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ON CAUCHY-RIEMANN CIRCLE BUNDLES
DoNATO ANTONIO CIAMPA

Abstract

Building on ideas of R. Mizner, [17]-[18], and C. Laurent-Thiébaut, [14], we
study the CR geometry of real orientable hypersurfaces of a Sasakian manifold. These
are shown to be CR manifolds of CR codimension two and to possess a canonical
connection D (parallelizing the maximally complex distribution) similar to the Tanaka-
Webster connection (cf. [21]) in pseudohermitian geometry. Examples arise as circle
subbundles S' — N 5 M, of the Hopf fibration, over a real hypersurface M in the
complex projective space. Exploiting the relationship between the second fundamental
forms of the immersions N — S?"*! and M — CP" and a horizontal lifting technique
we prove a CR extension theorem for CR functions on N. Under suitable assumptions
[Ricp(Z,2Z) +29(Z,(I —a)Z) = 0, Z € Ty,o(N), where a is the Weingarten operator of
the immersion N — S?"*1] on the Ricci curvature Ricp of D, we show that the first
Kohn-Rossi cohomology group of M vanishes. We show that whenever Ricp(Z, W) —
29(Z, W) = (non)g(Z, W) for some ue C*(M), M is a pseudo-Einstein manifold.

1. Introduction and statement of main results

Let M be a differentiable manifold, of class C* and real dimension
2n+k. A subbundle 77 (M), of the complexified tangent bundle 7(M) ® C, of
complex rank n, is said to be a CR structure on M if

(11) qug(M)xﬂTgyl(M)x:(O), XEM,
(1.2) Z,Wel*(ToM))=[Z,W]eI*(To(M)).
The pair (n,k) is the type of the CR structure. A pair (M, T o(M)) is a CR

manifold (of type (n,k)). We set To (M) = T, (M), where an overbar denotes
complex conjugation. If £ — M is a vector bundle over M then FE, denotes
the fibre over xe M and T'/(E) denotes the space of sections of class C,
/e NU{wo,w} (eventually defined on an open subset U = M, to be understood
from the context). The integer n (respectively k) is the CR dimension (respec-
tively the CR codimension) of the CR manifold (M, T;0(M)). A CR manifold
of type (n,1), i.e. of CR codimension k = 1, is said to be of hypersurface type.
The terminology is motivated by the fact that every real hypersurface M in
C""! carries a naturally induced CR structure 7 (M) (of type (n,1)) given by
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Tio(M), = [T«(M) @ CINTHO(C™™) , x e M, where Th°(C"™") is the holo-
morphic tangent bundle, ie. if z!,...,z"t! are complex coordinates on C"*!,
then 7"0(C"!) is the span of {9/dz/:1 < j<n+1}. Such CR manifolds are
referred to as embedded.

An important class of CR manifolds (of arbitrary type (n,k)) consists of
the proper CR submanifolds, in the sense of A. Bejancu, [3]. Given a Hermitian
manifold (M, J,go), with the complex structure J and the Hermitian metric g,
a pair (M,2) consisting of a submanifold M of M, and of a smooth dis-
tribution, 2 : xe M — 9, = T (M), is a CR submanifold if i) 9 is J-invariant,
ie. J.(Z,) = 2., xe M, and ii) the orthogonal complement 2 (with respect to
g:=j"go, j: M = My) of & in T(M) is J-anti-invariant, i.e. J(Z+) = T(M)™,
xe M. Here 7°(j) = T(M)™* is the normal bundle (of the given immersion j :
M < M,).

Let (M,2) be a CR submanifold of the Hermitian manifold (My,J,go).
Set n:=dimc Z,, k := dimg Z7, for any xe M (so that dim M =2n+k). A
CR submanifold (M,2) is generic if k and the codimension of M in M, co-
incide. A CR submanifold (M,2) is said to be proper if both the holomorphic
and totally real distributions are nonzero (n # 0 and k # 0).

By a result in [5] (referred to as the Blair-Chen theorem, in the sequel), every
proper CR submanifold (M,2) of a Hermitian manifold is a CR manifold.
Indeed, let Jy be the restriction of J to Z. Moreover, let J$ be the exten-
sion (by complex linearity) of Jys to 2 ® C and set Ty o(M) := Eigen(J5, i), i.e.
Tio(M), is the eigenspace of (J,§), corresponding to the eigenvalue i = v/—1,
xe M. Then, by the previously quoted result (cf. [5], or Theorem 2.1 in [29],
p. 83), (M, T 0(M)) is a CR manifold of type (n, k).

A CR structure on a manifold is a reformulation (in terms of fibre
bundles) of the tangential Cauchy-Riemann equations induced (on a real sub-
manifold) by the Cauchy-Riemann equations (on the ambient complex man-
ifold). If Q= {p >0} c C""! is a smooth domain, then M := Q inherits a CR
structure 71:°(M) (as a real hypersurface in C"H) locally spanned by L, =
S al(2)0/027, 1 < o < n, where Y14 aj(2)p/0z/ =0, 1 < <n (ie. the L,’s
are purely tangential first order differential operators). The restriction u to M of
a holomorphic function f on an open neighborhood of M satisfies the tangential
Cauchy-Riemann equations

(1.3) Liu= )Y aj(z)o-=0, 1<a<n

=1
If (M, T, 0(M)) is an arbitrary CR manifold (of arbitrary, but fixed, type) let us
consider the differential operator

O = C*(M,C) — T*(To, 1 (M)")

given by (dyu)Z:=Z(u), for any ZeT™ (T o(M)), ue C*(M,C). The
equations

(1.4) omu =0
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are also referred to as the tangential Cauchy-Riemann equations (although not
any longer confined to the CR codimension 1 case) and coincide locally with (1.3)
when M = 0Q.

When M is a real submanifold of a complex manifold ¥ (endowed with the
induced CR structure), a fundamental problem of complex analysis in several
variables is whether, given a solution u to (1.4), there is a holomorphic function
extending u (e.g. in a neighborhood of M). The solutions to the given problem
(perhaps under additional assumptions on the geometry of M, e.g. imposed to its
Levi form) occupy a large space in the specialized literature (cf. e.g. A. Boggess,
[6], p. 189-260).

The holomorphic extension problem may be solved in the real analytic
case by a result of G. Tomassini, [22]. A CR manifold is real analytic if M is
a C® manifold and its CR structure is locally spanned by real analytic sections.
Let M = C” be a real analytic embedded CR manifold. Let u: M — C be a
real analytic CR function, i.e. a C® solution to (1.4). Then, by the Tomassini
theorem (cf. op. cit.), there is a neighborhood U of M in C" and a unique
holomorphic function f: U — C whose trace on M is u.

Let Ny be a manifold carrying an almost contact metric (a.ct.m.) structure
(¢,&,m9,90). A pair (N, 2) consisting of a submanifold N of Ny and a smooth
distribution 2 : xe N — 2, < T(N) is said to be a contact CR submanifold of
Ny if i) @ is ¢-invariant, ie. ¢.(2,) = Dy, x€ N, and ii) the orthogonal com-
plement % of & (with respect to g:=i*gy) in T(N) is ¢-anti-invariant, i.e.
$(Z1) = T«(N)", xe N. Here 7°(i) = T(N)" is the normal bundle of the im-
mersion i: N = Nj.

Let (N,%2) be a contact CR submanifold of the a.ct.m. manifold Nj.
(N,2) is generic if dimg 2 = codim(N), xe N. (N, Z) is proper if 7 # (0)
and 2+ # (0).

The concept of a contact CR submanifold (with the additional assumption
that &, the contact field of the ambient manifold N, is tangent to N) is due to
K. Yano & M. Kon, [29], p. 48. Taking into consideration the Blair-Chen
theorem, it is natural to ask whether a contact CR submanifold is a CR manifold
(and of what type). Let (N,Z) be a contact CR submanifold of the Sasakian
manifold Ny, tangent to the contact field & of Ny. A simple argument shows
that either £ € Z or ¢ € 2. However, to avoid the disjunction of cases, let
H(N) be the orthogonal complement of Ri£ in & [where 1: T(N) — & is the
canonical projection], i.e. 2 = H(N) @ Rié.  Also, let H(N)" be the orthogonal
complement of H(N) in T(N). H(N) is ¢-invariant, H(N)" is ¢-anti-invariant,
hence (N,H(N)) is a contact CR submanifold. Moreover ¢ € H(N)" and the
restriction J of ¢ to H(N) is a complex structure on H(N). We establish

THEOREM 1. T o(N):=[T(N)®C]NTo(No) is a CR structure on N,
of type (n,k), where n:=dim¢ H(N), and k := dimg H(N)i, xeN. Therefore
(N, T10(N)) is a CR manifold and i: N < Ny is a CR immersion.

By a result in [13] (referred to as the lanus theorem, in the sequel), every
Sasakian manifold Ny admits a natural CR structure 7 o(No) :={X —i¢X :
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X e Ker(yg)}. A CR immersion is a C* map f : N — N’ of CR manifolds such
that f is an immersion and a CR map, i.e. (d«/)T1,0(N), < T1,0(N");(), X€N.
For simplicity Theorem 1 is stated for CR submanifolds of Sasakian manifolds
(while the Ianus theorem only requires that (¢, &,7,) is normal).

An important class of contact CR submanifolds of an odd-dimensional
sphere consists of the total spaces of the (circle) subbundles of the Hopf fibration,
over a CR submanifold of the complex projective space. Precisely, let M be
a CR submanifold in CP”" and let N := n;!(M), where mp : S — CP” is the
projection. Then N is a contact CR submanifold of S?"*! (carrying the standard
Sasakian structure) and S' — N X, M is a principal subbundle of the Hopf
fibration S' — §*! — CP", where 7:=m|y. S' — N 5 M is said to be a
Cauchy-Riemann circle bundle and is the central notion of this paper. Indeed,
when the given contact CR submanifold N is (the total space of) a S'-bundle
over a CR submanifold M < CP”, the pullback # := i*z5, of the contact form of
S2m+1 s a connection form in S! — N — M, a fact which enables one to consider
horizontal lifts of geometric objects on M (e.g. the first and the second fun-
damental forms of j: M < CP”, the induced and normal connections, the
Weingarten operator, etc.). This leads to a precise description of the geometry
of (the second fundamental form of) j: M < CP”" in terms of the geometry of
(the second fundamental form of) i : N = S?"*! and successive applications. We
have

Tueorem 2. Let nkeZ, nk >0, and let S' — N — M be a Cauchy-
Riemann circle bundle over a real analytic compact connected CR submani-
fold M = CP"™='with dim N = 2n+ k and dimg H(N)_ =2n, xe N. If N is
generic and the contact vector field of S*"F)=1 lies in the invariant distribution of
N, then there is a saturated subset Q < S*" K= such that Q > N, and there is
a subbundle S' — N' — M’ of the Hopf fibration S' — S2+k)-1 _, cprh=1,
over a submanifold M' = CP"™ =1 of real dimension 2n + k, such that Q > N' and,
for every basic CR function ue CR®(N) there is an open and saturated set
U < S20=1 such that U > Q and there is a basic CR function f € CR®(U)
which extends u, i.e. f|y =u.

