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ON CAUCHY-RIEMANN CIRCLE BUNDLES

Donato Antonio Ciampa

Abstract

Building on ideas of R. Mizner, [17]–[18], and C. Laurent-Thiébaut, [14], we

study the CR geometry of real orientable hypersurfaces of a Sasakian manifold. These

are shown to be CR manifolds of CR codimension two and to possess a canonical

connection D (parallelizing the maximally complex distribution) similar to the Tanaka-

Webster connection (cf. [21]) in pseudohermitian geometry. Examples arise as circle

subbundles S1 ! N !p M, of the Hopf fibration, over a real hypersurface M in the

complex projective space. Exploiting the relationship between the second fundamental

forms of the immersions N ! S 2nþ1 and M ! CPn and a horizontal lifting technique

we prove a CR extension theorem for CR functions on N. Under suitable assumptions

[RicDðZ;ZÞ þ 2gðZ; ðI � aÞZÞb 0, Z A T1; 0ðNÞ, where a is the Weingarten operator of

the immersion N ! S 2nþ1] on the Ricci curvature RicD of D, we show that the first

Kohn-Rossi cohomology group of M vanishes. We show that whenever RicDðZ;WÞ�
2gðZ;WÞ ¼ ðm � pÞgðZ;WÞ for some m A CyðMÞ, M is a pseudo-Einstein manifold.

1. Introduction and statement of main results

Let M be a di¤erentiable manifold, of class Cy and real dimension
2nþ k. A subbundle T1;0ðMÞ, of the complexified tangent bundle TðMÞnC, of
complex rank n, is said to be a CR structure on M if

T1;0ðMÞx VT0;1ðMÞx ¼ ð0Þ; x A M;ð1:1Þ
Z;W A GyðT1;0ðMÞÞ ) ½Z;W � A GyðT1;0ðMÞÞ:ð1:2Þ

The pair ðn; kÞ is the type of the CR structure. A pair ðM;T1;0ðMÞÞ is a CR

manifold (of type ðn; kÞ). We set T0;1ðMÞ ¼ T1;0ðMÞ, where an overbar denotes
complex conjugation. If E !M is a vector bundle over M then Ex denotes
the fibre over x A M and GlðEÞ denotes the space of sections of class Cl,
l A NU fy;og (eventually defined on an open subset U JM, to be understood
from the context). The integer n (respectively k) is the CR dimension (respec-
tively the CR codimension) of the CR manifold ðM;T1;0ðMÞÞ. A CR manifold
of type ðn; 1Þ, i.e. of CR codimension k ¼ 1, is said to be of hypersurface type.
The terminology is motivated by the fact that every real hypersurface M in
Cnþ1 carries a naturally induced CR structure T1;0ðMÞ (of type ðn; 1Þ) given by
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T1;0ðMÞx ¼ ½TxðMÞnR C�VT 1;0ðCnþ1Þx, x A M, where T 1;0ðCnþ1Þ is the holo-
morphic tangent bundle, i.e. if z1; . . . ; znþ1 are complex coordinates on Cnþ1,

then T 1;0ðCnþ1Þ is the span of fq=qz j : 1a j a nþ 1g. Such CR manifolds are
referred to as embedded.

An important class of CR manifolds (of arbitrary type ðn; kÞ) consists of
the proper CR submanifolds, in the sense of A. Bejancu, [3]. Given a Hermitian
manifold ðM0; J; g0Þ, with the complex structure J and the Hermitian metric g0,
a pair ðM;DÞ consisting of a submanifold M of M0 and of a smooth dis-
tribution, D : x A M 7! Dx JTxðMÞ, is a CR submanifold if i) D is J-invariant,
i.e. JxðDxÞ ¼ Dx, x A M, and ii) the orthogonal complement D? (with respect to
g :¼ j �g0, j : M HM0) of D in TðMÞ is J-anti-invariant, i.e. JxðD?x ÞJTxðMÞ?,
x A M. Here Vð jÞ ¼ TðMÞ? is the normal bundle (of the given immersion j :
M HM0).

Let ðM;DÞ be a CR submanifold of the Hermitian manifold ðM0; J; g0Þ.
Set n :¼ dimC Dx, k :¼ dimR D?x , for any x A M (so that dim M ¼ 2nþ k). A
CR submanifold ðM;DÞ is generic if k and the codimension of M in M0 co-
incide. A CR submanifold ðM;DÞ is said to be proper if both the holomorphic
and totally real distributions are nonzero (n0 0 and k 0 0).

By a result in [5] (referred to as the Blair-Chen theorem, in the sequel), every
proper CR submanifold ðM;DÞ of a Hermitian manifold is a CR manifold.
Indeed, let JM be the restriction of J to D. Moreover, let JC

M be the exten-
sion (by complex linearity) of JM to DnC and set T1;0ðMÞ :¼ EigenðJC

M ; iÞ, i.e.
T1;0ðMÞx is the eigenspace of ðJC

M Þx corresponding to the eigenvalue i ¼
ffiffiffiffiffiffiffi
�1
p

,
x A M. Then, by the previously quoted result (cf. [5], or Theorem 2.1 in [29],
p. 83), ðM;T1;0ðMÞÞ is a CR manifold of type ðn; kÞ.

A CR structure on a manifold is a reformulation (in terms of fibre
bundles) of the tangential Cauchy-Riemann equations induced (on a real sub-
manifold) by the Cauchy-Riemann equations (on the ambient complex man-
ifold). If W ¼ fr > 0gHCnþ1 is a smooth domain, then M :¼ qW inherits a CR
structure T 1;0ðMÞ (as a real hypersurface in Cnþ1) locally spanned by La ¼Pnþ1

j¼1 a j
aðzÞq=qz j, 1a aa n, where

Pnþ1
j¼1 a j

aðzÞqr=qz j ¼ 0, 1a aa n (i.e. the La’s
are purely tangential first order di¤erential operators). The restriction u to M of
a holomorphic function f on an open neighborhood of M satisfies the tangential
Cauchy-Riemann equations

Lau1
Xnþ1

j¼1

a
j
aðzÞ

qu

qz j
¼ 0; 1a aa n:ð1:3Þ

If ðM;T1;0ðMÞÞ is an arbitrary CR manifold (of arbitrary, but fixed, type) let us
consider the di¤erential operator

qM : CyðM;CÞ ! GyðT0;1ðMÞ�Þ
given by ðqMuÞZ :¼ ZðuÞ, for any Z A GyðT1;0ðMÞÞ, u A CyðM;CÞ. The
equations

qMu ¼ 0ð1:4Þ
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are also referred to as the tangential Cauchy-Riemann equations (although not
any longer confined to the CR codimension 1 case) and coincide locally with (1.3)
when M ¼ qW.

When M is a real submanifold of a complex manifold V (endowed with the
induced CR structure), a fundamental problem of complex analysis in several
variables is whether, given a solution u to (1.4), there is a holomorphic function
extending u (e.g. in a neighborhood of M). The solutions to the given problem
(perhaps under additional assumptions on the geometry of M, e.g. imposed to its
Levi form) occupy a large space in the specialized literature (cf. e.g. A. Boggess,
[6], p. 189–260).

The holomorphic extension problem may be solved in the real analytic
case by a result of G. Tomassini, [22]. A CR manifold is real analytic if M is
a Co manifold and its CR structure is locally spanned by real analytic sections.
Let M HCn be a real analytic embedded CR manifold. Let u : M ! C be a
real analytic CR function, i.e. a Co solution to (1.4). Then, by the Tomassini
theorem (cf. op. cit.), there is a neighborhood U of M in Cn and a unique
holomorphic function f : U ! C whose trace on M is u.

Let N0 be a manifold carrying an almost contact metric (a.ct.m.) structure
ðf; x; h0; g0Þ. A pair ðN;DÞ consisting of a submanifold N of N0 and a smooth
distribution D : x A N 7! Dx JTxðNÞ is said to be a contact CR submanifold of
N0 if i) D is f-invariant, i.e. fxðDxÞJDx, x A N, and ii) the orthogonal com-
plement D? of D (with respect to g :¼ i�g0) in TðNÞ is f-anti-invariant, i.e.
fxðD?x ÞJTxðNÞ?, x A N. Here VðiÞ ¼ TðNÞ? is the normal bundle of the im-
mersion i : N HN0.

Let ðN;DÞ be a contact CR submanifold of the a.ct.m. manifold N0.
ðN;DÞ is generic if dimR D?x ¼ codimðNÞ, x A N. ðN;DÞ is proper if D0 ð0Þ
and D?0 ð0Þ.

The concept of a contact CR submanifold (with the additional assumption
that x, the contact field of the ambient manifold N0, is tangent to N) is due to
K. Yano & M. Kon, [29], p. 48. Taking into consideration the Blair-Chen
theorem, it is natural to ask whether a contact CR submanifold is a CR manifold
(and of what type). Let ðN;DÞ be a contact CR submanifold of the Sasakian
manifold N0, tangent to the contact field x of N0. A simple argument shows
that either x A D or x A D?. However, to avoid the disjunction of cases, let
HðNÞ be the orthogonal complement of Rix in D [where i : TðNÞ ! D is the
canonical projection], i.e. D ¼ HðNÞlRix. Also, let HðNÞ? be the orthogonal
complement of HðNÞ in TðNÞ. HðNÞ is f-invariant, HðNÞ? is f-anti-invariant,
hence ðN;HðNÞÞ is a contact CR submanifold. Moreover x A HðNÞ? and the
restriction J of f to HðNÞ is a complex structure on HðNÞ. We establish

Theorem 1. T1;0ðNÞ :¼ ½TðNÞnC�VT1;0ðN0Þ is a CR structure on N,
of type ðn; kÞ, where n :¼ dimC HðNÞx and k :¼ dimR HðNÞ?x , x A N. Therefore
ðN;T1;0ðNÞÞ is a CR manifold and i : N HN0 is a CR immersion.

By a result in [13] (referred to as the Ianuş theorem, in the sequel), every
Sasakian manifold N0 admits a natural CR structure T1;0ðN0Þ :¼ fX � i fX :
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X A Kerðh0Þg. A CR immersion is a Cy map f : N ! N 0 of CR manifolds such
that f is an immersion and a CR map, i.e. ðdx f ÞT1;0ðNÞx JT1;0ðN 0Þf ðxÞ, x A N.
For simplicity Theorem 1 is stated for CR submanifolds of Sasakian manifolds
(while the Ianuş theorem only requires that ðf; x; h0Þ is normal).

An important class of contact CR submanifolds of an odd-dimensional
sphere consists of the total spaces of the (circle) subbundles of the Hopf fibration,
over a CR submanifold of the complex projective space. Precisely, let M be
a CR submanifold in CPn and let N :¼ p�1

0 ðMÞ, where p0 : S 2nþ1 ! CPn is the
projection. Then N is a contact CR submanifold of S 2nþ1 (carrying the standard
Sasakian structure) and S1 ! N !p M is a principal subbundle of the Hopf
fibration S1 ! S 2nþ1 ! CPn, where p :¼ p0jN . S1 ! N !p M is said to be a
Cauchy-Riemann circle bundle and is the central notion of this paper. Indeed,
when the given contact CR submanifold N is (the total space of ) a S1-bundle
over a CR submanifold M HCPn, the pullback h :¼ i�h0 of the contact form of
S 2nþ1 is a connection form in S1 ! N !M, a fact which enables one to consider
horizontal lifts of geometric objects on M (e.g. the first and the second fun-
damental forms of j : M HCPn, the induced and normal connections, the
Weingarten operator, etc.). This leads to a precise description of the geometry
of (the second fundamental form of ) j : M HCPn in terms of the geometry of
(the second fundamental form of ) i : N HS 2nþ1 and successive applications. We
have

Theorem 2. Let n; k A Z, n; k > 0, and let S1 ! N !M be a Cauchy-
Riemann circle bundle over a real analytic compact connected CR submani-
fold M HCPnþk�1, with dim N ¼ 2nþ k and dimR HðNÞx ¼ 2n, x A N. If N is
generic and the contact vector field of S 2ðnþkÞ�1 lies in the invariant distribution of
N, then there is a saturated subset QHS 2ðnþkÞ�1 such that QIN, and there is
a subbundle S1 ! N 0 !M 0 of the Hopf fibration S1 ! S 2ðnþkÞ�1 ! CPnþk�1,
over a submanifold M 0HCPnþk�1 of real dimension 2nþ k, such that QIN 0 and,
for every basic CR function u A CRoðNÞ there is an open and saturated set
U JS 2ðnþkÞ�1 such that U IQ and there is a basic CR function f A CRoðUÞ
which extends u, i.e. f jN ¼ u.

