, then G has
an expansion

Glw)=w-+ ni)l 5;‘ -

in some neighborhood of w=co. Since B;=-—0);, and B,=—b, the sharp
estimates

(2) |Bli§k and IBZ|§(2/3)]"
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are a consequence of (1).
For the class 2i=2%’, G. Springer [8] proved that | B,] <1 and conjectured
that
2n—2)!
nl(n—11"

Very recently, Y. Kubota [1] and the present author [7] have verified (3) for

2=n=7. Based on a technique of Lehto [5] we may therefore conclude that
2n—2)!
nl(n—1)!

®3) | Bon-1l = n=3,4,5, .

) | Ban-1] = k

for g2, and 2<n<7.

It is the purpose of this article to improve the estimates (4). We shall also
obtain anestimate when n=8 and verify the conjecture (3) for n=8 as a special
case.

§2. Results.

The following theorem contains the results of this article. Its proof will
be given in Section 5.
PRINCIPAL THEOREM. Let g belong to 2, 0=k<1, and let
— g1 — o Bﬂ
Cw)=g (w)=w+ X

=1 w"

be the expansion of ils wnverse function in a neighborhood of w=oco. Then

| Byl Sk— 4 k(- B)Sk

| Byl 52— 1 k(- EXI04TR)=2k

| B,| <5k — —f’— R(1—Fk)(114+103k+49k*) <5k

| Byl §l4k——~51!— k(1—Fk)(1656+1606% +1181k2-+451k%) <14k

[ Bl §42k———»—61-!— P(1—Fk)(30120+29846% +26381 k2-++17776k*+6241 k") <42k

| Byl £132k— "‘-71!« k(1—k)(664560--662796/ 1-631632k%-+529887k*
+317892%*+-988414°) <132k
| Bis| =429k — —;—! k(1—k)(57640804-5759724 & +5658280%>+5247149k°
~+-4075349k*--2274655k°+6666992°) <429k .
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Since 2} contains only the identity function, the theorem is trivial in this
case. The case k=1 is of special interest:
COROLLARY. If g belongs to X', then the coefficients of 1its inverse function
satisfy
|B;| =1, |B;|=2, |B.|=5, |By| =14,
|Bul=42, |B|=132, and |B,;|=429.
e’La
z

Equality wn any of these occurs 1f and only 1f g(z)=z-+ for some real «.

In this special case the result for |Bis| is new. One easily verifies that
equality occurs (also in (3)) for the indicated functions. To see that these are
the only extremal functions, we observe at the end of Section 5 that equality
can occur only if |b,|=1, which by the Area Theorem (see Section 3) can occur
only for the indicated functions. For 0<k<1 we do not assert that the esti-
mates of the Theorem are sharp.

§3. The Principal Lemma.

The set H(Z) of all analytic functions on J with the topology of locally
uniform convergence is a locally convex topological vector space. We denote
its topological dual space by H'(d). If h(z, ) is analytic in 4x4 and LeH'(d),
we define

L*(h(z, O)=L(L(A(z, £))) and |L|*(h(z, {)=L(L(h(z, O))

where L is applied first to the function of z and then to the function of (.
In this framework we state (cf. [3; 6, Theorem 14.15]):

Grunsky-Kiihnau Inequalities. If g€}, 0=k=<1, and Le H'(4), then
1 €= N 17 1e 1
L(log o )| =k 1L1x(10g e ).

These inequalities may be “exponentiated” in the following manner. If ¢(w)

= i} c,w™ is any entire function and ¢*(w)= f} lc,|w™, then [6, Theorem 11.16]
n=0 n=0

L¥petog-£=E0LY | < L grotogl1—(D) 17"

In particular, if ¢(w)=e"¥, then

2 z—{ 2T (»F)-1T7-k
5) (o) | S LD
_ 5 AEED Al e,
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We now distinguish a special functional L. Fix g2} and n=1. Denote
) BV
G(w):g‘l(w):w—l—g; 9

o’ and define L to be the functional that associates to
he H(J) the coefficient d, in the expansion of hoG(w)= ﬁ) Z; in a neigh-

borhood of w=c0. Then

2 —C —
(o )=

and we have the following consequence of (5).

PRINCIPAL LEMMA. If gel, 0=<k<1, and Glw)=g  (w)=w-+ i—g} ma
neighborhood of w=co, then

k(k4+1)-(k+n—1) +n-2 k(k+1)--(k+m—1)

< (—m)|2
© Bl = - p3) - | B
1 oo B(-—m)
for n=1, where [G(w)]"”:—lFJr > :u” . a neighborhood of w=oo. The
v=m+2

sum n (6) 1s onutted for n=1 and n=2.