Theorem 2 is an immediate corollary of the Tomassini theorem and of
a result by R. O. Wells (cf. [25]) according to which, given a compact and
connected submanifold M < V' in a complex manifold V, if M is a generic CR
manifold of type (n,k), with n >0, the holomorphic hull of M contains a
manifold M’ of higher dimension (i.e. dim M’ =2n+ k +1). While Theorem
2 is a rather elementary consequence of the above mentioned results (of G.
Tomassini and R. O. Wells, cf. op. cit.), it leads naturally to the question: which
real submanifolds of a Sasakian manifold are generic? The following result
establishes a necessary topological condition.

THEOREM 3. Let (N,2) be a contact CR submanifold of a Sasakian manifold
No. Let us assume that N is generic and that the tangential component of the
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contact vector &y of Ny lies in the invariant distribution [i.e. & :=tan(&)) € Z].
Then the Euler-Poincaré characteristic of N vanishes [i.e. y(N)=0].

Theorem 3 is a contact analogue of a result by R. O. Wells (cf. theorem 1 in
[26], p. 124). If M = CP" is a compact CR submanifold and N :=nj!(M) =
S2+1 then it is immediate that y(N) = 0. Indeed, in this case N is tangent to
the contact vector field & of $*! (and &(x) # 0 for any x e N).

Every nondegenerate CR manifold M, of hypersurface type, on which a
contact form 6 is fixed, admits a unique linear connection parallelizing the Levi
distribution Ker(6), its complex structure, the Webster metric gy, and whose
torsion is pure. This is the Tanaka-Webster connection of (M,0) (discovered
independently by N. Tanaka, [21], and S. Webster, [24]). The discovery of the
Tanaka-Webster connection revealed itself of a certain importance in under-
standing pseudohermitian geometry. For instance, the Chern-Moser tensor (which
is well known to vanish if and only if M is locally CR equivalent to a sphere)
may be expressed in terms of the curvature of the Tanaka-Webster connection.
Similarly, the Fefferman metric (cf. C. Fefferman, [11]) may be expressed in terms
of the connection forms and scalar curvature of the Tanaka-Webster connection
(cf. J. M. Lee, [15]). These and other issues (for instance those tied to the
geometry of Yang-Mills fields on CR manifolds, cf. H. Urakawa, [23], or to the
geometry of CR immersions, cf. S. Dragomir, [8], etc.) lead to the fundamental
problem of building an analogue of the Tanaka-Webster connection in higher CR
codimension (k >2). Indeed this is the case of real hypersurfaces N < S2+!
(any such N has CR codimension 2).

The first attempt to solve the problem belongs to R. Mizner (cf. [18]), who
built a connection V generalizing the Tanaka-Webster connection to the case of
a CR manifold M of CR codimension > 2 under the assumption that M is
nondegenerate and the Levi distribution H(M) admits a complement E which is
trivial as a bundle over M. Since (as in the CR codimension one case) one of
the requirements for building V is that the Levi form be parallel, the non-
degeneracy assumption is quite natural. As to the triviality of £, while it follows
from the mere orientability of M in the CR codimension one case, it is not a
priori clear what obstructions there are towards of E~ M x R¥, when k >2
(neither does R. Mizner investigate such obstructions).

In this paper we adopt an alternative to R. Mizner’s ideas, that is we request
that the connection parallelizes the induced metric (rather than the Levi form %)
and we replace, here as well as in the classical case, the symmetry assumption by
a suitable “purity”’ axiom. Precisely, let N be a real orientable hypersurface in a
Sasakian manifold (No, (¢,&,1,,490)) (for instance Ny = S**!), tangent to the
contact vector field of Ny. Let v be a global unit normal vector field on N, and
set U:=¢v. Then U is tangential (ie. U e T(N)) and orthogonal to & Let
H(N) be the orthogonal complement of RU @ R¢ in T(N). We establish

THEOREM 4. There is a unique linear connection D on N satisfying the
following properties
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1) H(N) is parallel with respect 1o D,
2) Dg =0, where g=i*go, i : N < N,
3) DJ =0, where J = §| )
4) the torsion Tp of D is pure ie.
Tp(Z, W) =0, Tp(Z, W) =-2i%(Z, I/_V)7 Z,WeToN),
toJ+Jo1=0, poJ+Jop=0,

where tX := Tp(&, X), pX :=Tp(U,X), X € T(N), and
5) D¢ =0, DU =0.

In analogy with pseudohermitian geometry and the fundamental role played
there by the Tanaka-Webster connection, we expect several applications (in the
study of CR structures of real orientable hypersurfaces N = S**1) of the ca-
nonical connection furnished by Theorem 4. For instance, when N fibres in
circles over a real hypersurface in CP”, we establish the following “vanishing
theorem”

THEOREM 5. Let S' — N — M be a Cauchy-Riemann circle bundle over a
compact orientable real hypersurface M <= CP". Assume that M satisfies the
contact condition and

(1.5) Ricp(Z,Z2) +29(Z,(1—a)Z) =0, Ze T o(N),

where Ricp is the Ricci tensor of the canonical connection D on N and a is the
Weingarten operator corresponding to a choice of global unit normal v on N.
Then the first Kohn-Rossi cohomology group of M vanishes, i.e. H%'(M;dy) = 0.

Given a nondegenerate CR manifold M of CR dimension n, a contact
form 6 on M is pseudo-Einstein if the pseudohermitian Ricci tensor (of the
Tanaka-Webster connection of (M,6)) is proportional to the Levi form, i.e.
R, ; = ph,; for some p e C* (M) (a posteriori = (1/n)p, where p = h’ﬁR - is the
pseudohermltlan scalar curvature of (M, 0)). Another application of Theorem 4 is

THEOREM 6. Let S' — N 5 M be a Cauchy-Riemann circle bundle over an
orientable real hypersurface M = CP" satisfying the contact condition. Then there
is pe C*(M) such that

(1.6) Ricp(Z, W) —29(Z,aW) = (pon)g(Z, W), Z,W e Ty.o(N),

if and only if 0 is pseudo-Einstein of pseudohermitian scalar curvature p =
(n—1)(u+2). Here 8(X)=—-G(X,Jcpvm), X € T(M). In particular, if (1.6)
holds, then the CR structure of M has a vanishing first Chern class.
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2. CR submanifolds

2.1. CR submanifolds of Hermitian manifolds

Let j: M = My, be a submanifold of a Hermitian manifold (My,J,go)
and g := j*go the induced metric. Let T(M)* — M be the normal bundle of
the given immersion. We shall need the Gauss and Weingarten formulae

(2.1) VoY =Wy Y +h(X,Y)
(2.2) VoV = —ayX + ViV

for any X,Y e Z(M) and V e T*(T(M)"). Here V° is the Levi-Civita con-
nection of (My,go), V is the induced connection, / is the second fundamental
form of the given immersion, ay is the Weingarten operator (associated to the
normal section V') and V' is the normal connection. Let tan, and nor, be the
projections associated to the direct sum decomposition

To(Mo) = [(d)) To(M)] @ To(M)", xeM.
We set
PX =tan(JX), FX =nor(JX), tV =tan(JV), f{V =nor(JV).
Then
(2.3) P?=-1—-tF, FP+fF=0, f’=-1—-Ft, Pt+tf=0.

The identities (2.3) are commonly stated for submanifolds of Ké&hlerian man-
ifolds. However, an inspection of the proof (cf. e.g. [29], p. 77) shows that (2.3)
hold when the ambient space is but Hermitian. We may state the following

THEOREM 7. A submanifold M of a Hermitian manifold is a CR submanifold
if and only if FP=0. If this is the case then & := Ker(1+ P?) is J-invariant
(while the orthogonal complement of & in T(M) is J-anti-invariant).

Theorem 7 was first proved by K. Yano & M. Kon, (cf. Theor. 3.2 in [29],
p. 87) for submanifolds of Kdhlerian manifolds, and the proof is a verbatim
repetition of their arguments.

2.2. Contact CR submanifolds of a.ct.m. manifolds

Let N be a real (2n + 1)-dimensional manifold. A synthetic object (¢,<,7)
consisting of a tensor field ¢ of type (1, 1), a tangent vector field &, and a 1-form
n, is an almost contact structure on N if

PP=-1+n¢ nlE) =1, ¢&=0.

An almost contact manifold is a (odd dimensional) manifold endowed with a
fixed almost contact structure. Let (N, (¢,&, 7)) be an almost contact manifold.
A Riemannian metric g is compatible with (¢, ) if g(¢X,9Y)=g(X,Y)—
n(X)m(Y). Then ¢g(X,&) =x(X). An almost contact metric (a.ct.m.) structure
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(¢,¢,m,¢9) consists of an almost contact structure (¢, &,#) and a compatible metric
g. Given an a.ct.m. structure (¢,¢,7,9) we set Q(X,Y) :=g(X,0Y). (4, n,9)
is a contact metric structure if Q = dy (the contact condition). If this is the case
nAQ" is a volume form, hence # is a contact form on N. Each orientable real
hypersurface N of a Hermitian manifold (My,J,go) carries a naturally induced
a.ct.m. structure. Indeed, let v be a unit normal field on N. Then & :=Jv is
tangent to N. Moreover if g:= j*go, ¢X :=tan(JX) and 5(X) := g(X,¢), for
X e T(N), then (¢,¢,7,¢9) is an a.ct.m. structure on N. An a.ct.m. structure
(¢,¢,) on N is normal if NV := [§, 4] + 2(dn) ® & vanishes.