Theorem 2 is an immediate corollary of the Tomassini theorem and of
a result by R. O. Wells (cf. [25]) according to which, given a compact and
connected submanifold M HV in a complex manifold V , if M is a generic CR
manifold of type ðn; kÞ, with n > 0, the holomorphic hull of M contains a
manifold M 0 of higher dimension (i.e. dim M 0 ¼ 2nþ k þ 1). While Theorem
2 is a rather elementary consequence of the above mentioned results (of G.
Tomassini and R. O. Wells, cf. op. cit.), it leads naturally to the question: which
real submanifolds of a Sasakian manifold are generic? The following result
establishes a necessary topological condition.

Theorem 3. Let ðN;DÞ be a contact CR submanifold of a Sasakian manifold
N0. Let us assume that N is generic and that the tangential component of the
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contact vector x0 of N0 lies in the invariant distribution [i.e. x :¼ tanðx0Þ A D�.
Then the Euler-Poincaré characteristic of N vanishes [i.e. wðNÞ ¼ 0�.

Theorem 3 is a contact analogue of a result by R. O. Wells (cf. theorem 1 in
[26], p. 124). If M HCPn is a compact CR submanifold and N :¼ p�1

0 ðMÞH
S 2nþ1, then it is immediate that wðNÞ ¼ 0. Indeed, in this case N is tangent to
the contact vector field x of S 2nþ1 (and xðxÞ0 0 for any x A N).

Every nondegenerate CR manifold M, of hypersurface type, on which a
contact form y is fixed, admits a unique linear connection parallelizing the Levi
distribution KerðyÞ, its complex structure, the Webster metric gy, and whose
torsion is pure. This is the Tanaka-Webster connection of ðM; yÞ (discovered
independently by N. Tanaka, [21], and S. Webster, [24]). The discovery of the
Tanaka-Webster connection revealed itself of a certain importance in under-
standing pseudohermitian geometry. For instance, the Chern-Moser tensor (which
is well known to vanish if and only if M is locally CR equivalent to a sphere)
may be expressed in terms of the curvature of the Tanaka-Webster connection.
Similarly, the Fe¤erman metric (cf. C. Fe¤erman, [11]) may be expressed in terms
of the connection forms and scalar curvature of the Tanaka-Webster connection
(cf. J. M. Lee, [15]). These and other issues (for instance those tied to the
geometry of Yang-Mills fields on CR manifolds, cf. H. Urakawa, [23], or to the
geometry of CR immersions, cf. S. Dragomir, [8], etc.) lead to the fundamental
problem of building an analogue of the Tanaka-Webster connection in higher CR
codimension (k b 2). Indeed this is the case of real hypersurfaces N HS 2nþ1

(any such N has CR codimension 2).
The first attempt to solve the problem belongs to R. Mizner (cf. [18]), who

built a connection ‘ generalizing the Tanaka-Webster connection to the case of
a CR manifold M of CR codimensionb 2 under the assumption that M is
nondegenerate and the Levi distribution HðMÞ admits a complement E which is
trivial as a bundle over M. Since (as in the CR codimension one case) one of
the requirements for building ‘ is that the Levi form be parallel, the non-
degeneracy assumption is quite natural. As to the triviality of E, while it follows
from the mere orientability of M in the CR codimension one case, it is not a
priori clear what obstructions there are towards of EAM � Rk, when k b 2
(neither does R. Mizner investigate such obstructions).

In this paper we adopt an alternative to R. Mizner’s ideas, that is we request
that the connection parallelizes the induced metric (rather than the Levi form L)
and we replace, here as well as in the classical case, the symmetry assumption by
a suitable ‘‘purity’’ axiom. Precisely, let N be a real orientable hypersurface in a
Sasakian manifold ðN0; ðf; x; h0; g0ÞÞ (for instance N0 ¼ S 2nþ1), tangent to the
contact vector field of N0. Let n be a global unit normal vector field on N, and
set U :¼ fn. Then U is tangential (i.e. U A TðNÞ) and orthogonal to x. Let
HðNÞ be the orthogonal complement of RU lRx in TðNÞ. We establish

Theorem 4. There is a unique linear connection D on N satisfying the
following properties
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1) HðNÞ is parallel with respect to D,
2) Dg ¼ 0, where g ¼ i�g0, i : N HN0,
3) DJ ¼ 0, where J ¼ fjHðNÞ,
4) the torsion TD of D is pure, i.e.

TDðZ;WÞ ¼ 0; TDðZ;WÞ ¼ �2iLðZ;WÞ; Z;W A T1;0ðNÞ;
t � J þ J � t ¼ 0; r � J þ J � r ¼ 0;

where tX :¼ TDðx;X Þ, rX :¼ TDðU ;X Þ, X A TðNÞ, and
5) Dx ¼ 0, DU ¼ 0.

In analogy with pseudohermitian geometry and the fundamental role played
there by the Tanaka-Webster connection, we expect several applications (in the
study of CR structures of real orientable hypersurfaces N HS 2nþ1) of the ca-
nonical connection furnished by Theorem 4. For instance, when N fibres in
circles over a real hypersurface in CPn, we establish the following ‘‘vanishing
theorem’’

Theorem 5. Let S1 ! N !M be a Cauchy-Riemann circle bundle over a
compact orientable real hypersurface M HCPn. Assume that M satisfies the
contact condition and

RicDðZ;ZÞ þ 2gðZ; ðI� aÞZÞb 0; Z A T1;0ðNÞ;ð1:5Þ

where RicD is the Ricci tensor of the canonical connection D on N and a is the
Weingarten operator corresponding to a choice of global unit normal n on N.
Then the first Kohn-Rossi cohomology group of M vanishes, i.e. H 0;1ðM; qMÞ ¼ 0.

Given a nondegenerate CR manifold M of CR dimension n, a contact
form y on M is pseudo-Einstein if the pseudohermitian Ricci tensor (of the
Tanaka-Webster connection of ðM; yÞ) is proportional to the Levi form, i.e.
R

ab
¼ mh

ab
for some m A CyðMÞ (a posteriori m ¼ ð1=nÞr, where r ¼ habR

ab
is the

pseudohermitian scalar curvature of ðM; yÞ). Another application of Theorem 4 is

Theorem 6. Let S1 ! N !p M be a Cauchy-Riemann circle bundle over an
orientable real hypersurface M HCPn satisfying the contact condition. Then there
is m A CyðMÞ such that

RicDðZ;WÞ � 2gðZ; aWÞ ¼ ðm � pÞgðZ;WÞ; Z;W A T1;0ðNÞ;ð1:6Þ

if and only if y is pseudo-Einstein of pseudohermitian scalar curvature r ¼
ðn� 1Þðmþ 2Þ. Here yðX Þ ¼ �GðX ; JCP nnMÞ, X A TðMÞ. In particular, if (1.6)
holds, then the CR structure of M has a vanishing first Chern class.

Acknowledgements. The author wishes to express his gratitude towards
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paper and to the Referee for pointing out certain corrections.
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2. CR submanifolds

2.1. CR submanifolds of Hermitian manifolds
Let j : M HM0 be a submanifold of a Hermitian manifold ðM0; J; g0Þ

and g :¼ j �g0 the induced metric. Let TðMÞ? !M be the normal bundle of
the given immersion. We shall need the Gauss and Weingarten formulae

‘0
X Y ¼ ‘X Y þ hðX ;YÞð2:1Þ

‘0
X V ¼ �aV X þ ‘?X Vð2:2Þ

for any X ;Y A XðMÞ and V A GyðTðMÞ?Þ. Here ‘0 is the Levi-Civita con-
nection of ðM0; g0Þ, ‘ is the induced connection, h is the second fundamental
form of the given immersion, aV is the Weingarten operator (associated to the
normal section V ) and ‘? is the normal connection. Let tanx and norx be the
projections associated to the direct sum decomposition

TxðM0Þ ¼ ½ðdx jÞTxðMÞ�lTxðMÞ?; x A M:

We set

PX ¼ tanðJX Þ; FX ¼ norðJXÞ; tV ¼ tanðJVÞ; fV ¼ norðJVÞ:
Then

P2 ¼ �I� tF; FPþ fF ¼ 0; f 2 ¼ �I� Ft; Ptþ tf ¼ 0:ð2:3Þ
The identities (2.3) are commonly stated for submanifolds of Kählerian man-
ifolds. However, an inspection of the proof (cf. e.g. [29], p. 77) shows that (2.3)
hold when the ambient space is but Hermitian. We may state the following

Theorem 7. A submanifold M of a Hermitian manifold is a CR submanifold
if and only if FP ¼ 0. If this is the case then D :¼ KerðIþ P2Þ is J-invariant
(while the orthogonal complement of D in TðMÞ is J-anti-invariant).

Theorem 7 was first proved by K. Yano & M. Kon, (cf. Theor. 3.2 in [29],
p. 87) for submanifolds of Kählerian manifolds, and the proof is a verbatim
repetition of their arguments.

2.2. Contact CR submanifolds of a.ct.m. manifolds
Let N be a real ð2nþ 1Þ-dimensional manifold. A synthetic object ðf; x; hÞ

consisting of a tensor field f of type ð1; 1Þ, a tangent vector field x, and a 1-form
h, is an almost contact structure on N if

f2 ¼ �Iþ hn x; hðxÞ ¼ 1; fx ¼ 0:

An almost contact manifold is a (odd dimensional) manifold endowed with a
fixed almost contact structure. Let ðN; ðf; x; hÞÞ be an almost contact manifold.
A Riemannian metric g is compatible with ðf; x; hÞ if gðfX ; fYÞ ¼ gðX ;YÞ�
hðX ÞhðYÞ. Then gðX ; xÞ ¼ hðXÞ. An almost contact metric (a.ct.m.) structure
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ðf; x; h; gÞ consists of an almost contact structure ðf; x; hÞ and a compatible metric
g. Given an a.ct.m. structure ðf; x; h; gÞ we set WðX ;Y Þ :¼ gðX ; fY Þ. ðf; x; h; gÞ
is a contact metric structure if W ¼ dh (the contact condition). If this is the case
h5Wn is a volume form, hence h is a contact form on N. Each orientable real
hypersurface N of a Hermitian manifold ðM0; J; g0Þ carries a naturally induced
a.ct.m. structure. Indeed, let n be a unit normal field on N. Then x :¼ Jn is
tangent to N. Moreover if g :¼ j �g0, fX :¼ tanðJXÞ and hðX Þ :¼ gðX ; xÞ, for
X A TðNÞ, then ðf; x; h; gÞ is an a.ct.m. structure on N. An a.ct.m. structure
ðf; x; hÞ on N is normal if Nð1Þ :¼ ½f; f� þ 2ðdhÞn x vanishes.

A Sasakian structure is a contact metric structure ðf; x; h; gÞ with Nð1Þ ¼ 0.
A Sasakian manifold is an odd dimensional manifold endowed with a fixed
Sasakian structure. The underlying Riemannian metric is usually referred to as a
Sasakian metric. Sasakian structures are characterized among a.ct.m. structures
by

ð‘XfÞY ¼ gðX ;YÞx� hðYÞX ;ð2:4Þ
(cf. D. E. Blair, [4], p. 73). Here ‘ is the Levi-Civita connection of ðN; gÞ. By
the Ianuş theorem (cf. S. Ianuş, [13], or D. E. Blair, [4], p. 61) for each almost
contact normal structure ðf; x; hÞ there is a naturally associated CR structure.
Indeed T1;0ðNÞ :¼ fX � ifX : X A KerðhÞg is an almost CR structure. More-

over, normality (Nð1Þ ¼ 0) implies formal integrability.
Let ðN;DÞ be a contact CR submanifold of an a.ct.m. manifold ðN0;

ðf; x; h0; g0ÞÞ, tangent to the contact vector (x A TðNÞ). Let i and i? be the
projections associated to the direct sum decomposition TðNÞ ¼ DlD?. Next,
for any X A TðNÞ and V A TðNÞ? we set

PX ¼ tanðfXÞ; FX ¼ norðfXÞ; tV ¼ tanðfVÞ; fV ¼ norðfVÞ:
Then

P2 ¼ �I� tFþ hn x; FPþ fF ¼ 0; f 2 ¼ �I� Ft; Ptþ tf ¼ 0:ð2:5Þ
If g is the induced metric (g ¼ i�g0, i : N HN0), then

g0ðFX ;VÞ þ gðX ; tVÞ ¼ 0:ð2:6Þ
We may state

Theorem 8. Let N be a submanifold of the a.ct.m. manifold N0, tangent to
the contact vector ðx A TðNÞÞ. Then N is a contact CR submanifold if and only if
FP ¼ 0. If this is the case D1 :¼ KerðIþ P2 � hn xÞ and D2 :¼ KerðIþ P2Þ are
f-invariant and x A D1, x A D?2 .