The inequality (6) is our main tool. We shall also use the following Area
Theorem of Kithnau [3] and Lehto [4].

AREA THEOREM. If g(z)=z+ i;lgﬁ— belongs to 3, 0=k=1, then i:)lnlbnl2
ek
z

<k% In particular, |b,| <k with equality if and only 1f g(z)=z+ for some

real «.

The Area Theorem will be used in the following form.

COROLLARY. If g(z)=z+ % g,"r belongs to 2}, 0Zk=1, and v, s, t are real,
n=1
then

2 2 t2
™ (10145104 + 215, = (47 5 = 16119
Proof. We have
2 3 : 1 1
0= 5 (r1bul =5 5100l ) 43 (r1be| =3¢ [b] )+ (5] ba] =21 ba]

7,.2 SZ tZ
(5 ) B0l ™41 a1 +21 b1 )= (1 bo | +-51bel +-11bu]*

I

(G DY B Bl 1l 101
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with the help of the Area Theorem.

§4. Coefficient Relations.

Several coefficient relations will be needed. If g(2)=z-+ ilz—z and G(w)=

g w)=w+ i 52 in a neighborhood of co, then
BIZ—-bl B4:"‘b4_3b1b2
By,=—b, 35:—b5—4b1b3—2b§~2bi’
By=—b,—0} By=—bs—5b.b,—5b,b,—10b%b, .
1 oo B(»m)
Furthermore, if [G(w)]‘”‘:w—m+ >, z:;” in a neighborhood of w=co, for
m=1, then
B{P=—RB, By »=—3B,
Bi-b=_B, B{-v=—3B,
B{Y=—B,+ B} Bi®=-—3B,+6B}
Bé_l):'—B4+2BlB2 B§—3):—3B4+1ZBIB2
B{~»=—B,+2B,B.+ Bi— B}
Bio=—4B,
By Y=—B,+2B,B,+2B,B;—3B:B,
Bi9=—4B,
B{-»=—2B, Byv=—4B,+10B3%
By»=—2B,
B{"»=—5B,
B{»=—2B,+3B}
Bi9=-5B,
B§-2>:—2B4+63132
B{»=—2B,+6B,B,+3Bi—4B} By»=—6B,

§5. Estimates.

The Principal Lemma will be applied for 1=n=<8. It will be convenient
to set 8=|b,|=|B,|. Then 0=B=Fk for the family X} by the Area Theorem.

n=1. In this case (6) is identical to the first half of (2).
n=2. In this case (6) gives | B;| <1/2 k(k+1)=Fk—1/2 k(1—F) directly.
n=3. Since |B{Y|*=p*<Fk? the estimate (6) leads to
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k(k+1)(k+2)
|Bsl=———=—

+k3:2k—%k(l—k)(10—l—7k).

n=4. We use |B{™?|*=4p% and apply (7) to |B{™?|*=b,|*<(1/2)(k*— B*).
With these relations the inequality (6) reduces to

| B! gf—,[(eﬂlk 18R+ kN +12(3+4k)B%] .

Since the coefficient of B? is positive, we may estimate 8* by k* and rewrite
the resulting bound in the form stated in the Principal Theorem.

n=>5. We substitute the bounds
| By =9pe, | BEY|P=4 bl S Ak =),
| BV |2 <[] Bs| + 21 =[(1/2) k(k+1)+ g*]?

into (6) to obtain

| By| = %[(24+50k—l—185k2+190k3+31k4)-|—60(4+9k +5k%)B5+1208] .

Since the coefficients of 82 and f* are positive, we may replace § by % and
rewrite the resulting bound in the form of the Principal Theorem.

n==6. Making use of (7), we substitute the bounds

Biola=16p,  IBEPIP=0Ib, iS5 (k0= B,

| B§® |P<[2| B | +-38" 1 =[k(k+1)+35°T,
1,25
| B = by 5biba < (g + 5 87— 87
into (6) and obtain the estimate

| By | gék—![(120+274k—I—1845k2+2785k3+1635k“—|—361k5)
+60(27+97k+261k2+44k%)82—360(16—9%) 5] .
Since the coefficient of jB* is negative, the estimate
€)) —B=kt—2R%0"
leads to
|Bu = %[(120-{—2741@—I—1845k2+2785k3+7395k4—2879k5)
+60(27497k+69k%4-152k%) 5] .