A Sasakian structure is a contact metric structure (¢,¢,7,g) with N = 0.
A Sasakian manifold is an odd dimensional manifold endowed with a fixed
Sasakian structure. The underlying Riemannian metric is usually referred to as a
Sasakian metric. Sasakian structures are characterized among a.ct.m. structures
by
(2.4) (Vx9)Y =g(X, Y) —n(Y)X,
(cf. D. E. Blair, [4], p. 73). Here V is the Levi-Civita connection of (N,g). By
the Ianus theorem (cf. S. Ianus, [13], or D. E. Blair, [4], p. 61) for each almost
contact normal structure (¢,&,#) there is a naturally associated CR structure.
Indeed T o(N):={X —igX : X e Ker(y)} is an almost CR structure. More-
over, normality (N(!) = 0) implies formal integrability.

Let (N,%) be a contact CR submanifold of an a.ct.m. manifold (N,
(#,&,10,90)), tangent to the contact vector (¢ e T(N)). Let 1 and i~ be the

projections associated to the direct sum decomposition T(N) = 2 @ Z*. Next,
for any X € T(N) and V e T(N)" we set

PX =tan(¢X), FX =nor(¢X), tV =tan(¢V), [V =nor(¢V).
Then
(25) PP=-1-tF+n®¢ FP+fF=0, f>=-1-Ft, Pt+tf=0.
If g is the induced metric (g =i*go, i : N = Ny), then
(2.6) go(FX, V) +g(X,tV) =0.

We may state

THEOREM 8. Let N be a submanifold of the a.ct.m. manifold Ny, tangent to
the contact vector (£ € T(N)). Then N is a contact CR submanifold if and only if
FP = 0. If this is the case 71 = Ker(I1+P? — 3 ® &) and Z, := Ker(1 + P?) are
¢-invariant and &€ 9, e ,@j

This was first proved by K. Yano & M. Kon (cf. [29]) though for a Sasakian
ambient space only. The proof is verbatim repetition of the arguments in [29],
p- 51.

Let us prove Theorem 1. To this end, let H(N) be the orthogonal com-
plement of Ri¢ in Z, and H(N)" the orthogonal complement of H(N) in T(N).
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Set m := dimg H(N)
H(N)*. As

(2.7) H(N)" =2+ @R

it follows that Z = W + &, for some We %+ and ie C*(N). Then (by
9(2,2+) =0)

and k :=dimg H(N);, xeN. Let X e H(N) and Z e

X R

9(9X,Z) = 29($X,1&) = in(¢X) = 0.

Here n =i*n,. Thus ¢X € H(N), that is ¢H(N) < H(N). This proves that
H(N) is ¢-invariant. To show that H(N)"' is ¢-anti-invariant, let Z e H(N)*
and X e T(N). Then, using the decomposition (2.7), #W € T(N)*, and

0=¢gé=gé+hréec T @ T(N)" = $i& =0,
we have
90($Z, X) = go(¢(W + Ji&), X) = go(¢W, X) = 0.
Therefore ¢Z € T(N)*, that is gH(N)" < T(N)". Let X € H(N). Then
X = —X +n(X)¢ =X

hence & e H(N)". In particular, the real dimension of H(N)_, x € N, must be
even, i.e. m=2n. At this point we may check that 7} (N):=[T(N)® C]N
T10(No) is a CR structure on N. Here T o(No) := {4 —ipA : A € Ker(n,)} is
the CR structure (of type (/,1), with dim Ny =2/ + 1) of Ny. To this end, note
that

(2.8) Ti.0(N) = Eigen(J €, i).

Here J¢ is the C-linear extension of J := ¢ nvy to H(N)®C. Indeed,
let X —iJX e Eigen(JC,i), X e H(N). As H(N) < Ker(y,), it follows that X —
iJX € T1,o(N) and then

Eigen(J€,i) < [T(N) ® C]N T1.0(No).

To check the opposite inclusion, let 4 —igAd € T 0(No)N[T(N)® C]. Then
A—ipA =X +iY, for some X,Y € T(N). It follows that 4 = X and ¢4 = -7,
that is 4 € T(N)NKer(y,). Therefore

(2.9) A e (Ri&)* =Ker(y) = T(N).

Here (Ri&)" is the orthogonal complement of Rié in T(N). Let E(N) be the
orthogonal complement of Ri& in H(N)*, so that

H(N)" =E(N)®Ri¢, Z+=E(N)@®Ri*¢
Then
(2.10) (Ri&)™ = H(N) @ E(N).

Now (2.9) and (2.10) yield 4 = Ay + Ag, for some Ay € H(N) and Ag € E(N).
Therefore
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—Y =94 =¢Ap + ¢pAx
hence ¢pAy = —Y and gAr =0 (because of A € ¢Z*+ = T(N)™*). It follows
that
0 = ¢2AE = —AE + HO(AE)f = —AE.
Summing up, we have Ar =0, that is 4 =A4Aye H(N). Then A—ipAde
Eigen(J€,i) and (2.8) is proved. In particular (by (2.8)) 7i.0(N) has constant
rank n. Moreover, by the very definition of T o(V)

Tl_()(N) N Tl,()(N) < Tl_()(N()) N T()J(No) = (0)

Both T(N)®C and T)0(Ny) are formally integrable and then so is
T]ﬁo(N). Qed

2.3. Real orientable hypersurfaces in a.ct.m. manifolds

As an application of Theorem 1 we look at real orientable hypersurfaces in
an a.ct.m. manifold whose underlying almost contact structure is normal. We
may state

THEOREM 9. Let Ny be a (2n—+ l)-dimensional a.ct.m. manifold, whith
(¢,&,my) normal. Let N be a real orientable hypersurface in Ny, tangent to the
contact vector (£ € T(N)). Let v be a unit normal field on N. Then U := ¢v is
tangent to N. Let H(N) be the orthogonal complement of RU @ RE in T(N).
Then (N,H(N)) is a contact CR submanifold of Ny. Consequently T o(N) :=
{X —igX : X eH(N)} is a CR structure of type (n—1,2).

Proof. Note that U and & are orthogonal. Next
go(U,v) = go(¢v,v) = go(#*v, v) + mo(dv)n(v)
= go(=v+ ()<, U) = —go(v, U),

hence U is tangent to N. Let X € H(N). We have

go(9X,v) = —go(X, ¢v) = —go(X, U) = 0.
It follows that ¢X € T(N), i.e. pH(N) = T(N). Moreover

g(pX, U) = go(¢X, ¢v) = go(X,v) — 1no(X)no(v) = 0,
9(9X, &) =n(¢X) = 0.

Thus ¢X € H(N), that is H(N) is ¢-invariant. Now, let Y e H(N)' =
RUBRE As ¢¢ =0 and gU = —ve T(N)* it follows that ¢Y € T(N)*, that
is H(N)" is ¢-anti-invariant. Q.ed.

By Theorem 9, given a smooth domain Q) < S>"*!  its boundary N = 0Q,
is a CR manifold of CR codimension 2, in contrast with domains in C" (where
the CR codimension and the codimension of the boundary are both 1). A geo-
metric study of CR manifolds of CR codimension 2 was begun by R. Mizner,



156 DONATO ANTONIO CIAMPA

[17] (using Cartan connections); the case of real hypersurfaces in Sasakian
manifolds is not considered. As to analysis on domains in a CR manifold, the
subject starts with the Hartogs-Bochner theorem on a CR manifold, due to G. M.
Henkin, [12]. He proves that, given a l-concave generic CR submanifold
M < C", a bounded domain Q < M and a smooth domain Qg contained in Q
and such that Q\Q, is connected, each CR function f € CR*(0€Q) extends to a
function F e C*(Qy)NCR*(Q). The assumption that the diameter of Qg is
“sufficiently small” (adopted in [12]) was removed subsequently by C. Laurent-
Thiébaut, [14]. The assumption that M is 1-concave concerns the Levi form
and the geometry of the boundary N = 0Q( is not studied. However, for a
smooth domain Qq = S?"*!, it is natural to expect that the geometry of the CR
manifold N = 0Q is tied to the function theory on Q, and conversely. In the
next section we look at the equations induced on N by the tangential Cauchy-
Riemann equations of S?"*!. Note that the Hartogs-Bochner theorem (cf. op.
cit.) holds on M = S?*!' = C"*! (as the Levi form of M is positive definite).
Finally, to underline the novelty of the situation, note that the pseudohermitian
tools (e.g. the Tanaka-Webster connection, the Chern-Moser tensor, etc., cf. [21]
and [24]) are not available in the CR codimension 2 case.

3. Traces of CR functions on contact CR submanifolds

3.1. Traces of CR functions

Let (No,(¢,&,5,90)) be a (2n+ 1)-dimensional a.ct.m. manifold with
(¢,¢,mp) normal. Then T o(No) ={X —igX : X € Ker(7,)} is a CR structure
of type (n,1) on Ny. For a CR manifold M, let CR*(M) be the space of all CR
funtions of class C¥, k e NU{o0,w}, i.e. solutions f of class C¥ to the tangential
Cauchy-Riemann equations (1.4). Then

CRK(No) = {f € CK(Ny) : (X +ipX)f = 0,VX e Ker()}.

Let (N,2) be a contact CR submanifold of Ny. By the very definition
T1,0(N) < T1,0(No), hence the restriction C*(Ny) — C*(N) descends to a map
CR*(Ny) — CR*(N). When N is a real hypersurface, for any x € N there is
an open neighborhood U = N, and a real valued function p e C*(U) such that
NNU={xeU:p(x)=0}. Let {T,} be a (local) frame of T} ¢(Ny) on U
and set V:={xe U:T,(p), #0}. Then the trace u on V of f € CR*(Ny) is
a solutlon to Ti(u) — (T3(p)/Ta(p)) Ti(u) =0, 1 < j<n—1. For instance, let
Ny = =C" X 'R be the Heisenberg group with the CR structure spanned by
T, = 6/ 0z* +iz*(0/0t), 1 <o < n (the Lewy operators) Consider the submani-
fold N =3 :={xeH,:|x| =1}, where |x|:=(]z]*+ 2)"/* is the Heisenberg
norm. H,, is a Sasakian manifold in a natural way hence Theorem 8 applies. As

Tp) =315, 4(z,1) o= |2 — it e CR*(H)

each ue CR*(X*") is a solution to T(u) — (z7/z")T5(u) = 0. Therefore, the
tangential Cauchy-Riemann equations on "N {z" # 0} read
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Q= ou

0zj  znozn
For a contact CR submanifold N of a Sasakian manifold Ny, it is an open
problem whether CR'(Ny) — CR'(N) is an epimorphism (the local version of the
same problem is open, as well). A partial answer is provided by Theorem 2.