This was first proved by K. Yano & M. Kon (cf. [29]) though for a Sasakian
ambient space only. The proof is verbatim repetition of the arguments in [29],
p. 51.

Let us prove Theorem 1. To this end, let HðNÞ be the orthogonal com-
plement of Rix in D, and HðNÞ? the orthogonal complement of HðNÞ in TðNÞ.
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Set m :¼ dimR HðNÞx and k :¼ dimR HðNÞ?x , x A N. Let X A HðNÞ and Z A
HðNÞ?. As

HðNÞ? ¼ D?lRixð2:7Þ
it follows that Z ¼W þ lix, for some W A D? and l A CyðNÞ. Then (by
gðD;D?Þ ¼ 0)

gðfX ;ZÞ ¼ lgðfX ; ixÞ ¼ lhðfX Þ ¼ 0:

Here h ¼ i�h0. Thus fX A HðNÞ, that is fHðNÞJHðNÞ. This proves that
HðNÞ is f-invariant. To show that HðNÞ? is f-anti-invariant, let Z A HðNÞ?
and X A TðNÞ. Then, using the decomposition (2.7), fW A TðNÞ?, and

0 ¼ fx ¼ fixþ fi?x A DlTðNÞ? ) fix ¼ 0;

we have

g0ðfZ;X Þ ¼ g0ðfðW þ lixÞ;XÞ ¼ g0ðfW ;X Þ ¼ 0:

Therefore fZ A TðNÞ?, that is fHðNÞ?JTðNÞ?. Let X A HðNÞ. Then

f2X ¼ �X þ hðXÞx ¼ �X

hence x A HðNÞ?. In particular, the real dimension of HðNÞx, x A N, must be
even, i.e. m ¼ 2n. At this point we may check that T1;0ðNÞ :¼ ½TðNÞnC�V
T1;0ðN0Þ is a CR structure on N. Here T1;0ðN0Þ :¼ fA� ifA : A A Kerðh0Þg is
the CR structure (of type ðl; 1Þ, with dim N0 ¼ 2l þ 1) of N0. To this end, note
that

T1;0ðNÞ ¼ EigenðJC; iÞ:ð2:8Þ
Here JC is the C-linear extension of J :¼ fjHðNÞ to HðNÞnC. Indeed,

let X � iJX A EigenðJC; iÞ, X A HðNÞ. As HðNÞJKerðh0Þ, it follows that X �
iJX A T1;0ðNÞ and then

EigenðJC; iÞJ ½TðNÞnC�VT1;0ðN0Þ:
To check the opposite inclusion, let A� ifA A T1;0ðN0ÞV ½TðNÞnC�. Then
A� ifA ¼ X þ iY , for some X ;Y A TðNÞ. It follows that A ¼ X and fA ¼ �Y ,
that is A A TðNÞVKerðh0Þ. Therefore

A A ðRixÞ? ¼ KerðhÞHTðNÞ:ð2:9Þ
Here ðRixÞ? is the orthogonal complement of Rix in TðNÞ. Let EðNÞ be the
orthogonal complement of Rix in HðNÞ?, so that

HðNÞ? ¼ EðNÞlRix; D? ¼ EðNÞlRi?x:

Then

ðRixÞ? ¼ HðNÞlEðNÞ:ð2:10Þ
Now (2.9) and (2.10) yield A ¼ AH þ AE , for some AH A HðNÞ and AE A EðNÞ.
Therefore
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�Y ¼ fA ¼ fAH þ fAE

hence fAH ¼ �Y and fAE ¼ 0 (because of fAE A fD?JTðNÞ?). It follows
that

0 ¼ f2AE ¼ �AE þ h0ðAEÞx ¼ �AE :

Summing up, we have AE ¼ 0, that is A ¼ AH A HðNÞ. Then A� ifA A
EigenðJC; iÞ and (2.8) is proved. In particular (by (2.8)) T1;0ðNÞ has constant
rank n. Moreover, by the very definition of T1;0ðNÞ

T1;0ðNÞVT1;0ðNÞJT1;0ðN0ÞVT0;1ðN0Þ ¼ ð0Þ:
Both TðNÞnC and T1;0ðN0Þ are formally integrable and then so is
T1;0ðNÞ. Q.e.d.

2.3. Real orientable hypersurfaces in a.ct.m. manifolds
As an application of Theorem 1 we look at real orientable hypersurfaces in

an a.ct.m. manifold whose underlying almost contact structure is normal. We
may state

Theorem 9. Let N0 be a ð2nþ 1Þ-dimensional a.ct.m. manifold, whith
ðf; x; h0Þ normal. Let N be a real orientable hypersurface in N0, tangent to the
contact vector ðx A TðNÞÞ. Let n be a unit normal field on N. Then U :¼ fn is
tangent to N. Let HðNÞ be the orthogonal complement of RU lRx in TðNÞ.
Then ðN;HðNÞÞ is a contact CR submanifold of N0. Consequently T1;0ðNÞ :¼
fX � ifX : X A HðNÞg is a CR structure of type ðn� 1; 2Þ.

Proof. Note that U and x are orthogonal. Next

g0ðU ; nÞ ¼ g0ðfn; nÞ ¼ g0ðf2n; fnÞ þ h0ðfnÞh0ðnÞ
¼ g0ð�nþ h0ðnÞx;UÞ ¼ �g0ðn;UÞ;

hence U is tangent to N. Let X A HðNÞ. We have

g0ðfX ; nÞ ¼ �g0ðX ; fnÞ ¼ �g0ðX ;UÞ ¼ 0:

It follows that fX A TðNÞ, i.e. fHðNÞJTðNÞ. Moreover

gðfX ;UÞ ¼ g0ðfX ; fnÞ ¼ g0ðX ; nÞ � h0ðXÞh0ðnÞ ¼ 0;

gðfX ; xÞ ¼ hðfXÞ ¼ 0:

Thus fX A HðNÞ, that is HðNÞ is f-invariant. Now, let Y A HðNÞ? ¼
RU lRx. As fx ¼ 0 and fU ¼ �n A TðNÞ? it follows that fY A TðNÞ?, that

is HðNÞ? is f-anti-invariant. Q.e.d.

By Theorem 9, given a smooth domain W0 HS 2nþ1, its boundary N ¼ qW0

is a CR manifold of CR codimension 2, in contrast with domains in Cn (where
the CR codimension and the codimension of the boundary are both 1). A geo-
metric study of CR manifolds of CR codimension 2 was begun by R. Mizner,
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[17] (using Cartan connections); the case of real hypersurfaces in Sasakian
manifolds is not considered. As to analysis on domains in a CR manifold, the
subject starts with the Hartogs-Bochner theorem on a CR manifold, due to G. M.
Henkin, [12]. He proves that, given a 1-concave generic CR submanifold
M HCn, a bounded domain WHM and a smooth domain W0 contained in W
and such that WnW0 is connected, each CR function f A CRyðqW0Þ extends to a
function F A CyðW0ÞVCRyðW0Þ. The assumption that the diameter of W0 is
‘‘su‰ciently small’’ (adopted in [12]) was removed subsequently by C. Laurent-
Thiébaut, [14]. The assumption that M is 1-concave concerns the Levi form
and the geometry of the boundary N ¼ qW0 is not studied. However, for a
smooth domain W0 HS 2nþ1, it is natural to expect that the geometry of the CR
manifold N ¼ qW0 is tied to the function theory on W0, and conversely. In the
next section we look at the equations induced on N by the tangential Cauchy-
Riemann equations of S 2nþ1. Note that the Hartogs-Bochner theorem (cf. op.
cit.) holds on M ¼ S 2nþ1 HCnþ1 (as the Levi form of M is positive definite).
Finally, to underline the novelty of the situation, note that the pseudohermitian
tools (e.g. the Tanaka-Webster connection, the Chern-Moser tensor, etc., cf. [21]
and [24]) are not available in the CR codimension 2 case.

3. Traces of CR functions on contact CR submanifolds

3.1. Traces of CR functions
Let ðN0; ðf; x; h0; g0ÞÞ be a ð2nþ 1Þ-dimensional a.ct.m. manifold with

ðf; x; h0Þ normal. Then T1;0ðN0Þ ¼ fX � ifX : X A Kerðh0Þg is a CR structure
of type ðn; 1Þ on N0. For a CR manifold M, let CRkðMÞ be the space of all CR
funtions of class C k, k A NU fy;og, i.e. solutions f of class C k to the tangential
Cauchy-Riemann equations (1.4). Then

CRkðN0Þ ¼ f f A C kðN0Þ : ðX þ ifX Þ f ¼ 0; EX A Kerðh0Þg:
Let ðN;DÞ be a contact CR submanifold of N0. By the very definition
T1;0ðNÞHT1;0ðN0Þ, hence the restriction CyðN0Þ ! CyðNÞ descends to a map
CRyðN0Þ ! CRyðNÞ. When N is a real hypersurface, for any x A N there is
an open neighborhood U JN0 and a real valued function r A CyðUÞ such that
N VU ¼ fx A U : rðxÞ ¼ 0g. Let fTag be a (local) frame of T1;0ðN0Þ on U
and set V :¼ fx A U : TnðrÞx 0 0g. Then the trace u on V of f A CRyðN0Þ is
a solution to TjðuÞ � ðTjðrÞ=TnðrÞÞTnðuÞ ¼ 0, 1a j a n� 1. For instance, let
N0 ¼ Hn ¼ Cn � R be the Heisenberg group with the CR structure spanned by
Ta ¼ q=qza þ izaðq=qtÞ, 1a aa n (the Lewy operators). Consider the submani-
fold N ¼ S2n :¼ fx A Hn : jxj ¼ 1g, where jxj :¼ ðjzj4 þ t2Þ1=4 is the Heisenberg
norm. Hn is a Sasakian manifold in a natural way hence Theorem 8 applies. As

TaðrÞ ¼
1

2
jxj�3

zaf; fðz; tÞ :¼ jzj2 � it A CRyðHnÞ;

each u A CRyðS2nÞ is a solution to TjðuÞ � ðz j=znÞTnðuÞ ¼ 0. Therefore, the
tangential Cauchy-Riemann equations on S2n V fzn 0 0g read
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qu

qz j
� z j

zn

qu

qzn
¼ 0:

For a contact CR submanifold N of a Sasakian manifold N0, it is an open
problem whether CR1ðN0Þ ! CR1ðNÞ is an epimorphism (the local version of the
same problem is open, as well). A partial answer is provided by Theorem 2.