The coefficient of 8? is positive, and so we may estimate 8% by k* and rearrange
the result into the form given in the Principal Theorem.
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n=7. In this case we use (7), the bounds already obtained for |B;| and
| B;|, and the estimates <k, B°<kpB? B°<k*B* to arrive at

| B |2=258%, | Bi™|*=16]b,|°<8(k*—p?),
| B 122031 Bul +6p43:= [ 5 (k657
| B | 2= | 2b,+12b,b, | 2= (14+728%)(k*— B2),
| B0 |2<[| B;| +2| Bs| B4 b 4+ B2
=<(| Bs|?+4k | Bs| | Bs|)+(4| Bs|*+2k | Bs|)B*+ 4| By | + )5

(1 Bal 28 | Bl + k) k*— )+ (b= B

= (41@2—I—48}’e3—l-1601@“4—2401@"’-}-13312‘*)—!—%(—2/2—2132—!—1114234-201?“)‘82

1
36
+%(1+4Ie+12k2),84.

Substitution of these bounds into (6) leads to

| B = —7}% [(720+1764k 4-18564 ~2+41685k°4-49665k ' 4-44751 k°+ 20511 2°)
—+-210(60-286/k 4 1343k*+1238%*+157k*) 32— 1260(95+-68% —36£%) 5] .

Since the coefficient of f* is negative, the estimate (8) implies

|Byl < % [(7204-1764 % + 18564 k*+41685k°+-169365%*+4-130431 £°—24849%°)
+210(60--286/k +-203k*+422k°+-589k*) 5] .

Finally, since the resulting coefficient of §* is positive, we may replace [5* by
k* and rewrite the bound in the form given in the Principal Theorem.

n=8. Just as in the previous case we use (7), the bounds for |B;| and
| Bs|, and the estimates 8<k and $°<kf* to obtain

lBé-G)‘Zzgﬁ‘BZ] lB(S—S)‘2:25!b2l2§%5<k2_‘82)’

| B |2 <[4| B;| +108*1* < [2k(k+1)+105°]%,
) 9 , 441 :
| By |=13b,- 210, 2= (+ 2 )= B,
| By |*<[2] B5| 46| By| f+3] 6.1 2+48°]°
<(4] B;|*+24k | B|| B5|)+(36] B;| 2416k | B5|)3*+48| B 8
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9
+168°+(61 85| +18k | Bs| +12k f7)(k*— )+ - (R*— )
§3%(16k2+264k3+1021k4+1464k5+700k“)
+ %(—12k—13k2+ 132k*+166%*) 5%+ %(9—[—481@ +96k%) B4 4165°,
| By = bs+T7b:bs+(—7Bs+14b1)b, |
l 4_9 2 __1_ Z_ 2 2 2__ Q2
§[6 +58+5(5 k(k+1)+14ﬁ)][k P
Substitution of these bounds into (6) leads to
| Bys| _§—8]i‘[(5040+ 13068%+-200172k2+573489/%°-+1359120%* 12089122 °
+1516788k°+398721 ")+ 168(620-+ 3928k + 27145k 4-45230%*
+28025k*+3732k°%) 82— 1680(1431+2551 £ — 1326 2>~ 388k°) B*

—80640(45—4k)B%].

Since the coefficients of 8* and j° are negative, we may use the estimates (8)

e — Bk —2k2B) B Rt B2 2k (' — 2k ) =2k —3k* 3

to obtain

©)) | By | = % [(5040+-13068%+-200172k*+573489k°+3763200% *4-6374802k°
+6546708/%°—898239/k")+168(620+3928% —1475k2—5790k*

—10255k*+17252k°) %] .

One easily shows that the coefficient of 1683% is positive. For example, if
we denote this polynomial by p(k) and if 0=k=<1, then

(14+k)p(R)=Fk*62—131k%)*+ k(44—83k*)*+1391k(1—k)+q(k)>0

where ¢(k)=620+1221k+39%%+199k4+108k5+91k°>0. Cosnequently, we may re-
place 8% by k? in (9) and rewrite the resulting bound in the form given in the

Principal Theorem.

In each case we used the estimate B<k. Therefore equality can occur
only if |b;|=Fk. For k=1 this occurs only for the functions indicated in the
Corollary to the Principal Theorem.
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