3.2. The Boothby-Wang fibration

Let Ny be a Sasakian manifold. A local chart (U,¢) of Ny is cubic (of
side 2a and center xo € No) if ¢(xg) =0 and o(U) = {(¢',..., ) . |t/| < q,
l<j<2n+1}. Let (Up=(x',...,x>*1)) be a cubic chart of Ny. Let 1 <
p<2n+1 and t= ("' ... 1) such that |[’*|<a, 1<j<2n—p+1.
Then X, :={ye U :x*"(y) =" 1< j<2n—p+1} is a p-dimensional slice
of (U,p). The contact vector ¢ is regular if Ny admits a C* atlas {(U,¢)} such
that the intersection of U with any maximal integral curve of £ is a 1-dimensional
slice of (U,p). By a result of R. Palais (cf. [20]) if & is regular the quotient
space Ny/& admits a natural structure of a C* manifold such that the projec-
tion 7y : No — My := Ny/& is C*. The contact vector of the standard sphere
S+l s regular. By a result of W. M. Boothby & H. C. Wang (cf. [7]), if Ny
is a compact Sasakian manifold with & regular, there is a free action of S' on
No making N, into a S'-principal bundle over My = Ny/&, with projection 7y :
No — My. The contact vector ¢ is tangent to the S'-orbits and 7, is a con-
nection I-form. Moreover, the Sasakian structure of Ny gives rise to a complex
structure J and a Kdihlerian metric Gy on M, given by

X)) =¢XT, Go(X,Y)" =go(X',Y), X,YeT(M).

Here X' is the horizontal lift of X with respect to 7, Also, if f e C*(My)
we set f':= fom (the vertical lift of f). Then 7 : (No,g0) — (My, Go) is a
Riemannian submersion and one may apply the results of B. O’Neill, [19]. In
particular, if h: T(Ny) — H(Ny) is the projection associated to the direct sum
decomposition T'(Noy) = H(No) @ Ker(dmy) then hVY, YT is mp-related to vy,
Here V° and V™ are the Levi-Civita connections of (Ny,go) and (Mo, Go).
Consequently (cf. K. Yano & M. Kon, [29], p. 100)

(3.1) VO YT = (V) — Go(X,JY)E, X, Y e Z(My).

For the sake of completeness we give a short proof of (3.1). We have
V3 YT = A+ 2& for some 4 e H(Ny) and Ze C*(Np). Then

(dmo)A = (dmo)VY YT = VY = (dno) (VY Y)!

ie. A4—(Vph Y)! e Ker(dny) N H(Ny) = (0). Recall that, on a Sasakian mani-
fold V¢ = —¢Z. On the other hand go(Y',&) = #,(Y") = 0, hence

A=go(Vi Y1,8) = XT(go(Y",€)) — go(YT, V§:€)
= go(¥',9X1) = go(Y', (/X)) = Go(Y,JX)" = —Go(X,JY)".  Qed.
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3.3. Cauchy-Riemann fibrations

Let Ny be a compact Sasakian manifold with ¢ regular and S' — Ny —
My = Ny/¢ the corresponding Boothby-Wang fibration. Let j: M = M, be a
submanifold and N := 75! (M), so that S' — N 5 M is a principal subbundle
of S — Ny — M, (with 7:=m|y). We adopt the following notations: B (re-
spectively /) and Ay (respectively ay ) are the second fundamental form of j:
M < My (respectively of i: N = Ny) and the Wiengarten operator correspond-
ing to the normal section ¥ e T*(77(j)), ¥ '(j) = T(M)", (respectively to W e
C*(7°(i)), ¥ (i) = T(N)"). Moreover g =i*gy and G = j*G, are the induced
metrics on N and M and V*, V2™ are the normal connections in #(i) and
v (j). We also set n=i*n, and # :=Ker(y) = Ker(y,) N T(N) = H(Ny)N
T(N). # is a connection-distribution in the principal bundle S' — N — M.
Clearly ¢ is tangent to N and spans Ker(dn). Moreover

(3.2) (M) =, (T(M)H)' =T(N)*.
The Gauss formulae of M = My and N = Ny
VY =VMY + B(X,Y), VLY =Vu Y +h(XT, YT,
together with (3.1), lead to
Vi YT+ (X, YT = (VoY) — Go(X,JY)%¢
= (VMY) + B(X,Y) — G(X,PyY)"¢
where Py X :=tan(JX), X € T(M). We obtain
(33) Vi Y1 = (V7)) = G(X, Py Y)'¢,
(3.4) X', Y")=BX, ).
The Weingarten formulae of M < My and N < Ny
VY = — A4y X +VEMY, VOV = —ap X+ VLV,
together with (3.1) lead to
—ap X'+ VEVT = (VW) — Gy(x,Jv)"¢
= —(AyX) + (VM) = G(X, ty V)¢
where tyV :=tan(JV), ¥V e T(M)". We obtain

(3.5) ap X! = (4vX)! + G(X, ty V)¢,
(3.6) VEVT = (v M)l

Set Fy X :=nor(JX) and fy V :=nor(JV). Then

(3.7) PX' = (PyX), FX'=(FyX),

(3.8) tVh =ty ), V= (fu 1)
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By a result of K. Yano & M. Kon (cf. Theor. 2.1 in [28], p. 375) N is a contact
CR submanifold of Ny if and only if M is a CR submanifold of M,. If this
is the case, that is N is both a contact CR submanifold and the total space of a
S!-principal bundle over a CR submanifold M, we call S' — N — M a Cauchy-
Riemann (C-R) circle bundle. Given a C-R circle bundle S' — N — M, the
distribution 7 := Ker(I+ P> —y ® &) is ¢-invariant and 2+ (the orthogonal
complement of & in T(N)) is ¢-anti-invariant. Also H(M) := Ker(I +Pj,) is
J-invariant, while H(M)" (the orthogonal complement of H(M) in T(M)) is
J-anti-invariant.

Let us consider a foliated manifold (M, %), with the foliation #. A subset
A = M is saturated if A is a union of leaves of % i.e. every leaf of & intersecting
A is contained in 4. A smooth function f: M — C is a basic function if
X(f) =0 for every X € T(F).

The total space Ny of the Boothby-Wang fibration S! — Ny — M, is a
foliated manifold, in a natural way. Indeed, the vertical distribution Ker(dng) =
R¢ is integrable and so, by the Frobenius theorem, there is a foliation ¥ on Ny
tangent to Ker(dny). The leaves of ¥ are the maximal integral curves of the
contact vector field ¢, If S' — N — M is a C-R (circle) bundle, then N is a
saturated subset of (Ny,7p). Therefore 74 induces a foliation ¥~ on N. We
shall need the following lemma

LemMA 1. Let S' = N — M be a C-R fibration. Consider the invariant
distributions 7 = Ker(1+P?> — n ® &) and H(M) = Ker(1+ PZ,). Then (N,9) is
generic if and only if (M,H(M)) is generic.

Proof. Note that {e€%2. Let H(N) be the orthogonal complement of
R¢ in Z, so that 2 = H(N) @ RE. Moreover T(N) =2 @® 2+ and T(N) =
A @ RE imply

(3.9) H =H(N)®D I,
Hence it is enough to prove that
(3.10) H(M)" = H(N).

Indeed (3.10)—(3.9) yield (H(M)*:)' = 2 and lemma 1 is proved (as (T(M)*)'
=T(N)"). Now we prove (3.10). Let X € H(M). Then

I+P =7 @)X = [T +P)X]" —n(X")¢ =0

as X eKer(I+P2) and X' e HM)' =« T(M)" = # = Ker(y). It follows that
X' eKer(I4+P*—y®¢&) = H(N) and so H(M)' < H(N). The opposite inclu-
sion is a bit more difficult. Let X € H(N) = # = T(M)'. Then X = X' for
some X € T(M) and

0=(1+P—7®@X = [(1+Py)X]'

yields X e H(M), ie. Xe HM)'. Q...
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Now we may prove Theorem 2. Let S! - N — M be a C-R fibration
over a compact, connected, real analytic CR submanifold. Let us assume that
N is generic and proper. First, let us show that if' (N,2) is a contact CR
submanifold of an a.ct.m. manifold (N, ($,&,19,90)) such that &€ D, then 9 =
Ker(I4+P?> -7 ®¢). Indeed, let X € Z be orthogonal to ¢. Then

I1+P2—p®&EX = 1+P>)X =0,

as P is a complex structure in H(N). Conversely, let us consider X e
Ker(I + P> — 7 ® &), orthogonal to & As P(T(N)) = 2 and t(T(N)") < 2+,
one has 1= —P>+7®¢  Then

0=I+P?—y@HX =X —1X
hence X € . Q.e.d.

Let (N,2) be a contact CR submanifold of an almost contact manifold Ny,
tangent to ¢ and generic. Then f is transverse to 2. Indeed, if there is xo € N
such that (i«£), =0, then H (N)m QL hence (by genericity) k = codim N =
dim Ny — (2n + k), a contradiction. Tt follows that, whenever N is generic, one
has (1£), # 0 for any x € N and then the dimension of the ambient space must be
dim Ny =2(n+ k) —1 (as in the hypothesis of Theorem 2).