3.2. The Boothby-Wang fibration
Let N0 be a Sasakian manifold. A local chart ðU ; jÞ of N0 is cubic (of

side 2a and center x0 A N0) if jðx0Þ ¼ 0 and jðUÞ ¼ fðt1; . . . ; t2nþ1Þ : jt jj < a;
1a j a 2nþ 1g. Let ðU ; j ¼ ðx1; . . . ; x2nþ1ÞÞ be a cubic chart of N0. Let 1a
pa 2nþ 1 and t ¼ ðtpþ1; . . . ; t2nþ1Þ such that jtpþjj < a, 1a j a 2n� pþ 1.
Then St :¼ fy A U : xpþjðyÞ ¼ tpþj; 1a j a 2n� pþ 1g is a p-dimensional slice
of ðU ; jÞ. The contact vector x is regular if N0 admits a Cy atlas fðU ; jÞg such
that the intersection of U with any maximal integral curve of x is a 1-dimensional
slice of ðU ; jÞ. By a result of R. Palais (cf. [20]) if x is regular the quotient
space N0=x admits a natural structure of a Cy manifold such that the projec-
tion p0 : N0 !M0 :¼ N0=x is Cy. The contact vector of the standard sphere
S 2nþ1 is regular. By a result of W. M. Boothby & H. C. Wang (cf. [7]), if N0

is a compact Sasakian manifold with x regular, there is a free action of S1 on
N0 making N0 into a S1-principal bundle over M0 ¼ N0=x, with projection p0 :
N0 !M0. The contact vector x is tangent to the S1-orbits and h0 is a con-
nection 1-form. Moreover, the Sasakian structure of N0 gives rise to a complex
structure J and a Kählerian metric G0 on M0 given by

ðJX Þ" ¼ fX "; G0ðX ;Y Þv ¼ g0ðX ";Y "Þ; X ;Y A TðM0Þ:

Here X " is the horizontal lift of X with respect to h0. Also, if f A CyðM0Þ
we set f v :¼ f � p0 (the vertical lift of f ). Then p0 : ðN0; g0Þ ! ðM0;G0Þ is a
Riemannian submersion and one may apply the results of B. O’Neill, [19]. In
particular, if h : TðN0Þ ! HðN0Þ is the projection associated to the direct sum
decomposition TðN0Þ ¼ HðN0ÞlKerðdp0Þ then h‘0

X "Y
" is p0-related to ‘M0

X Y .
Here ‘0 and ‘M0 are the Levi-Civita connections of ðN0; g0Þ and ðM0;G0Þ.
Consequently (cf. K. Yano & M. Kon, [29], p. 100)

‘0
X "Y

" ¼ ð‘M0

X Y Þ" � G0ðX ; JYÞvx; X ;Y A XðM0Þ:ð3:1Þ

For the sake of completeness we give a short proof of (3.1). We have
‘0

X "Y
" ¼ Aþ lx, for some A A HðN0Þ and l A CyðN0Þ. Then

ðdp0ÞA ¼ ðdp0Þ‘0
X "Y

" ¼ ‘M0

X Y ¼ ðdp0Þð‘M0

X YÞ"

i.e. A� ð‘M0

X YÞ" A Kerðdp0ÞVHðN0Þ ¼ ð0Þ. Recall that, on a Sasakian mani-
fold ‘0

Zx ¼ �fZ. On the other hand g0ðY "; xÞ ¼ h0ðY "Þ ¼ 0, hence

l ¼ g0ð‘0
X "Y

"; xÞ ¼ X "ðg0ðY "; xÞÞ � g0ðY ";‘0
X "xÞ

¼ g0ðY "; fX "Þ ¼ g0ðY "; ðJXÞ"Þ ¼ G0ðY ; JXÞv ¼ �G0ðX ; JY Þv: Q:e:d:
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3.3. Cauchy-Riemann fibrations
Let N0 be a compact Sasakian manifold with x regular and S1 ! N0 !

M0 ¼ N0=x the corresponding Boothby-Wang fibration. Let j : M HM0 be a
submanifold and N :¼ p�1

0 ðMÞ, so that S1 ! N !p M is a principal subbundle
of S1 ! N0 !M0 (with p :¼ p0jN ). We adopt the following notations: B (re-
spectively h) and AV (respectively aW ) are the second fundamental form of j :
M HM0 (respectively of i : N HN0) and the Wiengarten operator correspond-
ing to the normal section V A GyðVð jÞÞ, Vð jÞ ¼ TðMÞ?, (respectively to W A
GyðVðiÞÞ, VðiÞ ¼ TðNÞ?). Moreover g ¼ i�g0 and G ¼ j �G0 are the induced
metrics on N and M and ‘?, ‘?;M are the normal connections in VðiÞ and
Vð jÞ. We also set h ¼ i�h0 and H :¼ KerðhÞ ¼ Kerðh0ÞVTðNÞ ¼ HðN0ÞV
TðNÞ. H is a connection-distribution in the principal bundle S1 ! N !M.
Clearly x is tangent to N and spans KerðdpÞ. Moreover

TðMÞ" ¼H; ðTðMÞ?Þ" ¼ TðNÞ?:ð3:2Þ

The Gauss formulae of M HM0 and N HN0

‘M0

X Y ¼ ‘M
X Y þ BðX ;YÞ; ‘0

X "Y
" ¼ ‘X "Y

" þ hðX ";Y "Þ;

together with (3.1), lead to

‘X "Y
" þ hðX ";Y "Þ ¼ ð‘M0

X Y Þ" � G0ðX ; JYÞvx

¼ ð‘M
X Y Þ" þ BðX ;Y Þ" � GðX ;PMYÞvx

where PMX :¼ tanðJXÞ, X A TðMÞ. We obtain

‘X "Y
" ¼ ð‘M

X YÞ" � GðX ;PMYÞvx;ð3:3Þ
hðX ";Y "Þ ¼ BðX ;YÞ":ð3:4Þ

The Weingarten formulae of M HM0 and N HN0

‘M0

X V ¼ �AV X þ ‘?;MX V ; ‘0
X "V

" ¼ �aV"X
" þ ‘?X "V

";

together with (3.1) lead to

�aV"X
" þ ‘?X "V

" ¼ ð‘M0

X VÞ" � G0ðX ; JVÞvx

¼ �ðAV X Þ" þ ð‘?;MX VÞ" � GðX ; tMVÞvx

where tMV :¼ tanðJVÞ, V A TðMÞ?. We obtain

aV"X
" ¼ ðAV XÞ" þ GðX ; tMVÞvx;ð3:5Þ
‘?X "V

" ¼ ð‘?;MX VÞ":ð3:6Þ
Set FMX :¼ norðJX Þ and fMV :¼ norðJVÞ. Then

PX " ¼ ðPMXÞ"; FX " ¼ ðFMX Þ";ð3:7Þ
tV " ¼ ðtMVÞ"; fV " ¼ ðfMVÞ":ð3:8Þ
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By a result of K. Yano & M. Kon (cf. Theor. 2.1 in [28], p. 375) N is a contact
CR submanifold of N0 if and only if M is a CR submanifold of M0. If this
is the case, that is N is both a contact CR submanifold and the total space of a
S1-principal bundle over a CR submanifold M, we call S1 ! N !M a Cauchy-
Riemann (C-R) circle bundle. Given a C-R circle bundle S1 ! N !M, the
distribution D :¼ KerðIþ P2 � hn xÞ is f-invariant and D? (the orthogonal
complement of D in TðNÞ) is f-anti-invariant. Also HðMÞ :¼ KerðIþ P2

MÞ is
J-invariant, while HðMÞ? (the orthogonal complement of HðMÞ in TðMÞ) is
J-anti-invariant.

Let us consider a foliated manifold ðM;FÞ, with the foliation F. A subset
AJM is saturated if A is a union of leaves of F, i.e. every leaf of F intersecting
A is contained in A. A smooth function f : M ! C is a basic function if
X ð f Þ ¼ 0 for every X A TðFÞ.

The total space N0 of the Boothby-Wang fibration S1 ! N0 !M0 is a
foliated manifold, in a natural way. Indeed, the vertical distribution Kerðdp0Þ ¼
Rx is integrable and so, by the Frobenius theorem, there is a foliation V0 on N0

tangent to Kerðdp0Þ. The leaves of V0 are the maximal integral curves of the
contact vector field x. If S1 ! N !M is a C-R (circle) bundle, then N is a
saturated subset of ðN0;V0Þ. Therefore V0 induces a foliation V on N. We
shall need the following lemma

Lemma 1. Let S1 ! N !M be a C-R fibration. Consider the invariant
distributions D ¼ KerðIþ P2 � hn xÞ and HðMÞ ¼ KerðIþ P2

MÞ. Then ðN;DÞ is
generic if and only if ðM;HðMÞÞ is generic.

Proof. Note that x A D. Let HðNÞ be the orthogonal complement of
Rx in D, so that D ¼ HðNÞlRx. Moreover TðNÞ ¼ DlD? and TðNÞ ¼
HlRx imply

H ¼ HðNÞlD?:ð3:9Þ
Hence it is enough to prove that

HðMÞ" ¼ HðNÞ:ð3:10Þ

Indeed (3.10)–(3.9) yield ðHðMÞ?Þ" ¼ D? and lemma 1 is proved (as ðTðMÞ?Þ"
¼ TðNÞ?). Now we prove (3.10). Let X A HðMÞ. Then

ðIþ P2 � hn xÞX " ¼ ½ðIþ P2
MÞX �

" � hðX "Þx ¼ 0

as X A KerðIþ P2
MÞ and X " A HðMÞ"HTðMÞ" ¼H ¼ KerðhÞ. It follows that

X " A KerðIþ P2 � hn xÞ ¼ HðNÞ and so HðMÞ"JHðNÞ. The opposite inclu-
sion is a bit more di‰cult. Let ~XX A HðNÞHH ¼ TðMÞ". Then ~XX ¼ X " for
some X A TðMÞ and

0 ¼ ðIþ P2 � hn xÞ ~XX ¼ ½ðIþ P2
MÞX �

"

yields X A HðMÞ, i.e. ~XX A HðMÞ". Q.e.d.
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Now we may prove Theorem 2. Let S1 ! N !M be a C-R fibration
over a compact, connected, real analytic CR submanifold. Let us assume that
N is generic and proper. First, let us show that if ðN;DÞ is a contact CR
submanifold of an a.ct.m. manifold ðN0; ðf; x; h0; g0ÞÞ such that x A D, then D ¼
KerðIþ P2 � hn xÞ. Indeed, let X A D be orthogonal to x. Then

ðIþ P2 � hn xÞX ¼ ðIþ P2ÞX ¼ 0;

as P is a complex structure in HðNÞ. Conversely, let us consider X A
KerðIþ P2 � hn xÞ, orthogonal to x. As PðTðNÞÞJD and tðTðNÞ?ÞJD?,
one has i ¼ �P2 þ hn x. Then

0 ¼ ðIþ P2 � hn xÞX ¼ X � iX

hence X A D. Q.e.d.

Let ðN;DÞ be a contact CR submanifold of an almost contact manifold N0,
tangent to x and generic. Then x is transverse to D?. Indeed, if there is x0 A N
such that ðixÞx0

¼ 0, then HðNÞ?x0
¼ D?x0

hence (by genericity) k ¼ codim N ¼
dim N0 � ð2nþ kÞ, a contradiction. It follows that, whenever N is generic, one
has ðixÞx 0 0 for any x A N and then the dimension of the ambient space must be
dim N0 ¼ 2ðnþ kÞ � 1 (as in the hypothesis of Theorem 2).

Lemma 1 implies that M is a generic proper CR submanifold of CPnþk�1.
By a result of R. O. Wells, [26], there is a connected set QM HCPnþk�1 such
that QM IM and there is a submanifold M 0HCPnþk�1 of dimension 2nþ k
such that QM IM 0 and each holomorphic function on a neighborhood of
M extends to a holomorphic function on a neighborhood of QM . Set Q :¼
p�1

0 ðQMÞ. Clearly Q is a saturated set (i.e. a union of leaves of the vertical
foliation on S 2ðnþkÞ�1) and QIN, QIN 0, where N 0 :¼ p�1

0 ðM 0Þ. As N is
locally di¤eomorphic to M � S1 and M is real analytic, it follows that N is real
analytic as well. Let u A CRoðNÞ be a basic (i.e. constant along the leaves of
V) CR function. There is a Co function ~uu : M ! C such that ~uu � p ¼ u, where
p :¼ p0jN . For any v A C1ðMÞ we have

p�qMv ¼ qNðv � pÞ:ð3:11Þ

In particular v A CR1ðMÞ if and only if v � p A CR1ðNÞ. Here qM and qN

are, respectively, the tangential Cauchy-Riemann operators on M and N. We
postpone the proof of (3.11). To end the proof of Theorem 2, note that (by
(3.11)) 0 ¼ qNu ¼ p�qM ~uu hence ~uu A CRoðMÞ. By the Tomassini theorem, there
is an open neighborhood U0 of M in CPnþk�1 and there is a unique holomorphic
function f0 A OðU0Þ such that f0jM ¼ ~uu. By the aforementioned result of R. O.