Lemma | implies that M is a generic proper CR submanifold of CP"* !,
By a result of R. O. Wells, [26], there is a connected set Q) <= CP"**~! such
that Oy > M and there is a submanifold M’ = CP"**~! of dimension 2n + k
such that Qu > M’ and each holomorphic function on a neighborhood of
M extends to a holomorphic function on a neighborhood of Qj. Set Q:=

o1 (Om). Clearly Q is a saturated set (i.e. a union of leaves of the vertical
fohat1on on S2H=1y and Qo N, Qo5 N', where N':=m;'(M'). As N is
locally diffeomorphic to M x S' and M is real analytic, it follows that N is real
analytic as well. Let ue CR®(N) be a basic (i.e. constant along the leaves of
#”) CR function. There is a C® function #: M — C such that @ o 7 = u, where
n:=mp|y. For any ve C'(M) we have

(3.11) n*Opv = Oy (vom).

In particular ve CR'(M) if and only if vome CR'(N). Here dy and Oy
are, respectively, the tangential Cauchy-Riemann operators on M and N. We
postpone the proof of (3.11). To end the proof of Theorem 2, note that (by
(3.11)) 0 = Oyu = n* Oyt hence e CR®(M). By the Tomassini theorem, there
is an open neighborhood Uy of M in CP"**~! and there is a unique holomorphic
function fy € O(Up) such that fo|,, =u. By the aforementioned result of R. O.
Wells (cf. [26]) there is a neighborhood U of Q) in CP"™ ! and there is a
holomorphlc function f € ¢(U) which extends fy, ie. f lgny, = fo- Set U:=
7, (U) and f:= fomye C?(U). Then U is open and saturated in S2"+%)-!
and U o> Q. At this point, we need the identity

(3.12) 71'35_1) = 6_520,%)71 (U o 77,'())7



ON CAUCHY-RIEMANN CIRCLE BUNDLES 161

for any ve C! (CP””‘ ). Here 0 is the Cauchy—Rlemann operator on CP"*~!
By (3.12) one has Ogxui- 1f—7z00f 0, i.e. f € CR®(U). Finally foi —fo
nool—fo]on—foo]on—uon—u ie. fly =u. It remains that we prove
(3.11) and (3.12). If (M,2) is a CR submanifold of a Hermitian manifold, the
tangential Cauchy- Rzemann operator is the differential operator dy : C* (M) —
Q"1 (M) defined as follows. A complex valued 1-form w e Q' (M ) r<(r«(M)
®C) is a (0,1)-form if Ty o(M)|w=0 and Z* |w=0. Let /\ (M) be the
vector bundle of all (0,1)-forms on M and Q"!'(M) = FO‘(/\' (M)). If u:
M — C is a C! function then Jyu is the unique (0,1)-form on M coinciding
with du on Ty (M). Similar notions may be produced for the case of a con-
tact CR submanifold (N,%) of a Sasakian manifold. Of course, the basic
difference (with respect to CR manifolds of hypersurface type) is that we deal
with the higher CR codimension by using a fixed complement to the invariant
distribution. ~ As before, w € Q'(N) is a (0, 1)-form if T} o(N) ] w =0 and (with
the notations of Theorem 1) H(N)'|w=0. Then the tangential Cauchy-

Riemann operator dy : C*(N) — Q" (N) is given by (Oyu)Z = Z(u), for every
ZeTio(N). Note that 7: N — M is a CR map. Indeed, by (3.10)

TioM) = {X" —iJX": X e HM)} = Ty o(N)
where X1 := (du: #y — To(M))"'X. Then
In(uon) Zy=Z(uon) = [(dm)Z)(u)
= (5M”)n(, )(d m)Zy = (2" 0pu) Zx,
for any ue C*(M), xe N and ZeT'™(T}(N)). Next
T(N) = # & Ker(dn) = T(M)' @ R&
=H(M)' ® [H(M)"]' ®R¢ = HN) @ [H(M)"]' ©R¢,
yields
(3.13) H(N)" = [H(M)"]' ®R¢

by (3.10) and the fact that the horizontal lift is a field of linear isometries (i.e.
G(X,Y)"=g(X",Y"). Then (by (3.13))

H(N)" | n*0yu = (Oyu)(dn)H(N)* = (Oyu)H(M)* =0
and (3.11) is proved. The proof of (3.12) is similar. If (z!,...,z"*~1) are local
complex coordinates in CP""*~! then dv = Z(v ) dz/, where Z—— 0/0z/ and v e
CI(CP”+k l). The pr0]ect10n Tl : C”*k\{O} CP 1 s holomorphic hence
: §2ntk=1 _, cp"*1 is a CR map. Then

021 (Vo my)Z = Z(vomy) = [(dmo) Z)(v) = Z(nf)Zj.—(u)

where 7/ := z/ o y.  Finally dgaun-1 (00 ) = Zxv)(mg dz/) = n;ov and Theorem
2 is completely proved.
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R. O. Wells underlines (cf. [26]) the importance of the genericity property in
the theory of the functions on a real submanifold of a complex manifold, and
that there are some topological obstructions in order to have this property.
Indeed, he proves (by essentially using the fact that the Euler-Poincaré char-
acteristic y(M) of a compact submanifold M is got by evaluating the Euler class
of the normal bundle at the fundamental class of M) that a necessary condition
in order to have genericity (for a compact orientable m-dimensional submanifold
M, in a compact complex manifold 7, homologous to zero in H,(V,Z)) is that
x(M)=0. In the case of a contact CR submanifold N of a Sasakian manifold
(N not necessarily tangent to the contact vector field) the genericity condition
implies again y(N) =0 (cf. Theorem 3). The proof does not require algebraic
topology technics.

Let us prove Theorem 3. Let (N,%) be a contact CR submanifold of a
Sasakian manifold (N, (@, o,%0,90)), under the assumptions of Theorem 3. As
N is generic it follows that Ny must be (p + 2¢)-dimensional, where p = dimg 2,
and ¢ = dimg Z;, xe N. Assume that ¢, =0, for some xo e N. Then Z,, =
H(Ny),, = Ker(n),, (indeed, if ve Py then goy,(v,%0x,) = 9x(0,Ex) =0),
hence ¢, descends to a complex structure on Z,, so that p must be even. Then
Ny is even dimensional, a contradiction. Therefore ¢ is a smooth vector field on
N, without zeros, so that y(N) =0. Q.ed.

4. Canonical connections on real orientable hypersurfaces of Sasakian
manifolds

4.1. The Levi form
Let (M, T),0(M)) be a CR manifold of arbitrary type (n, k). The Levi form
of M is

Lx : Tl,O(M)x X TI,O(M))C - [T),(M) ®R C]/[H(M)r ®R C]7
Ly (v,w) := in([V, W],),

for v,we T1o(M),, xe M, where V, W eI'*(T,0(M)) are chosen such that

Vi=v, Wy=w and
n:T(M)®C— [T(M)®C|/[HM)® C]
is the projection. Then (M, T, o(M)) is nondegenerate if L is nondegenerate.
Let us consider the conormal bundle
HM): :={weT(M):Ker(w) 2 HM).}, xeM.

Assume M to be oriented. When k = 1, i.e. M is of hypersurface type, H(M)"
is an oriented line bundle, hence trivial. Thus H (M)~ admits global nowhere
zero sections 0 e T (H(M)™"), each of which is referred to as a pseudohermitian
structure on M. The Levi form may be recast as

Lo(V, W) :=—i(dO)(V, W), V,WeT M),
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and it is easily seen that L and Ly coincide up to a bundle isomorphism
[T(M)® C]/[H(M)® C]~ H(M)". If Ly is nondegenerate then 0 is a contact
form, ie. OA(dO)" is a volume form on M.

If M is a CR manifold of type (n,k) and CR codimension k > 2, the
conormal bundle H(M )L has rank k and, in general, the orientability assumption
doesn’t guarantee triviality (the topological obstructions towards H(M )L ~
M x R* were not investigated). Given a real orientable hypersurface N in a
Sasakian manifold Ny (by our Theorem 9) N is a CR manifold. Let L be its
Levi form. N has CR codimension k=2, hence L may not be computed in
terms of a pseudohermitian structure. However the conormal bundle H (N)L
admits the global frame {#,u}, where  =i*y, and u(X) :=g(X,U), X € T(N),
hence H(N)* ~ N x R®. We shall need the bundle isomorphism

®: [T(N)®C]/[H(N) ® C] » RU @ R¢,
7y (v) = . (V)E + ux(v) Uy, veTy(N)®rC, xe€N.
Then H(N)|n=0 and H(N) |u =0 yield

(4.1) O (Ly(v,w)) = =2i{(dn)(V, W), & + (du)(V, W) Uy}
Next, as N, satisfies the contact condition
(4.2) (dn)(X,Y) =g(X,PY),

for any X, Y e T(N). Also
2(du)(X,Y) = (Vyu)Y — (Vyu)X,
(Vyu)Y = go(VyU, Y).
Using the well known characterization of Sasakian structures (cf. e.g. D. E. Blair,
[4], p. 73)
(4.3) (V¥9)Y = go(X, Y)E = no(Y)X, X,Y e T(No),
and the Weingarten formula, we have
ViU = Vv = gVgv + go (X, v)E — 1o (v) X
= (/ﬁVAQv = ¢{—aX + Viv} = —gaX,

(as V*v=0). Summing up, on any real orientable hypersurface (of a Sasakian
manifold) tangent to the contact vector field

(4.4) VYU = —gaX,
so that
(4.5) (i) (X, Y) = 39X, (aP +Pa) ),

for any X, Y e T(N). We may define

L(X,Y) = g(X,Y)E+ % {9(aX,Y) + g(aPX ,PY)}U
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for X,Y € H(N). By the identities (4.1)—(4.2) and (4.5) it follows that
O, (Ly(v,w)) = 22V, W),

(and & is referred to as the Levi form of N, as well). Note that & is
nondegenerate as its component along ¢ is precisely the first fundamental form
(restricted to H(N)).

If M is a CR manifold of hypersurface type, then M is strictly pseudoconvex
if Ly is positive definite, for some pseudohermitian structure . On the other
hand, for a real orientable hypersurface NV in a Sasakian manifold, ¥ is a vector
valued form, hence there is no obvious analog to strict pseudoconvexity.

4.2. Canonical connections
Let us prove Theorem 4. Given a linear connection D on N we say its
torsion Tp is pure if

Tp(Z, W) =0, Tp(Z, W)= =20%(Z, W), Z,WeToN),
where & is the Levi form of N, and
toJ4+Jo1=0, poJ+Jop=0,
where 7, p are the vector valued 1-forms on N given by
X :=Tp(&,X), pX :=Tp(U,&), XeT(N).