Wells (cf. [26]) there is a neighborhood ~UU of QM in CPnþk�1 and there is a

holomorphic function ~ff A Oð ~UUÞ which extends f0, i.e. ~ff j ~UU VU0
¼ f0. Set U :¼

p�1
0 ð ~UUÞ and f :¼ ~ff � p0 A CoðUÞ. Then U is open and saturated in S 2ðnþkÞ�1

and U IQ. At this point, we need the identity

p�0qv ¼ qS 2ðnþkÞ�1ðv � p0Þ;ð3:12Þ
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for any v A C1ðCPnþk�1Þ. Here q is the Cauchy-Riemann operator on CPnþk�1.
By (3.12) one has qS 2ðnþkÞ�1 f ¼ p�0q

~ff ¼ 0, i.e. f A CRoðUÞ. Finally f � i ¼ ~ff �
p0 � i ¼ ~ff � j � p ¼ f0 � j � p ¼ ~uu � p ¼ u, i.e. f jN ¼ u. It remains that we prove
(3.11) and (3.12). If ðM;DÞ is a CR submanifold of a Hermitian manifold, the
tangential Cauchy-Riemann operator is the di¤erential operator qM : CyðMÞ !
W0;1ðMÞ defined as follows. A complex valued 1-form o A W1ðMÞ ¼ GyðT �ðMÞ
nCÞ is a ð0; 1Þ-form if T1;0ðMÞ co ¼ 0 and D? co ¼ 0. Let 50;1ðMÞ be the

vector bundle of all ð0; 1Þ-forms on M and W0;1ðMÞ :¼ Gyð50;1ðMÞÞ. If u :
M ! C is a C1 function then qMu is the unique ð0; 1Þ-form on M coinciding
with du on T0;1ðMÞ. Similar notions may be produced for the case of a con-
tact CR submanifold ðN;DÞ of a Sasakian manifold. Of course, the basic
di¤erence (with respect to CR manifolds of hypersurface type) is that we deal
with the higher CR codimension by using a fixed complement to the invariant
distribution. As before, o A W1ðNÞ is a ð0; 1Þ-form if T1;0ðNÞ co ¼ 0 and (with
the notations of Theorem 1) HðNÞ? co ¼ 0. Then the tangential Cauchy-

Riemann operator qN : CyðNÞ ! W0;1ðNÞ is given by ðqNuÞZ ¼ ZðuÞ, for every
Z A T1;0ðNÞ. Note that p : N !M is a CR map. Indeed, by (3.10)

T1;0ðMÞ" ¼ fX " � iJX " : X A HðMÞg ¼ T1;0ðNÞ
where X " :¼ ðdxp : Hx ! TpðxÞðMÞÞ�1

X . Then

qNðu � pÞxZx ¼ Zxðu � pÞ ¼ ½ðdxpÞZx�ðuÞ

¼ ðqMuÞpðxÞðdxpÞZx ¼ ðp�qMuÞxZx;

for any u A CyðMÞ, x A N and Z A GyðT1;0ðNÞÞ. Next

TðNÞ ¼HlKerðdpÞ ¼ TðMÞ"lRx

¼ HðMÞ"l ½HðMÞ?�"lRx ¼ HðNÞl ½HðMÞ?�"lRx;

yields

HðNÞ? ¼ ½HðMÞ?�"lRxð3:13Þ
by (3.10) and the fact that the horizontal lift is a field of linear isometries (i.e.
GðX ;Y Þv ¼ gðX ";Y "Þ). Then (by (3.13))

HðNÞ? c p�qMu ¼ ðqMuÞðdpÞHðNÞ? ¼ ðqMuÞHðMÞ? ¼ 0

and (3.11) is proved. The proof of (3.12) is similar. If (z1; . . . ; znþk�1Þ are local
complex coordinates in CPnþk�1 then qv ¼ ZjðvÞ dz j, where Zj ¼ q=qz j and v A
C 1ðCPnþk�1Þ. The projection ~pp0 : Cnþknf0g ! CPnþk�1 is holomorphic hence

p0 : S 2ðnþkÞ�1 ! CPnþk�1 is a CR map. Then

qS 2ðnþkÞ�1ðv � p0ÞZ ¼ Zðv � p0Þ ¼ ½ðdp0ÞZ �ðvÞ ¼ Zðp jÞZjðvÞ

where p j :¼ z j � p0. Finally qS 2ðnþkÞ�1ðv � p0Þ ¼ ZjðvÞðp�0 dz jÞ ¼ p�0qv and Theorem
2 is completely proved.
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R. O. Wells underlines (cf. [26]) the importance of the genericity property in
the theory of the functions on a real submanifold of a complex manifold, and
that there are some topological obstructions in order to have this property.
Indeed, he proves (by essentially using the fact that the Euler-Poincarè char-
acteristic wðMÞ of a compact submanifold M is got by evaluating the Euler class
of the normal bundle at the fundamental class of M) that a necessary condition
in order to have genericity (for a compact orientable m-dimensional submanifold
M, in a compact complex manifold V , homologous to zero in HmðV ;ZÞ) is that
wðMÞ ¼ 0. In the case of a contact CR submanifold N of a Sasakian manifold
(N not necessarily tangent to the contact vector field) the genericity condition
implies again wðNÞ ¼ 0 (cf. Theorem 3). The proof does not require algebraic
topology technics.

Let us prove Theorem 3. Let ðN;DÞ be a contact CR submanifold of a
Sasakian manifold ðN0; ðf; x0; h0; g0ÞÞ, under the assumptions of Theorem 3. As
N is generic it follows that N0 must be ðpþ 2qÞ-dimensional, where p ¼ dimR Dx

and q ¼ dimR D?x , x A N. Assume that xx0
¼ 0, for some x0 A N. Then Dx0

J
HðN0Þx0

¼ Kerðh0Þx0
(indeed, if v A Dx0

then g0;x0
ðv; x0;x0

Þ ¼ gx0
ðv; xx0

Þ ¼ 0),
hence fx0

descends to a complex structure on Dx0
so that p must be even. Then

N0 is even dimensional, a contradiction. Therefore x is a smooth vector field on
N, without zeros, so that wðNÞ ¼ 0. Q.e.d.

4. Canonical connections on real orientable hypersurfaces of Sasakian
manifolds

4.1. The Levi form
Let ðM;T1;0ðMÞÞ be a CR manifold of arbitrary type ðn; kÞ. The Levi form

of M is

Lx : T1;0ðMÞx � T1;0ðMÞx ! ½TxðMÞnR C�=½HðMÞx nR C�;
Lxðv;wÞ :¼ ipxð½V ;W �xÞ;

for v;w A T1;0ðMÞx, x A M, where V ;W A GyðT1;0ðMÞÞ are chosen such that
Vx ¼ v, Wx ¼ w and

p : TðMÞnC! ½TðMÞnC�=½HðMÞnC�
is the projection. Then ðM;T1;0ðMÞÞ is nondegenerate if L is nondegenerate.
Let us consider the conormal bundle

HðMÞ?x :¼ fo A T �x ðMÞ : KerðoÞKHðMÞxg; x A M:

Assume M to be oriented. When k ¼ 1, i.e. M is of hypersurface type, HðMÞ?
is an oriented line bundle, hence trivial. Thus HðMÞ? admits global nowhere
zero sections y A GyðHðMÞ?Þ, each of which is referred to as a pseudohermitian
structure on M. The Levi form may be recast as

LyðV ;WÞ :¼ �iðdyÞðV ;WÞ; V ;W A T1;0ðMÞ;
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and it is easily seen that L and Ly coincide up to a bundle isomorphism
½TðMÞnC�=½HðMÞnC�AHðMÞ?. If Ly is nondegenerate then y is a contact
form, i.e. y5ðdyÞn is a volume form on M.

If M is a CR manifold of type ðn; kÞ and CR codimension k b 2, the
conormal bundle HðMÞ? has rank k and, in general, the orientability assumption
doesn’t guarantee triviality (the topological obstructions towards HðMÞ?A
M � Rk were not investigated). Given a real orientable hypersurface N in a
Sasakian manifold N0 (by our Theorem 9) N is a CR manifold. Let L be its
Levi form. N has CR codimension k ¼ 2, hence L may not be computed in
terms of a pseudohermitian structure. However the conormal bundle HðNÞ?
admits the global frame fh; ug, where h ¼ i�h0 and uðX Þ :¼ gðX ;UÞ, X A TðNÞ,
hence HðNÞ?AN � R2. We shall need the bundle isomorphism

F : ½TðNÞnC�=½HðNÞnC� ! RU lRx;

pxðvÞ 7! hxðvÞxx þ uxðvÞUx; v A TxðNÞnR C; x A N:

Then HðNÞ c h ¼ 0 and HðNÞ c u ¼ 0 yield

FxðLxðv;wÞÞ ¼ �2ifðdhÞðV ;WÞxxx þ ðduÞðV ;WÞxUxg:ð4:1Þ
Next, as N0 satisfies the contact condition

ðdhÞðX ;YÞ ¼ gðX ;PY Þ;ð4:2Þ
for any X ;Y A TðNÞ. Also

2ðduÞðX ;Y Þ ¼ ð‘X uÞY � ð‘Y uÞX ;

ð‘X uÞY ¼ g0ð‘0
X U ;Y Þ:

Using the well known characterization of Sasakian structures (cf. e.g. D. E. Blair,
[4], p. 73)

ð‘0
XfÞY ¼ g0ðX ;Y Þx� h0ðY ÞX ; X ;Y A TðN0Þ;ð4:3Þ

and the Weingarten formula, we have

‘0
X U ¼ ‘0

Xfn ¼ f‘0
Xnþ g0ðX ; nÞx� h0ðnÞX

¼ f‘0
Xn ¼ ff�aX þ ‘?X ng ¼ �faX ;

(as ‘?n ¼ 0). Summing up, on any real orientable hypersurface (of a Sasakian
manifold) tangent to the contact vector field

‘0
X U ¼ �faX ;ð4:4Þ

so that

ðduÞðX ;YÞ ¼ 1

2
gðX ; ðaPþ PaÞYÞ;ð4:5Þ

for any X ;Y A TðNÞ. We may define

LðX ;Y Þ :¼ gðX ;YÞxþ 1

2
fgðaX ;YÞ þ gðaPX ;PY ÞgU
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for X ;Y A HðNÞ. By the identities (4.1)–(4.2) and (4.5) it follows that

FxðLxðv;wÞÞ ¼ �2LðV ;WÞx
(and L is referred to as the Levi form of N, as well). Note that L is
nondegenerate as its component along x is precisely the first fundamental form
(restricted to HðNÞ).

If M is a CR manifold of hypersurface type, then M is strictly pseudoconvex
if Ly is positive definite, for some pseudohermitian structure y. On the other
hand, for a real orientable hypersurface N in a Sasakian manifold, L is a vector
valued form, hence there is no obvious analog to strict pseudoconvexity.

4.2. Canonical connections
Let us prove Theorem 4. Given a linear connection D on N we say its

torsion TD is pure if

TDðZ;WÞ ¼ 0; TDðZ;WÞ ¼ �2iLðZ;WÞ; Z;W A T1;0ðNÞ;
where L is the Levi form of N, and

t � J þ J � t ¼ 0; r � J þ J � r ¼ 0;

where t, r are the vector valued 1-forms on N given by

tX :¼ TDðx;XÞ; rX :¼ TDðU ; xÞ; X A TðNÞ:
We establish the following more general statement.

Proposition 1. For any l A W1ðNÞ there is a unique linear connection D on
N satisfying the following axioms 1) HðNÞ is parallel which respect to D, 2)
Dg ¼ 0, where g ¼ i�g0 is the first fundamental form of i : N HN0, 3) DJ ¼ 0,
where J ¼ fjHðNÞ is the complex structure of HðNÞ, 4) the torsion TD of D is pure,

and 5) Dx ¼ lnU and DU ¼ �ln x.

Note first that J ¼ f along HðNÞ and let us extend J to the whole of TðNÞ
by setting JU :¼ 0 and Jx :¼ 0. Then J ¼ P on TðNÞ. Also, note that TðNÞ ¼
HðNÞlRU lRx and T1;0ðNÞ ¼ fX � ifX : X A HðNÞg. At this point, we may
check the uniqueness of a linear connection D obeying to the axioms 1)–5) in
Proposition 1. By axiom 2)

X ðgðY ;ZÞÞ ¼ gðDX Y ;ZÞ þ gðY ;DX ZÞ:ð4:6Þ
Let us set Y ¼ x and use gðX ; xÞ ¼ hðXÞ. Then

XðhðZÞÞ ¼ gðDXx;ZÞ þ hðDX ZÞ:ð4:7Þ
Choose Z A HðNÞ. Then (by DX Z A HðNÞ)

gðDXx;ZÞ ¼ 0;

i.e. the component of DXx along HðNÞ vanishes. Now we set Z ¼ x in (4.7) so
that (by hðxÞ ¼ 1)
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2hðDXxÞ ¼ 0;

i.e. the component of DXx along x vanishes. We may conclude that

DXx A RU ; X A TðNÞ:ð4:8Þ
Set Y ¼ U in (4.6). Then

XðuðZÞÞ ¼ gðDX U ;ZÞ þ uðDX ZÞ:ð4:9Þ
Next, for Z A HðNÞ (due to HðNÞ c u ¼ 0)

gðDX U ;ZÞ ¼ 0;

i.e. the component of DX U along HðNÞ vanishes. Set Z ¼ U in (4.9) so that (by
uðUÞ ¼ 1)

2uðDX UÞ ¼ 0;

i.e. the component of DX U along U vanishes. Summing up

DX U A Rx; X A TðNÞ:ð4:10Þ
Let Z;W A T1;0ðNÞ. By axiom 3)

TDðZ;WÞ ¼ 2ifgðZ;WÞxþ gðaZ;WÞUg;
hence

DZW �DW Z � ½Z;W � ¼ 2ifgðZ;WÞxþ gðaZ;WÞUg:
It follows that

DZW ¼ ½Z;W �T1; 0ðNÞ; DW Z ¼ �½Z;W �T0; 1ðNÞ;ð4:11Þ
where VT1; 0ðNÞ and VT0; 1ðNÞ are the projections of a V A TðNÞnC on T1;0ðNÞ and
T0;1ðNÞ, respectively. If V A T1;0ðNÞ

gðDZW ;VÞ ¼ ZðgðW ;VÞÞ � gðW ;DZVÞ;
and by (4.11)

gðDZW ;VÞ ¼ ZðgðW ;VÞÞ þ gðW ; ½V ;Z�T0; 1ðNÞÞ:ð4:12Þ
Set lðX Þ :¼ uðDXxÞ. As gðx;UÞ ¼ 0 and uðDXxÞ ¼ �hðDX UÞ we get (by (4.8)
and (4.10))

DXx ¼ lðXÞU ; DX U ¼ �lðX Þx;ð4:13Þ
for any X A TðNÞ. Next, for X A TðNÞ

tX ¼ DxX � lðXÞU � ½x;X �:ð4:14Þ
Applying J to (4.14) we have

JtX ¼ JDxX � J½x;X �;
and (replacing X by JX )

tJX ¼ DxJX � lðJX ÞU � ½x; JX �:
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Adding up the last two identities and using t � J þ J � t ¼ 0 and DJ ¼ 0

0 ¼ 2JDxX � JLxX �LxJX � lðJXÞU ;

where LX denotes the Lie derivative in the direction X . If X A HðNÞ
2DxX ¼ �J 2LxX � JLxJX ; X A HðNÞ:ð4:15Þ

Indeed, for any X A TðNÞ
X ¼ XH þ hðX Þxþ uðX ÞU

for some XH A HðNÞ. We have JX ¼ JXH ¼ fXH so that J 2X ¼ f2XH ¼ �XH .
Therefore

J 2X ¼ �X þ hðXÞxþ uðXÞU :

Let us now observe that (by (4.2))

hðLxX Þ ¼ hð½x;X �Þ ¼ �2ðdhÞðx;XÞ ¼ �2gðx;PX Þ ¼ 0;

i.e. LxX A HðNÞlRU . Moreover (by (4.5)) for X A HðNÞ and Y ¼ x one has
2ðduÞðX ; xÞ ¼ gðX ;PaxÞ so that

uð½x;X �Þ ¼ �2ðduÞðx;X Þ ¼ gðX ;PaxÞ
i.e. uðLxXÞ ¼ gðPax;XÞ. Then

J 2LxX ¼ �LxX þ gðPax;XÞU
which together with (4.15) leads to

2DxX ¼LxX � gðPax;X ÞU � JLxJX :

Note that for X A HðNÞ one has ðLxJÞJX ¼ �LxX � JLxJX . Then our last
identity may be also written

DxX ¼LxX þ
1

2
ðLxJÞJX � 1

2
gðPax;XÞU ;ð4:16Þ

for any X A HðNÞ. On the other hand, by the Gauss equation of N in N0 and
using ‘0

Vx ¼ �fV (for any V A TðN0Þ) we obtain

‘Xx ¼ �PX ; gðaX ; xÞ ¼ �FX :

Yet

FX ¼ �uðXÞn;ð4:17Þ
so that

‘Xx ¼ �PX ; hðaXÞ ¼ uðXÞ:ð4:18Þ
Let us observe that

aX A HðNÞlRU ; X A HðNÞ
aU ¼ xþ Y ; Y A HðNÞlRU

ax A HðNÞlRU

8<
:
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Then gðPax;XÞ ¼ 0. Consider

Tx : HðNÞ ! HðNÞ; Tx :¼
1

2
ðLxJÞJX ; X A HðNÞ:

The identity (4.16) becomes

DxX ¼LxX þ TxX ;ð4:19Þ
for any X A HðNÞ. For X A TðNÞ (by (4.13))

rX ¼ DU X þ lðXÞx� ½U ;X �:ð4:20Þ
By applying J to (4.20) we obtain

JrX ¼ JDU X � J½U ;X �;
hence (replacing X by JX )

rJX ¼ DU JX þ lðJXÞx� ½U ; JX �:
Adding up the last two identities and using r � J þ J � r ¼ 0 and DJ ¼ 0 we
obtain

0 ¼ 2JDU X � JLU X �LU JX þ lðJX Þx:
If X A HðNÞ (as HðNÞ is D-parallel)

2DU X ¼ �J 2LU X � JLU JX ; X A HðNÞ:ð4:21Þ
Now (by (4.2))

hðLU XÞ ¼ hð½U ;X �Þ ¼ �2ðdhÞðU ;X Þ ¼ �2gðU ;PXÞ ¼ 0;

i.e. LU X A HðNÞlRU . Moreover (by (4.5))

uðLU XÞ ¼ uð½U ;X �Þ ¼ �2ðduÞðU ;XÞ ¼ �gðU ; ðaPþ PaÞX Þ;

i.e. uðLU XÞ ¼ �uðaPXÞ (as PU ¼ tanffUg ¼ �tanfng ¼ 0). Then

J 2LU X ¼ �LU X � uðaPXÞU ;

which together with (4.21) leads to

2DU X ¼LU X � JLU JX þ uðaPXÞU :

Note that for X A HðNÞ one has ðLU JÞJX ¼ �LU X � JLU JX . Let us con-
sider

TU : HðNÞ ! HðNÞlRU ; TU X :¼ 1

2
ðLU JÞJX ; X A HðNÞ:

Then

DU X ¼LU X þ TU X þ 1

2
uðaPXÞU :ð4:22Þ
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Uniqueness is proved. We proceed by proving the existence of a connection D
obeying to 1)–5). To this end, we consider the di¤erential operator

DX : GyðTðNÞÞ ! GyðTðNÞÞ; X A XðNÞ;
defined by (4.11), (4.12), (4.13), (4.19) and (4.22), for a fixed l A W1ðNÞ. It may
be easily checked that D is a linear connection on N. The only property re-
questing a bit of care is DX f Y ¼ Xð f ÞY þ fDX Y . Let f A CyðNÞ. Then for
any Z;W A T1;0ðNÞ

Df ZW ¼ ½ f Z;W �T1; 0ðNÞ ¼ ð f ½Z;W � �Wð f ÞZÞT1; 0ðNÞ ¼ fDZW ;

(as ZT1; 0ðNÞ ¼ 0). Also

Dxð fXÞ ¼ Txð fXÞ þLxð fXÞ ¼ fDxX þ xð f ÞX ;

DUð fX Þ ¼ TUð fX Þ þLUð fXÞ þ 1

2
uðaPð fX ÞÞ ¼ fDU X þUð f ÞX ;

etc.

4.3. The torsions t and r
We establish a few useful properties of t and r, when l1 0 (from now D

is the connection furnished by Theorem 4). Let X A TðNÞ and Z A HðNÞ. By
(4.3)

ð‘0
XfÞZ ¼ gðX ;ZÞx:

By the Gauss formula (of N in N0)

gðX ;ZÞx ¼ ð‘0
XfÞZ ¼ ‘0

X PZ � f‘0
X Z

¼ ‘X PZ þ gðaX ;PZÞn� ff‘X Z þ gðaX ;ZÞng
¼ ‘X PZ þ gðaX ;PZÞn� P‘X Z � F‘X Z � gðaX ;ZÞU ;

where from (by identifying the tangential components)

‘X PZ ¼ P‘X Z þ gðX ;ZÞxþ gðaX ;ZÞU ;ð4:23Þ
for any X A TðNÞ, Z A HðNÞ, and (by identifying the normal components)

gðaX ;PZÞn� F‘X Z ¼ 0:

Next (by FX ¼ �uðXÞn, for any X A TðNÞ) we obtain

gðaX ;PZÞ þ uð‘X ZÞ ¼ 0;ð4:24Þ
for any X A TðNÞ, Z A HðNÞ.

Let X A HðNÞ. By (4.19) and (4.22)

tX ¼ TxX ; rX ¼ TU X þ 1

2
uðaPXÞU :

On the other hand TDðx;UÞ ¼ �½x;U � so that

tU ¼ �rx ¼ �½x;U �:
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By (4.5)

uð½x;U �Þ ¼ �2ðduÞðx;UÞ ¼ �gðx; ðaPþ PaÞUÞ ¼ 0;

while by (4.2)

hð½x;U �Þ ¼ �2ðdhÞðx;UÞ ¼ �2gðx;PUÞ ¼ 0:

Finally, for Y A HðNÞ (by using (4.4) and (4.18))

gð½x;U �;Y Þ ¼ gð‘xU ;YÞ � gð‘Ux;YÞ ¼ �gðfax;YÞ þ gðPU ;XÞ ¼ 0;

i.e. the component of ½x;U � along HðNÞ vanishes. Then ½x;U � ¼ 0 so that
tU ¼ rx ¼ 0. Summing up, the vector valued 1-forms t and r satisfy

tX ¼ TxX ; X A HðNÞ;
tx ¼ tU ¼ 0

�
ð4:25Þ

rX ¼ TU X þ 1

2
uðaPXÞU ; X A HðNÞ

rx ¼ rU ¼ 0

8<
: :ð4:26Þ

We also establish

Lemma 2. For every X ;Y A HðNÞ
gðTxX ;YÞ ¼ gðX ;TxYÞ; gðTU X ;Y Þ ¼ gðX ;TU YÞ:ð4:27Þ

The proof is a straightforward calculation based on (4.4), (4.18) and (4.23).
Using gðuðaPX ÞU ;Y Þ ¼ 0, for any X ;Y A HðNÞ, and the previous lemma we
obtain

Corollary 1. t, r are self adjoint along the maximally complex distribution,
i.e.

gðtX ;YÞ ¼ gðX ; tYÞ; gðrX ;YÞ ¼ gðX ; rYÞ:ð4:28Þ
for any X ;Y A HðNÞ.

Note that hðLxX Þ ¼ 0, uðLxX Þ ¼ 0, for any X A HðNÞ, i.e. LxHðNÞJHðNÞ
so that tHðNÞJHðNÞ. On the other hand (by hðLU X Þ ¼ 0 and uðLU X Þ ¼
�uðaPXÞ, for any X A HðNÞ) one has uðrX Þ ¼ uðaPX Þ and then uðTU X Þ ¼
1
2 uðaPXÞ, for X A HðNÞ, i.e. rHðNÞJHðNÞlRU . Moreover, if X ;Y A TðNÞ,
by the uniqueness of the direct sum decomposition TðNÞ ¼ HðNÞlRU lRx

gðrX ;YÞ ¼ gðrXH ;YÞ
¼ gðrXH ;YHÞ þ hðY ÞgðrXH ; xÞ þ uðYÞgðrXH ;UÞ
¼ gðXH ; rYHÞ þ uðYÞuðaPXHÞ
¼ gðX ; rYHÞ � hðXÞgðx; rYHÞ � uðXÞgðU ; rYHÞ þ uðYÞuðaPXHÞ

where XH is the HðNÞ-component of X . Summing up
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Corollary 2. For any X ;Y A TðNÞ
gðrX ;YÞ ¼ gðX ; rYÞ � uðXÞuðaPY Þ þ uðYÞuðaPXÞ

and

gðtX ;YÞ ¼ gðX ; tYÞ;
i.e. t is self-adjoint [as an endomorphism of ðTðNÞ; gÞ�.