We establish the following more general statement.

PROPOSITION 1. For any ). € Q'(N) there is a unique linear connection D on
N satisfying the following axioms 1) H(N) is parallel which respect to 9, 2)
Dg =0, where g =i*gy is the first fundamental form of i: N < Ny, 3) DJ =0,
where J = @|y ) is the complex structure of H(N), 4) the torsion Tp of D is pure,
and 5) DE=A® U and DU = -1 ® L.

Note first that J = ¢ along H(N) and let us extend J to the whole of T(N)
by setting JU := 0 and J¢:=0. Then J =P on T(N). Also, note that T(N) =
H(N)®RU@REand T o(N) ={X —i¢X : X e H(N)}. At this point, we may
check the uniqueness of a linear connection D obeying to the axioms 1)-5) in
Proposition 1. By axiom 2)

(4.6) X(9(Y,Z)) =9(DxY,Z) +g(Y,DxZ).
Let us set Y =¢ and use g(X,&) =n(X). Then
(4.7) X(n(Z)) = g(Dx¢, Z) +n(DxZ).
Choose Z € H(N). Then (by DxZ e H(N))

g(Dx¢,Z) =0,

i.e. the component of Dy& along H(N) vanishes. Now we set Z =& in (4.7) so
that (by #(¢) = 1)
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2n(Dx¢) =0,
i.e. the component of Dy¢ along ¢ vanishes. We may conclude that
(4.8) DyéeRU, XeT(N).
Set Y =U in (4.6). Then
(4.9) Xw(Z))=9(DxU,Z)+u(DxZ).
Next, for Ze H(N) (due to H(N) |u=0)
g(DxU,Z) =0,

i.e. the component of Dy U along H(N) vanishes. Set Z = U in (4.9) so that (by
u(U) =1)

ZM(DX U) = 0,
i.e. the component of DyU along U vanishes. Summing up
(4.10) DxyUeR¢ X eT(N).

Let Z, W e T1o(N). By axiom 3)
Tp(Z, W) =2i{g(Z, W)¢ + g(aZ, W)U},
hence
D;W —DwZ —[Z, W) = 2i{g(Z, W)¢ + g(aZ, W)U}.
It follows that
(4.11) D;W =Z, Wit oo DwZ = —|Z, Wir, v

where Vr, vy and Vg, (v are the projections of a V'€ T(N) ® C on T o(N) and
Ty, 1(N), respectively. If Ve T ¢(N)

g(DZWa I7) = Z(g(W’ 17)) - g(WaDZV)a
and by (4.11)
(4.12) gDz W, V) =Z(g(W, V) +9W, [V, Z]7, ,v))-

Set A(X) :=u(Dx&). As g(&,U) =0 and u(Dx¢) = —n(DxU) we get (by (4.8)
and (4.10))

(4.13) Dyé=MX)U, DyU=—-i(X)¢,
for any X € T(N). Next, for X € T(N)
(4.14) X = D:X — A(X)U — [£,X).

Applying J to (4.14) we have
JtX = JD:X — J[E, X,
and (replacing X by JX)
tJX = D:JX — A(JX)U — [¢,TX].
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Adding up the last two identities and using toJ +Jot=0 and DJ =0
0=2JD:X —J%X — LJX — A(JX)U,
where %y denotes the Lie derivative in the direction X. If X € H(N)
(4.15) 2D:X = ~J* %X —JLJX, X eH(N).
Indeed, for any X € T(N)
X=Xy +nX)¢+uX)U

for some Xy € H(N). We have JX = JXy = ¢Xy so that J2X = $* Xy = —Xp.
Therefore

J2X = X +n(X)¢é+u(X)U.
Let us now observe that (by (4.2))
n(ZeX) = ([, X]) = =2(dn) (¢, X) = —29(¢,PX) = 0,

ie. X e HN)®RU. Moreover (by (4.5)) for X € H(N) and Y = ¢ one has
2(du)(X, &) = g(X,Pa&) so that

u([¢, X]) = =2(du)(¢, X) = g(X, Pag)
ie. u(%X)=g(Pa&,X). Then
P LX = —Z:X + g(Paé, X)U
which together with (4.15) leads to
2D:X = L:X — g(Paé, X)U — JLJX.
Note that for X € H(N) one has (%:J)JX = -%X —J%:JX. Then our last
identity may be also written
(4.16) D:X = L:X + % (LJ)VIX — %g(Paé, XU,
for any X € H(N). On the other hand, by the Gauss equation of N in Ny and
using V,& = —¢V (for any V e T(Np)) we obtain
Vyé = -PX, g(aX,¢) =-FX.

Yet

(4.17) FX = —u(X)v,

so that

(4.18) Vyé = —-PX, n(aX)=u(X).

Let us observe that

aU=¢4Y, YeH(N)®RU

aX e HN)®RU, X e H(N)
{aéeH(N)@RU
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Then g(Paé,X) =0. Consider

1

T:: H(N) - H(N), T::==~(ZJ)JX, XeH(N).

2
The identity (4.16) becomes
(4.19) D:X = £:X + T:X,
for any X € H(N). For X € T(N) (by (4.13))
(4.20) pX =DyX + A(X)¢—|U, X].

By applying J to (4.20) we obtain
JpX =JDyX — J[U, X],
hence (replacing X by JX)
pJX = DyJX + A(JX)E - |U,JX).

Adding up the last two identities and using poJ +Jop=0 and DJ =0 we
obtain

0=2JDyX — JLyX — LyIX + A(JX)E.

If Xe H(N) (as H(N) is D-parallel)
(4.21) 2Dy X = —J*LyX —JLyJX, X e H(N).
Now (by (4.2))

W LeX) = (U, X]) = ~2(dn)(U, X) = —2g(U,PX) =0,
ie. YuX e HN)®RU. Moreover (by (4.5))

u(ZLuX) =u([U,X]) = —2(du)(U,X) = —g(U, (aP + Pa) X),

ie. u(LyX)=—u(aPX) (as PU =tan{¢U} = —tan{v} = 0). Then

JPLyX = —LyX — u(aPX)U,
which together with (4.21) leads to
2DUX = =?U,X — JEUJX + M(ClPX)U

Note that for X € H(N) one has (¥LyJ)JX = —-LyX —J%yJX. Let us con-

sider
1
Ty:H(N) —» HN)®RU, TyX =3(LuJ)JX, XeH(N).

Then

1
(4.22) DyX = %yX + TyX +u(aPX)U.
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Uniqueness is proved. We proceed by proving the existence of a connection D
obeying to 1)-5). To this end, we consider the differential operator

Dy :T*(T(N)) — T*(T(N)), X eZ(N),

defined by (4.11), (4.12), (4.13), (4.19) and (4.22), for a fixed 2 € Q'(N). It may
be easily checked that D is a linear connection on N. The only property re-
questing a bit of care is Dy fY = X(f)Y + fDxY. Let f e C*(N). Then for
any Z, W e Ty o(N)

D W =[fZ, W]y vy =[IZW]=W()Z)7, )= Dz W,
(as Zz, vy =0). Also
De(fX) = Te(fX) + ZLe(fX) = /DX +<(f)X,

Du(X) = TulfX) + Lu(fX) + 3ulaP(£X) = DuX + U()X,

etc.

4.3. The torsions 7 and p

We establish a few useful properties of 7 and p, when A =0 (from now D
is the connection furnished by Theorem 4). Let X € T(N) and Z € H(N). By
(4.3)

(Vyd)Z = g(X, Z)C.
By the Gauss formula (of N in Np)
9(X,Z)¢ = (VR$)Z = VWPZ — ¢VyZ
= VxPZ + g(aX,PZ)v — ¢{VxZ + g(aX,Z)v}
= VyPZ + g(aX,PZ)v — PVyZ — FVyZ — g(aX,Z)U,
where from (by identifying the tangential components)
(4.23) VYPZ =PV Z + g(X,Z2)¢ + g(aX, Z2)U,
for any X € T(N), Ze H(N), and (by identifying the normal components)
g(aX,PZ)v —FVyZ = 0.
Next (by FX = —u(X)v, for any X € T(N)) we obtain
(4.24) g(aX,PZ) +u(VxZ) =0,
for any X € T(N), Z e H(N).
Let X € H(N). By (4.19) and (4.22)
X =T:X, pX= TUX—i-%u(aPX)U.

On the other hand Tp(&, U) = —[&, U] so that
U = —p& = ~[¢,U).
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By (4.5)
u([&, U)) = ~2(du)(&, U) = —g(&, (aP + Pa)U) = 0,
while by (4.2)
n([&, U]) = =2(dn) (¢, U) = —29(£, PU) = 0.
Finally, for Y € H(N) (by using (4.4) and (4.18))
g([&, UL Y) =g(VeU, Y) —g(Vué, Y) = —g(dal, Y) + g(PU, X) = 0,

i.e. the component of [£, U] along H(N) vanishes. Then [¢, U] =0 so that
tU = p& =0. Summing up, the vector valued 1-forms 7 and p satisfy

(4.25) {TXZ T:X, XeH(N),
. E=7U=0
1
(4.26) {/’X = TuX +5u(@PX)U, XeH(N)
pE=pU=0

We also establish

LEmMMA 2. For every X,Y € H(N)
(4.27) g(TeX,Y) =g(X, T:Y), ¢(TuX,Y)=g(X,TuY).