We proceed by deriving an useful relation between the canonical connec-
tion D and the Levi-Civita connection ‘ of N. As both D and ‘ are metric
connections

2gðDX Y ;ZÞ ¼ 2gð‘X Y ;ZÞ þ gðTDðX ;YÞ;ZÞð4:29Þ
þ gðTDðZ;XÞ;Y Þ þ gðTDðZ;YÞ;X Þ

holds for any X ;Y ;Z A TðNÞ. By the purity axiom

TDðX ;Y Þ ¼ 2gðX ;PYÞx� fgðaPX ;YÞ � gðaX ;PYÞgU ;ð4:30Þ
for any X ;Y A HðNÞ. Also, for Z A HðNÞ and X ;Y A TðNÞ

TDðZ;XÞ ¼ TDðZ;XHÞ þ hðX ÞTDðZ; xÞ þ uðXÞTDðZ;UÞ;
where from

TDðZ;X Þ ¼ 2gðZ;PXHÞx� fgðaPZ;XHÞ � gðaZ;PXHÞgU � hðXÞtZ � uðX ÞrZ:

The torsion expression together with (4.29) leads to

2gðDX Y ;ZÞ ¼ 2gð‘X Y ;ZÞ þ gðTDðX ;Y Þ;ZÞð4:31Þ
þ 2gðZ;PXHÞhðYÞ þ 2gðZ;PYHÞhðXÞ
� fgðaPZ;XHÞ � gðaZ;PXHÞguðY Þ
� fgðaPZ;YHÞ � gðaZ;PYHÞguðXÞ
� hðXÞgðtZ;YÞ � uðXÞgðrZ;Y Þ
� hðY ÞgðtZ;X Þ � uðYÞgðrZ;XÞ;

for any X ;Y A TðNÞ, Z A HðNÞ. If Y A HðNÞ then (by DX Y A HðNÞ)

2DX Y ¼ 2ð‘X YÞH þ ðTDðX ;Y ÞÞH þ uðX ÞfðaPþ PaÞYgHð4:32Þ
þ 2hðXÞPY � hðXÞtY � uðXÞðrYÞH :

Now, since X ¼ XH þ hðX Þxþ uðX ÞU A TðNÞ

ðTDðX ;Y ÞÞH ¼ fTDðXH ;Y Þ þ hðX ÞtY þ uðXÞrYgH

and (by TDðXH ;YÞ A RU lRx)

ðTDðX ;Y ÞÞH ¼ hðX ÞtY þ uðXÞðrYÞH ;
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where from

2DX Y ¼ 2ð‘X Y ÞH þ uðX ÞfðaPþ PaÞYgH þ 2hðX ÞPY :ð4:33Þ
On the other hand, due to uððaPþ PaÞYÞ ¼ uðaPYÞ and hððaPþ PaÞY Þ ¼ 0

fðaPþ PaÞYgH ¼ ðaPþ PaÞY � uðaPY ÞU
Moreover (by (4.23))

hð‘X YÞ ¼ X ðgðY ; xÞÞ � gðY ;‘XxÞ ¼ �gðX ;PYÞ
and (by (4.2))

uð‘X YÞ ¼ X ðgðY ;UÞÞ � gðY ;‘X UÞ ¼ �gðaX ;PYÞ
so that

ð‘X YÞH ¼ ‘X Y þ gðX ;PY Þxþ gðaX ;PY ÞU :

Let us substitute in (4.33) so that to obtain the identity

DX Y ¼ ‘X Y þ gðX ;PY Þxþ 1

2
f2gðaX ;PYÞ � uðXÞuðaPY ÞgUð4:34Þ

þ 1

2
f2hðXÞPY þ uðXÞðaPþ PaÞYg;

for any X A TðNÞ, Y A HðNÞ. When X A HðNÞ (respectively X ¼ U , or X ¼ x)
we obtain

DX Y ¼ ‘X Y þ gðX ;PY Þxþ gðaX ;PY ÞU ;ð4:35Þ

DU Y ¼ ‘U Y þ 1

2
fuðaPYÞU þ ðaPþ PaÞYg;ð4:36Þ

DxY ¼ ‘xY þ PY ;ð4:37Þ
for any X ;Y A HðNÞ.

5. Applications

5.1. A curvature formula
Let us consider a C-R fibration over a real orientable hypersurface

M HCPn, i.e.

S1 ���! N 2n ���!i S 2nþ1  ��� S1

p

???y
???yp0

M 2n�1 ���!
j

CPn

under the further assumption that the natural almost contact structure of M
(as real hypersurface of CPn) satisfies the contact condition dhM ¼ WM , where
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hMðXÞ :¼ GðX ; JCPnnMÞ is the contact form, nM is a (globally defined) unit
normal field on M, and JCPn is the complex structure of CPn. Also, we set
WMðX ;YÞ ¼ GðX ;PMYÞ, for X ;Y A TðMÞ. In general, if ðM;T1;0ðMÞÞ is a CR

manifold of hypersurface type and if y A GyðHðMÞ?Þ is a pseudohermitian
structure, then the real Levi form is

GyðX ;YÞ :¼ ðdyÞðX ; JY Þ; X ;Y A HðMÞ:
As GyðJX ; JYÞ ¼ GyðX ;YÞ (as consequence of the formal integrability of
T1;0ðMÞ) it follows that Ly and the (C-linear) extension of Gy actually coincide
(on T1;0ðMÞnT0;1ðMÞ). If M is nondegenerate there is (cf. e.g. S. Dragomir,
[9]) a globally defined nowhere zero vector field T A XðMÞ, transverse to the
Levi distribution HðMÞ, uniquely determined by yðTÞ ¼ 1, T c dy ¼ 0. T is the
characteristic direction of dy. The Webster metric gy is

gy ¼ Gy on HðMÞnHðMÞ;
gyðX ;TÞ ¼ yðXÞ; X A TðMÞ:

gy is a semi-Riemannian metric on M (of signature ð2rþ 1; 2sÞ, where ðr; sÞ is
the signature of the Levi form Ly). If M is strictly pseudoconvex and Ly is
positive definite, then gy is a Riemannian metric on M and ðJ;T ; y; gyÞ is a
contact metric structure (which is normal if and only if the Tanaka-Webster
connection of ðM; yÞ has a vanishing pseudohermitian torsion, cf. [9]). For the
given C-R fibration S1 ! N !M the 1-form y :¼ �hM is a pseudohermitian
structure on M. Moreover, for X ;Y A HðMÞ

GyðX ;Y Þ ¼ ðdyÞðX ; JMYÞ ¼ �ðdhMÞðX ; JMYÞ ¼ �WMðX ; JMY Þ;
hence Gy ¼ G on HðMÞnHðMÞ. In particular M is strictly pseudoconvex.
Let T the characteristic direction of dy. In general, given an a.ct.m. structure
ðf; x; h; gÞ, the underlying contact field is not characteristic for dh. However, in
the case at hand, if M satisfies the contact condition then

Lemma 3.

T ¼ �JCP nnM :

Proof. Let UM :¼ JCPnnM A XðMÞ. Then

yð�UMÞ ¼ hMðUMÞ ¼ GðUM ;UMÞ ¼ 1;

�UM c dy ¼ UM c dhM ¼ UM cWM ¼ 0;

because PMUM ¼ 0. Then T ¼ �UM . Q.e.d.

We also have gyðT ;TÞ ¼ 1, GðT ;TÞ ¼ GðUM ;UMÞ ¼ 1 and gyðX ;TÞ ¼ 0 ¼
GðX ;TÞ, for any X A HðMÞ. Then, as T ¼ �UM ¼ JCPnnM and y ¼ �hM , it
follows that gy ¼ G, hence the Levi-Civita connection of the Webster metric and
the induced connection actually coincide. For the remainder of this paper, we
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adopt the following notations: D is the canonical connection given by Theorem
4, ‘ and ‘M are respectively the Levi-Civita connection of N and M, and DM is
the Tanaka-Webster connection of M. Summing up, these connections are tied
by the following identities

DX Y ¼ ‘X Y þ gðX ;PY Þxþ 1

2
f2gðaX ;PYÞ � uðXÞuðaPY ÞgUð5:1Þ

þ 1

2
f2hðXÞPY þ uðXÞðaPþ PaÞYg;

DX Y ¼ ‘X Y þ gðX ;PY Þxþ gðaX ;PY ÞU ;ð5:2Þ

DU Y ¼ ‘U Y þ 1

2
fuðaPYÞU þ ðaPþ PaÞYg;ð5:3Þ

DxY ¼ ‘xY þ PY ;ð5:4Þ

for any X ;Y A HðNÞ, and

‘X "Y
" ¼ ð‘M

X YÞ" � GðX ;PMYÞvx;ð5:5Þ

for any X ;Y A TðMÞ. Moreover, we need (cf. e.g. [1])

‘M
X Y ¼ DM

X Y þ fGðX ;PMYÞ � GðX ; tMY ÞgTð5:6Þ
þ yðY ÞtMX þ yðXÞPMY þ yðY ÞPMX

(relating the Levi-Civita and Tanaka-Webster connections of M) where tM (the
pseudohermitian torsion) is given by tMX ¼ TD M ðT ;XÞ. Also, we shall make use
of

tM � PM þ PM � tM ¼ 0; tMHðMÞJHðMÞ;
GðtMX ;Y Þ ¼ GðX ; tMY Þ; for any X ;Y A TðMÞ;

where TD M is the torsion of DM . Let n be a global unit normal field on N.
Note that ðTðMÞ?Þ" ¼ TðNÞ? yields n"M ¼ n, so that T" ¼ �U ¼ �fn. More-
over (by (3.5))

aX " ¼ ðAX Þ" � GðX ;TÞvx

where A ¼ AnM
is the Weingarten operator of M associated to the normal section

nM . In particular

aX " ¼ ðAX Þ"; X A HðMÞ;
aU ¼ �aT" ¼ �ðATÞ" þ x:

Moreover uðX "Þ ¼ �ðyðXÞÞv, hence

uðX "Þ ¼ 0; X A HðMÞ;
uðT"Þ ¼ �1:

�
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Let X A TðMÞ, Y A HðMÞ. Then X " A HðNÞlRU , Y " A HðNÞ, and hðX "Þ ¼ 0
so that (by (5.1) and (5.5)–(5.6))

DX "Y
" ¼ ðDM

X Y Þ" � 1

2
ðyðXÞyðAPMYÞÞvUð5:7Þ

þ 1

2
ðyðX ÞÞvf2PMY � ðAPM þ PMAÞYg"

� fGðX ;PMY Þ � GðX ; tMYÞ � GðAX ;PMY Þgv
U ;

for any X A TðMÞ, Y A HðMÞ. In particular

DX "Y
" ¼ ðDM

X YÞ" � fGðX ;PMYÞ � GðX ; tMY Þ � GðAX ;PMYÞgv
U ;ð5:8Þ

and

DU Y " ¼ �ðDM
T Y Þ" þ 1

2
ðyðAPMY ÞÞvU � 1

2
f2PMY � ðAPM þ PMAÞYg"ð5:9Þ

for any X ;Y A HðMÞ. Also (by (5.4) and (4.18))

DxX
" ¼ ‘xX

" þ ðPMXÞ" ¼ ½x;X "� A HðNÞ:
As KerðdpÞ ¼ Rx we have

dp½x;X "� ¼ ½dpðxÞ; dpðX "Þ� ¼ 0; X A TðMÞ;
and then ½x;X "� A ðHðNÞlRUÞVRx ¼ ð0Þ, i.e. ½x;X "� ¼ 0 for any X A TðMÞ.
Thus DxX " ¼ 0. Note also that

tX " ¼ DxX " � ½x;X "� ¼ TxX "

and then (by HðMÞ" ¼ HðNÞ) it follows that Tx ¼ 0, i.e. t ¼ 0. If X ;Y A TðNÞ
(by (5.5))

½X ";Y "� ¼ ½X ;Y �" � 2GðX ;PMYÞvx:
In particular ½U ;X "� ¼ �½T ;X �". Let X ;Y ;Z A HðMÞ. A straightforward cal-
culation (based on (5.8)) leads to

DX "DY "Z
" ¼ ðDM

X DM
Y ZÞ" � fGðX ;PMDM

Y ZÞ � GðAX ;PMDM
Y ZÞð5:10Þ

� GðX ; tMDM
Y ZÞ þ XðGðY ;PMZÞÞ � X ðGðAY ;PMZÞÞ

� XðGðY ; tMZÞÞgv
U :