The proof is a straightforward calculation based on (4.4), (4.18) and (4.23).
Using g(u(aPX)U,Y) =0, for any X,Y € H(N), and the previous lemma we
obtain

COROLLARY 1. 1, p are self adjoint along the maximally complex distribution,
ie.
(4.28) g(tX,Y) =g(X,7Y), g(pX,Y)=g(X,pY).
for any X,Y € H(N).
Note that n(%X) =0, u(%X) =0, for any X € H(N), i.e. LH(N)< H(N)
so that tH(N) < H(N). On the other hand (by #(ZyX) =0 and u(ZLyX) =
—u(aPX), for any X € H(N)) one has u(pX)=u(aPX) and then u(TyX) =
Lu(aPX), for X e H(N), i.e. pH(N) = H(N) @ RU. Moreover, if X,Y e T(N),
by the uniqueness of the direct sum decomposition 7(N) = H(N) ® RU @ R¢

g(pX,Y) =g(pXn,Y)
=9(pXu, Yu) +n(Y)g(pXu, <) +u(Y)g(pXy, U)
=g(Xu,pYn) + u(Y)u(aPXy)
=9(X,pYy) —n(X)g(& pYn) —u(X)g(U,pYn) + u(Y)u(aPXy)
where Xy is the H(N)-component of X. Summing up
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CoOROLLARY 2. For any X,Y € T(N)
gpX,Y)=g(X,pY) — u(X)u(aPY) + u(Y)u(aPX)
and
g(rX,Y) = g(X,7Y),
ie. t is self-adjoint [as an endomorphism of (T(N),g)].
We proceed by deriving an useful relation between the canonical connec-

tion D and the Levi-Civita connection V of N. As both D and V are metric
connections

(4.29) 29(DxY,Z) =29(Vx Y, Z)+ g(Tp(X,Y),Z)
+9(Tp(Z,X),Y)+9(Tp(Z,Y), X)
holds for any X,Y,Z e T(N). By the purity axiom
(4.30) Tp(X,Y)=29(X,PY)¢ —{g(aPX,Y) — g(aX,PY)} U,
for any X,Y e H(N). Also, for Ze H(N) and X,Y € T(N)
Tp(Z,X) = To(Z, Xu) +n(X)Tp(Z, <) + u(X)Tp(Z, V),
where from
Tp(Z,X) =29(Z,PXy)¢ — {g(aPZ, X)) — 9(aZ,PXy)}U — n(X)1Z — u(X)pZ.
The torsion expression together with (4.29) leads to
(4.31) 29(DxY,Z) =2g(VxY,2Z) +g(Tp(X,Y),Z)
+29(Z, PXp)n(Y) + 29(Z, PYy)n(X)
—{9(aPZ, Xy) — g(aZ,PXy)}u(Y)
—{9(aPZ, Yy) — g(aZ,PYy)}u(X)
—n(X)9(xZ,Y) —u(X)g(pZ, Y)
—1(Y)g(zZ,X) —u(Y)g(pZ, X),
for any X, Y e T(N), Ze H(N). If Ye H(N) then (by DyY € H(N))
(4.32) 2Dy Y =2(VyY), + (Tp(X, Y)), + u(X){(aP +Pa) Y},
+2n(X)PY —n(X)1Y —u(X)(pY ).
Now, since X = Xy +n(X)E+u(X)U e T(N)
(Tp(X, Y))y ={Tp(Xu, Y) +n(X)tY + u(X)pY},
and (by Tp(Xg,Y) e RU @ RE)
(Tp(X, Y))y = n(X)TY +u(X)(pY)y,
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where from
(4.33) 2Dy Y =2(Vy Y), + u(X){(aP +Pa) Y}, + 25(X)PY.
On the other hand, due to u((aP+ Pa)Y) =u(aPY) and #((aP +Pa)Y) =0
{(@P+Pa)Y},; = (aP+Pa)Y —u(aPY)U
Moreover (by (4.23))
n(VxY) = X(g(Y, <)) —g(Y, Vx¢) = —g(X,PY)
and (by (4.2))
u(VxY) = X(9(Y, U)) —g(Y,Vy U) = —g(aX,PY)
so that
(VyY),, = Vx Y + g(X,PY)E+ g(aX,PY)U.
Let us substitute in (4.33) so that to obtain the identity

(4.34) DyY =VyY +g(X,PY)& +%{2g(aX,PY) —u(X)u(aPY)}U

+%{2;7(X)PY +u(X)(aP + Pa) Y},

forany X e T(N), Y e H(N). When X € H(N) (respectively X = U, or X =¢)
we obtain

(4.35) DyY =VyY + g(X,PY)E + g(aX,PY)U,
(4.36) DUY:VUYJr%{u(aPY)UJr(aP+Pa)Y},
(4.37) D:Y =V:Y +PY,

for any X,Y € H(N).

5. Applications

5.1. A curvature formula
Let us consider a C-R fibration over a real orientable hypersurface
M = CP”, ie.

Sl N2n i S2n+1

Mt CP”
J

— St

under the further assumption that the natural almost contact structure of M
(as real hypersurface of CP") satisfies the contact condition dn,, = Qy, where
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Ny (X) = G(X,Jcprvar) is the contact form, vy is a (globally defined) unit
normal field on M, and Jcpr is the complex structure of CP”. Also, we set
Qu(X,Y)=G(X,PyY), for X,Y e T(M). In general, if (M, T ,(M)) is a CR
manifold of hypersurface type and if @ e I'“(H(M)") is a pseudohermitian
structure, then the real Levi form is

Go(X,Y):=(dO)(X,JY), X,YeH(M).

As Gyp(JX,JY)= Gyp(X,Y) (as consequence of the formal integrability of
T1,0(M)) it follows that Ly and the (C-linear) extension of Gy actually coincide
(on T1,0(M)® To.1(M)). If M is nondegenerate there is (cf. e.g. S. Dragomir,
[9]) a globally defined nowhere zero vector field T € (M), transverse to the
Levi distribution H(M), uniquely determined by 6(T) =1, T |d0=0. T is the
characteristic direction of d0. The Webster metric gy is
go=Gy on HM)® H(M),

go is a semi-Riemannian metric on M (of signature (2r+ 1,2s), where (r,s) is
the signature of the Levi form Ly). If M is strictly pseudoconvex and Ly is
positive definite, then gy is a Riemannian metric on M and (J,T,0,gy) is a
contact metric structure (which is normal if and only if the Tanaka-Webster
connection of (M, #) has a vanishing pseudohermitian torsion, cf. [9]). For the

given C-R fibration S! — N — M the 1-form 0:= —75,, is a pseudohermitian
structure on M. Moreover, for X,Y € H(M)

Go(X,Y) = (dO)(X,JnY) = —(dny ) (X, uY) = —Qu(X, I Y),
hence Gy=G on H(M)® H(M). In particular M is strictly pseudoconvex.
Let T the characteristic direction of df. In general, given an a.ct.m. structure
(¢,¢,m,9), the underlying contact field is not characteristic for dy. However, in
the case at hand, if M satisfies the contact condition then
LemMma 3.

T = *JCP"VM-
Proof. Let Uy :=Jcprvy € Z(M). Then
0(—=Unm) =ny(Un) = G(Un, Uy) =1,
—UMJdH: UMJdﬂM: UMJQM:07
because Py;Uy = 0. Then T = —Uy,. Q.e.d.

We also have go(T,T) =1, G(T,T) = G(Up,Uy) =1 and ¢gp(X,T) =0=
G(X,T), for any X e H(M). Then, as T = —Uypy = Jcprvy and 0 = —p,, it
follows that gy = G, hence the Levi-Civita connection of the Webster metric and
the induced connection actually coincide. For the remainder of this paper, we
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adopt the following notations: D is the canonical connection given by Theorem
4,V and VM are respectively the Levi-Civita connection of N and M, and D is
the Tanaka-Webster connection of M. Summing up, these connections are tied
by the following identities

(5.1) DyY =VyY +g(X,PY)& Jr%{Zg(aX,PY) —u(X)u(aPY)}U

+ % {2n(X)PY 4+ u(X)(aP + Pa) Y},

(5.2) DyY =VyY + g(X,PY)E+ g(aX,PY)U,
(5.3) DUY:VUY+%{u(aPY)U+(aP+Pa)Y},
(5.4) D:Y =V:Y +PY,

for any X,Y e H(N), and

(5.5) Ve YT = (VYY) — G(X, Py Y)%,

for any X,Y € T(M). Moreover, we need (cf. e.g. [1])
(5.6) VXY =DYY +{G(X,PyY) - G(X, 1 Y)}T
+O0X )ty X + 0(X)Py Y +0(Y)Py X
(relating the Levi-Civita and Tanaka-Webster connections of M) where 7, (the

pseudohermitian torsion) is given by 1y X = Tpu (T, X). Also, we shall make use
of

‘['MOPM—l—PMO‘L'M:O7 TMH(M)EH(M),
Gy X,Y)=G(X,1Y), for any X,Y e T(M),
where Tpu is the torsion of DY™. Let v be a global unit normal field on N.

Note that (T(M)")' = T(N)" yields v, = v, so that TT = —U = —¢v. More-
over (by (3.9))

aX' = 4Xx) - G(X,T)"¢

where 4 = A4,,, is the Weingarten operator of M associated to the normal section
vy. In particular

aX' = (4X)', XeH(M),
aU = —aT' = —(4AT)" +¢.
Moreover u(X') = —(0(X))", hence

WX =0, XeH(M),
{u(TT) =-1.
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Let X e T(M), Ye H(M). Then X' e HN)@®RU, Y' e H(N), and n(X') =0
so that (by (5.1) and (5.5)—(5.6))
1 ,
(5.7) Dy Y =DMy - 5 (0(X)0(4Py Y)"U

(000 Py Y = APy + Py Y

- {G(X,PMY) - G(X,TMY) - G(AX,PMY)}UU,
for any X € T(M), Y € H(M). In particular
(58) Dy Y = (DYY) —{G(X,PyY)— G(X, 1Y) — G(AX, Py Y)}'U,

and
1 o1
(59) DyY'=—(DMY) + 5 (0(APy Y))"U = {2Py Y — (APy + Py A) Y}

for any X,Y e H(M). Also (by (5.4) and (4.18))
DX = VX 4 (PyX) =€, X] e H(N).
As Ker(dn) = RE we have
dn[¢, X'] = [dn(¢),dn(X")] =0, X eT(M),

and then [¢, X'] e (H(N) ® RU)NRE = (0), ie. [, X'] =0 for any X € T(M).
Thus D:X'" =0. Note also that

X =DeX' — 6, X1 = T:X!
and then (by H(M)' = H(N)) it follows that T; =0, i.e. t=0. If X, Y e T(N)
(by (5.5))
X', Y] =[x, Y]' —2G(X,Py ¥)"¢.

In particular [U, X'] = —[T, X]'. Let X,Y,Ze H(M). A straightforward cal-
culation (based on (5.8)) leads to

(510) Dy Dy Z' = (DYDY 2)! — {G(X,PyD¥Z) — G(AX,PyD¥Z)
— G(X,tuD¥Z) + X(G(Y,PyZ)) — X(G(AY,PyZ))
— X(G(Y,t2))}'U.

Using (5.7), D:Z' =0, and [X,Y]" € H(N) ®RU

(5.11)  DyyyZ' = (DY y2)! —%(e([x, Y])0(APy Z)) U

+ % (O(X, Y]))'{2PyZ — (APy + PyyA)Z}!

- {G([Xv Y]7PMZ) - G([Xv Y]aTMZ) - G(A[Xv Y]vPMZ)}bU
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At this point, a rather lengthy (yet once again straightforward) calculation (based
on (5.10)—(5.11) and DM G = 0) relates the curvature tensor fields of D and DM

(512) RP(x',YHZ'=(RP"(Xx,Y)Z)
—{GDY¥Y,PyZ) - GDYX,PyZ) - G(X,Y],PyZ)
— G(D¥AY,PyZ) + GDY AX,PyZ) + G(A[X, Y],PyZ)
— G(D¥ Y, Z) + G(DY X, Z) + G(zu[X, Y], Z2)} U

+ 300X, Y)0(APyZ)) U

- % (0([X, Y])) {2PyZ — (AP, + Py A)Z}'.

Note that (by Tpu(X,Y) € RT)
G(DYY,PyZ) — GIDYX,PyZ) — G(X, Y],PuZ) = G(Tpu(X,Y),PyZ) = 0.
Also
0(AX) = G(T,AX) = —G(T, V< vy) = G(T, V& Jepn T) = 0,
for any X € H(M). Then (by (5.6))
G(DYAY,PyZ) = G(VYAY,PyZ),
so that
G(DYAY — DY AX — A[X,Y],PyZ)
= G(VYAY — VY AX — AVIY + AVY X, Py Z)
= G((VYA)Y — (VYA X,PyZ).

On the other hand, we need to recall (cf. K. Yano & M. Kon, [29], p. 153)
the Codazzi equation of M (as a real hypersurface of a complex space form of
holomorphic sectional curvature 4)

(VIA)Y — (V¥ A)X = 0(X)Py Y — 0(Y)PyX +2G(X, Py Y)T = 2G(X, Py Y)T,
for any X,Y € H(M). Therefore
G(DYAY — DY AX — A[X,Y],PyZ) = 0.

Next, the identities

D¥ty Y =D¥D¥Y - DYIT, Y],

DYty X = DYDY X — DYIT, X],

X, Y] = Dy[X, Y] - [T, [X, Y]],
lead to
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G(D¥ Y — DYty X — ty[X, Y], Z)
=GR (X, 7)Y - R”" (Y, T)X + D} ;Y — D} 11X, Z)
+ GDY(Y, T) - DM[X, T+ [T, [X, Y]], 2)
=GR (x,T)Y - R”" (Y, T)X,Z).
Finally (by 0([X, Y]) = =2(d0)(X,Y) = 2G(X,P) Y)) (5.12) becomes
(513)  RP(x',YHz' = (RP"(Xx,Y)Z)
+ G(RP" (X, T)Y = RP" (Y, T)X,2)'U
— G(X, Py Y){2PyZ — (APy + Py A)Z},

for any X,Y,Z e H(M). One should note (by 0(4Z) =0, for any Z € H(M))
that u(aZT) =0, ie. uoaly), =0. In particular u(aPX) = 0 for any X € H(N),
where from

pX =TyX, XeH(N),

TyH(N) < H(N).

5.2. A vanishing theorem

Let us prove Theorem 5. To this end, we consider a local orthonormal
frame {X,} = {X;,JuX;} of H(M) (here G(X,, X») =0u), so that {T,X,} is a
(local) orthonormal frame of 7(M). The Ricci curvature of DM is

Ricpu (Y, Z) := trace{V — RP"(V, Y)Z}
n
=D g(R”" (Xi, Y)Z, Xi).

On the other hand, {X]} = {XT JMXT} is an orthonormal frame of H(N), hence
{&,U,X]} is an orthonormal frame in T(N). Then (by (5.13))

2n—2
Ricp(Y',Z1) = " g(RP(X], YN Z', X])
a=1

2n—2
= Z{g (R”" (X0, ¥)2)', X))}

_ 2iz{G(Xa, Py Y)'G([2PyZ — (APy, + Py A)Z), X,)'}

a=1

2n—-2
= > GRP" (X4, Y)Z, X0)" — G([2Py — (AP + Py A)|Z, Py Y)",
a=1
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where from
(5.14) Ricp(Y!, Z") = Ricpu(Y,Z)" — G([2Py — (APyr + Py A)|Z, Py Y)".
Then, for V=Y —iPyY, W=Z—-iPyZeT (M)
Ricp(V!, W) = Ricpu(V, W)" — G(2Pyr — (APyr + Py A)|W, Py V) .
On the other hand
G([2Py — (APyr + Py A) W, Py V)
= GQ2Py W, Py V) — G(APy W Py V) — G(Py AW Py V)
=GR2W,V)=2G(AW,V),

so that

G([2Py — (AP + Py AW, Py V) =2G((1— A)W, V),
leading to
(5.15) Ricp(V!, W) = Ricpu(V, W) —2G((1— A)W, V).

The identity (5.15) is the key ingredient in the proof of Theorems 5 and 6. Let
us recall that a complex valued g-form w e QY(M) is a (0, q)-form if

T]wo=0, T oM)|w=0.

The tangential Cauchy-Riemann operator (on (0, g)-forms, ¢ > 1) is the differential
operator

O+ QYI(M) — Q4 (M)

defined as follows. Let A”?(M) — M be the fibre bundle of the (0,g)-forms and
set Q¥I(M) :=T*(A"1(M)). If we Q"I(M) then dyw is the unique (0,q + 1)-
form coinciding with dow on Ty (M) ® --- ® To,1(M) (g + l-terms). As well
known

EM EM

(5.16) C*(M,C) 2 Q% (M) 2 .. 2 QO (ar) M o

is a cochain complex (the tangential Cauchy-Riemann complex) and its coho-
mology

_ , 5 Ker{dy : Q"9(M) — -
HO’Q(M,aM) = Hqu(QO, (M), 0y) = {_M . _1( ) }
Q1 (M)

is the so called Kohn-Rossi cohomology of (M, T o(M)). By a result of J. M.
Lee (cf. [16]), if M is compact and strictly pseudoconvex, and the (pseudo-
hermitian) Ricci tensor of the Tanaka-Webster connection satisfies Ricpv (W, W)
>0, for any W e Ty,0(M), then H*'(M,0y) = 0. This is clearly an analog of
the well known Bochner theorem that the first Betti number of a compact
Riemannian manifold of positive semi-definite Ricci curvature vanishes (yet
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H%'(M,dy) is not a topological invariant). In the same spirit, by our assump-
tion (1.5) and by (5.15) we may conclude as in Theorem 5. Q.ed.

5.3. C-R fibrations over a pseudo-Einstein manifold

Let (M,T,0(M)) be a nondegenerate CR manifold, of hypersurface type,
of CR dimension n. Let 0 be a contact form over M and DM the Tanaka-
Webster connection of (M, ). If {T,} is a local frame of T} (M) we set R, =
Ricpu(T,, T, [;) (the pseudohermitian Ricci tensor of (M,0)). Then (M,6) is a
pseudo-Einstein manifold if the pseudohermitian Ricci tensor is proportional to the
Levi form (a CR analog to the Einstein condition in Riemannian geometry), i.e.
R .= /lgaﬁ—, for some 1€ C*(M). Here g ;= Ly(T,, Tﬁ-). A posteriori A = p/n,

o : 3
where p= g“ﬁRaﬂ— is the pseudohermitian scalar curvatire of (M, 6). Examples

are abundant. The sphere S*'*! endowed with the standard contact structure
(as hypersurface in C"*!) is a pseudo-Einstein manifold. The total space U(M)
(carrying the contact structure induced by the almost hermitian structure of 7(M))
of the tangent sphere bundle over a real space-form M of (costant) sectional
curvature 1 is a pseudo-Einstein manifold (cf. E. Barletta & S. Dragomir, [1]).
If f: M — S is a pseudohermitian immersion with a flat normal Tanaka-
Webster connection, of a compact strictly pseudoconvex CR manifold M into
a sphere, then M admits a global pseudo-Einstein structure (cf. E. Barletta &
S. Dragomir, [2]).

As well known (cf. J. M. Lee, [16]) there are obstructions towards the
existence of a globally defined pseudo-Einstein structure on a given nondegenerate
CR manifold (for instance, if (M,T)(M)) admits a contact pseudo-Einstein
structure then the first Chern class of the CR structure must vanish (¢;(77,0(M))
=0)). The Lee conjecture states that every compact strictly pseudoconvex CR
manifold satisfying ¢ (71,0(M)) =0 should actually possess a globally defined
pseudo-Einstein structure (a CR analog of the Calabi problem). Positive answers
to the Lee conjecture are known under additional assumptions (e.g. when M
admits a 1-parameter group of CR automorphisms transverse to H(M), cf. J. M.
Lee, [16], or when the contact vector field 7 is regular in the sense of Palais,
cf. S. Dragomir, [10]). Theorem 6 furnishes new examples of pseudo-Einstein
manifolds, as base spaces of C-R fibrations whose total space satisfies the as-
sumption (1.6). Let us prove Theorem 6. By (5.15) for V=T, and W =Ty

(5.17) RicD(T;,T;) —2G(T,, ATg) = R,5— 29,5
where g ; := G(T,,T;). Assume that (1.6) holds. Then (by (3.5))
(518) R =1+,

so that (M,6) is a pseudo-Einstein manifold of pseudohermitian scalar curva-
ture p = g“/fRa[; =(n—1)(x+2). Conversely, if (5.18) holds, then (by T} ¢(N) =
T1.0(M)" and (5.17)) we obtain (1.6). Finally, if this is the case, by a result by
J. M. Lee (cf. [16]) ¢i(T1,0(M))=0. Q.e.d.
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