Using (5.7), DxZ
" ¼ 0, and ½X ;Y �" A HðNÞlRU

D½X ";Y "�Z
" ¼ ðDM

½X ;Y �ZÞ
" � 1

2
ðyð½X ;Y �ÞyðAPMZÞÞvUð5:11Þ

þ 1

2
ðyð½X ;Y �ÞÞvf2PMZ � ðAPM þ PMAÞZg"

� fGð½X ;Y �;PMZÞ � Gð½X ;Y �; tMZÞ � GðA½X ;Y �;PMZÞgv
U :
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At this point, a rather lengthy (yet once again straightforward) calculation (based
on (5.10)–(5.11) and DMG ¼ 0) relates the curvature tensor fields of D and DM

RDðX ";Y "ÞZ" ¼ ðRD M ðX ;YÞZÞ"ð5:12Þ

� fGðDM
X Y ;PMZÞ � GðDM

Y X ;PMZÞ � Gð½X ;Y �;PMZÞ

� GðDM
X AY ;PMZÞ þ GðDM

Y AX ;PMZÞ þ GðA½X ;Y �;PMZÞ

� GðDM
X tMY ;ZÞ þ GðDM

Y tMX ;ZÞ þ GðtM ½X ;Y �;ZÞgv
U

þ 1

2
ðyð½X ;Y �ÞyðAPMZÞÞvU

� 1

2
ðyð½X ;Y �ÞÞvf2PMZ � ðAPM þ PMAÞZg":

Note that (by TD M ðX ;Y Þ A RT)

GðDM
X Y ;PMZÞ � GðDM

Y X ;PMZÞ � Gð½X ;Y �;PMZÞ ¼ GðTD M ðX ;Y Þ;PMZÞ ¼ 0:

Also

yðAX Þ ¼ GðT ;AXÞ ¼ �GðT ;‘CPn

X nMÞ ¼ GðT ;‘CP n

X JCPn TÞ ¼ 0;

for any X A HðMÞ. Then (by (5.6))

GðDM
X AY ;PMZÞ ¼ Gð‘M

X AY ;PMZÞ;
so that

GðDM
X AY �DM

Y AX � A½X ;Y �;PMZÞ

¼ Gð‘M
X AY � ‘M

Y AX � A‘M
X Y þ A‘M

Y X ;PMZÞ

¼ Gðð‘M
X AÞY � ð‘M

Y AÞX ;PMZÞ:

On the other hand, we need to recall (cf. K. Yano & M. Kon, [29], p. 153)
the Codazzi equation of M (as a real hypersurface of a complex space form of
holomorphic sectional curvature 4)

ð‘M
X AÞY � ð‘M

Y AÞX ¼ yðXÞPMY � yðYÞPMX þ 2GðX ;PMYÞT ¼ 2GðX ;PMYÞT ;

for any X ;Y A HðMÞ. Therefore

GðDM
X AY �DM

Y AX � A½X ;Y �;PMZÞ ¼ 0:

Next, the identities

DM
X tMY ¼ DM

X DM
T Y �DM

X ½T ;Y �;
DM

Y tMX ¼ DM
Y DM

T X �DM
Y ½T ;X �;

tM ½X ;Y � ¼ DM
T ½X ;Y � � ½T ; ½X ;Y ��;

lead to
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GðDM
X tMY �DM

Y tMX � tM ½X ;Y �;ZÞ

¼ GðRD M ðX ;TÞY � RD M ðY ;TÞX þDM
½X ;T �Y �DM

½Y ;T �X ;ZÞ

þ GðDM
X ½Y ;T � �DM

Y ½X ;T � þ ½T ; ½X ;Y ��;ZÞ

¼ GðRD M ðX ;TÞY � RD M ðY ;TÞX ;ZÞ:

Finally (by yð½X ;Y �Þ ¼ �2ðdyÞðX ;YÞ ¼ 2GðX ;PMY Þ) (5.12) becomes

RDðX ";Y "ÞZ" ¼ ðRD M ðX ;Y ÞZÞ"ð5:13Þ

þ GðRD M ðX ;TÞY � RD M ðY ;TÞX ;ZÞvU

� GðX ;PMYÞvf2PMZ � ðAPM þ PMAÞZg";

for any X ;Y ;Z A HðMÞ. One should note (by yðAZÞ ¼ 0, for any Z A HðMÞ)
that uðaZ"Þ ¼ 0, i.e. u � ajHðNÞ ¼ 0. In particular uðaPXÞ ¼ 0 for any X A HðNÞ,
where from

rX ¼ TU X ; X A HðNÞ;
TU HðNÞJHðNÞ:

�

5.2. A vanishing theorem
Let us prove Theorem 5. To this end, we consider a local orthonormal

frame fXag ¼ fXj; JMXjg of HðMÞ (here GðXa;XbÞ ¼ dab), so that fT ;Xag is a
(local) orthonormal frame of TðMÞ. The Ricci curvature of DM is

RicD M ðY ;ZÞ :¼ tracefV 7! RD M ðV ;YÞZg

¼
Xn

k¼1

gðRD M ðXk;Y ÞZ;XkÞ:

On the other hand, fX "a g ¼ fX
"
j ; JMX "j g is an orthonormal frame of HðNÞ, hence

fx;U ;X "a g is an orthonormal frame in TðNÞ. Then (by (5.13))

RicDðY ";Z"Þ ¼
X2n�2

a¼1

gðRDðX "a ;Y "ÞZ";X "a Þ

¼
X2n�2

a¼1

fgððRD M ðXa;YÞZÞ";X "a Þg

�
X2n�2

a¼1

fGðXa;PMY ÞvGð½2PMZ � ðAPM þ PMAÞZ�;XaÞvg

¼
X2n�2

a¼1

GðRD M ðXa;Y ÞZ;XaÞv � Gð½2PM � ðAPM þ PMAÞ�Z;PMYÞv;
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where from

RicDðY ";Z"Þ ¼ RicD M ðY ;ZÞv � Gð½2PM � ðAPM þ PMAÞ�Z;PMY Þv:ð5:14Þ

Then, for V ¼ Y � iPMY , W ¼ Z � iPMZ A T1;0ðMÞ

RicDðV ";W "Þ ¼ RicD M ðV ;WÞv � Gð½2PM � ðAPM þ PMAÞ�W ;PMVÞv:

On the other hand

Gð½2PM � ðAPM þ PMAÞ�W ;PMVÞ

¼ Gð2PMW ;PMVÞ � GðAPMW ;PMVÞ � GðPMAW ;PMVÞ

¼ Gð2W ;VÞ � 2GðAW ;VÞ;

so that

Gð½2PM � ðAPM þ PMAÞ�W ;PMVÞ ¼ 2GððI� AÞW ;VÞ;
leading to

RicDðV ";W "Þ ¼ RicD M ðV ;WÞv � 2GððI� AÞW ;VÞ:ð5:15Þ
The identity (5.15) is the key ingredient in the proof of Theorems 5 and 6. Let
us recall that a complex valued q-form o A WqðMÞ is a ð0; qÞ-form if

T co ¼ 0; T1;0ðMÞ co ¼ 0:

The tangential Cauchy-Riemann operator (on ð0; qÞ-forms, qb 1) is the di¤erential
operator

qM : W0;qðMÞ ! W0;qþ1ðMÞ
defined as follows. Let L0;qðMÞ !M be the fibre bundle of the ð0; qÞ-forms and
set W0;qðMÞ :¼ GyðL0;qðMÞÞ. If o A W0;qðMÞ then qMo is the unique ð0; qþ 1Þ-
form coinciding with do on T0;1ðMÞn � � �nT0;1ðMÞ (qþ 1-terms). As well
known

CyðM;CÞ !qM
W0;1ðMÞ !qM � � � !qM

W0;n�1ðMÞ !qM
0ð5:16Þ

is a cochain complex (the tangential Cauchy-Riemann complex) and its coho-
mology

H 0;qðM; qMÞ :¼ H 0;qðW0; �ðMÞ; qMÞ ¼
KerfqM : W0;qðMÞ ! �g

qMW0;q�1ðMÞ

is the so called Kohn-Rossi cohomology of ðM;T1;0ðMÞÞ. By a result of J. M.
Lee (cf. [16]), if M is compact and strictly pseudoconvex, and the (pseudo-
hermitian) Ricci tensor of the Tanaka-Webster connection satisfies RicD M ðW ;WÞ
b 0, for any W A T1;0ðMÞ, then H 0;1ðM; qMÞ ¼ 0. This is clearly an analog of
the well known Bochner theorem that the first Betti number of a compact
Riemannian manifold of positive semi-definite Ricci curvature vanishes (yet
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H 0;1ðM; qMÞ is not a topological invariant). In the same spirit, by our assump-
tion (1.5) and by (5.15) we may conclude as in Theorem 5. Q.e.d.

5.3. C-R fibrations over a pseudo-Einstein manifold
Let ðM;T1;0ðMÞÞ be a nondegenerate CR manifold, of hypersurface type,

of CR dimension n. Let y be a contact form over M and DM the Tanaka-
Webster connection of ðM; yÞ. If fTag is a local frame of T1;0ðMÞ we set R

ab
¼

RicD M ðTa;T
b
Þ (the pseudohermitian Ricci tensor of ðM; yÞ). Then ðM; yÞ is a

pseudo-Einstein manifold if the pseudohermitian Ricci tensor is proportional to the
Levi form (a CR analog to the Einstein condition in Riemannian geometry), i.e.
R

ab
¼ lg

ab
, for some l A CyðMÞ. Here g

ab
¼ LyðTa;T

b
Þ. A posteriori l ¼ r=n,

where r ¼ gabR
ab

is the pseudohermitian scalar curvature of ðM; yÞ. Examples

are abundant. The sphere S 2nþ1 endowed with the standard contact structure
(as hypersurface in Cnþ1) is a pseudo-Einstein manifold. The total space UðMÞ
(carrying the contact structure induced by the almost hermitian structure of TðMÞ)
of the tangent sphere bundle over a real space-form M of (costant) sectional
curvature 1 is a pseudo-Einstein manifold (cf. E. Barletta & S. Dragomir, [1]).
If f : M ! S 2nþ1 is a pseudohermitian immersion with a flat normal Tanaka-
Webster connection, of a compact strictly pseudoconvex CR manifold M into
a sphere, then M admits a global pseudo-Einstein structure (cf. E. Barletta &
S. Dragomir, [2]).

As well known (cf. J. M. Lee, [16]) there are obstructions towards the
existence of a globally defined pseudo-Einstein structure on a given nondegenerate
CR manifold (for instance, if ðM;T1;0ðMÞÞ admits a contact pseudo-Einstein
structure then the first Chern class of the CR structure must vanish (c1ðT1;0ðMÞÞ
¼ 0)). The Lee conjecture states that every compact strictly pseudoconvex CR
manifold satisfying c1ðT1;0ðMÞÞ ¼ 0 should actually possess a globally defined
pseudo-Einstein structure (a CR analog of the Calabi problem). Positive answers
to the Lee conjecture are known under additional assumptions (e.g. when M
admits a 1-parameter group of CR automorphisms transverse to HðMÞ, cf. J. M.
Lee, [16], or when the contact vector field T is regular in the sense of Palais,
cf. S. Dragomir, [10]). Theorem 6 furnishes new examples of pseudo-Einstein
manifolds, as base spaces of C-R fibrations whose total space satisfies the as-
sumption (1.6). Let us prove Theorem 6. By (5.15) for V ¼ Ta and W ¼ Tb

RicDðT"a ;T"
b
Þ � 2GðTa;AT

b
Þ ¼ R

ab
� 2g

ab
ð5:17Þ

where g
ab

:¼ GðTa;T
b
Þ. Assume that (1.6) holds. Then (by (3.5))

R
ab
¼ ðmþ 2Þg

ab
ð5:18Þ

so that ðM; yÞ is a pseudo-Einstein manifold of pseudohermitian scalar curva-
ture r ¼ gabR

ab
¼ ðn� 1Þðmþ 2Þ. Conversely, if (5.18) holds, then (by T1;0ðNÞ ¼

T1;0ðMÞ" and (5.17)) we obtain (1.6). Finally, if this is the case, by a result by
J. M. Lee (cf. [16]) c1ðT1;0ðMÞÞ ¼ 0. Q.e.d.
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