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Abstract

Every flat family of Du Val singularities admits a simultaneous minimal resolution
after a finite base change. We investigate a flat family of isolated Gorenstein toric
singularities and prove that there exists a simultaneous partial resolution.

1. Introduction

For a flat family of surfaces f : X — S, a birational morphism 7: X — X is
said to be simultaneous minimal resolution if t satisfies the following two con-
ditions:

(1) for is a flat morphism.

(2) X;:=(fo1) '(s) (seS) is the minimal resolution of X.

Let f: X — S be a flat morphism whose central fibre f~!(0) has only Du Val
singularities. Brieskorn [3, 4] and Tyurina [11] proved that there exists an open
set 0e U, (U= S) and a finite surjective morphism U’ — U such that a flat
morphism f’: X xy U’ — U’ admits a simultaneous minimal resolution. We
consider an analogous problem for a flat family of isolated Gorenstein toric
singularities. According to the Minimal Model Theory, it is natural to consider
an existence of “‘simultaneous terminalization” for a flat family of higher dimen-
sional singularities.

DerFINITION 1. Let f: X — S be a flat morphism. It is said that f admits
a simultaneous terminalization if there exists a birational morphism 7: X — X
which satisfies the following conditions:

(1) foz is a flat morphism.

(2) X;:=(fo1) '(s) (s€S) has only terminal singularities.

(3) Ky, is t-nef.

By [2, Theorem 8.1], an n-dimensional isolated toric singularity is rigid if n >4
or it is not Gorenstein. Hence we investigate a flat family of 3-dimensional
isolated Gorenstein toric singularities. Our result is the following:
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THEOREM 1.1. Let f: X — S be a flat morphism such that the central fibre
f71(0) has only 3-dimensional isolated Gorenstein toric singularities and the base
space S is reduced. Then there exist an open neighbourhood 0 € U, (U = S) and
a birational morphism ©: X — X xg U which satisfy the following conditions:

(1) for: X’H~U is a flat morphism.

(2) The fibre X, has only hypersurface singularities in cyclic quotient space.

Moreover those singularities are defined by

{xy—zw=0}c C*/G, G=Z/nZ,
where the action of G is given by

(x7y7 Z7 W) - (é’x7 §71y7 Cuz7 Cia‘v)7

(¢ is an n-th root of unity).
(3) Ky, is t-nef.

Remark 1. The singularity of Theorem 1.1 (3) is not terminal singularity if
G is not trivial. We construct an example of a flat family of isolated Gorenstein
singularity which admits no simultaneous terminalization even if after finite base
change. Please see Remark 4 in section 3.

This note is organised as follows: We recall the definition of homogeneous
toric deformation according to K. Altmann in section 2. Theorem 1 is proved in
section 3.

2. Homogeneous toric deformation

The following definition of homogeneous toric deformation is introduced by
K. Altmann in [1, Definition 3.1].

DeriNiTION 2. A flat morphism f: X — C™ is called a homogeneous toric
deformation if the following conditions are satisfied:

(1) X :=Spec C[o¥ N M] is an affine toric variety.

(2) f is defined by m equations x" — x" =¢; (1 <i<m), where r;ec” N M
and 1,...,t, are coordinates of C™.

(3) Let L:=@,_"Z(ri—ro) be the sublattice of M. The central fibre
Y := f710,...,0) is isomorphic to Spec C[¢¥ N M] where 6 =cNL*
and M = M/L.

(4) i: Y — X sends the closed orbit in Y isomorphically onto the closed
orbit in X.

In this note, we consider a homogeneous toric deformation with some additional
conditions:

DEFINITION 3. We call homogeneous toric deformation f/: X — C” a Goren-
stein homogeneous toric deformation if it satisfies the following two conditions:
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(1) Y has only Gorenstein singularities.
(2) Kodaira-Spencer map C” — Ty is nontrivial.

Remark 2. We list some examples of Gorenstein homogeneous toric de-
formation.

(1) The simplest example is f : C? — C defined by x—y =1.

(2) Let g: & — S be a versal deformation space of Du Val singularity of

type A4,. The space Z is defined by the equation
q = (xy+zn+1 +[1Zn71 + 1zt = 0)

in C"* and g is the projection. Let o, (0 <i<n) be the i+ I-th ele-
mentary symmetric polynomials of (n + 1)-variables and H a hyperplane
in "' defined by Y/ s; = 0, where s, ..., s, are coordinates of C""".
We take a base change by a: H — C" (a*t; = o;(s0,...,5n)).

X xen H —— X
.fl lg
H — C".
Then % xc» H can be described

{xy+ (z—i—s,-),Zs,-:O} = C"H,
i=0 i=0

Using new coordinates z; :=z +s;, 4 Xc» H is written as

n
X xcn H= (xy—f—Hz,—:O) c 3
i=0

and f=(z; —zo,...,2y —20). Thus f:% x¢c» H— H is a Gorenstein
homogeneous toric deformation.

Let g: 2 — 4 be a versal deformation space of an n-dimensional
(n > 3) isolated Gorenstein toric singularity. We denote by % an ir-
reducible component of .# and by 4 its reduced structure. By [2,
Theorem 8.1], the base change [ : Zed := X Xo Fred — Fred 18 @ Goren-
stein homogeneous toric deformation.

Simultaneous minimal model of Gorenstein homogeneous toric
deformation

Theorem 1.1 is obtained as a corollary of the following theorem.

TreoreM 3.1. Let f: X :=Spec Clo¥ N M] — C™ be a Gorenstein homo-

geneous toric deformation and t: X — X a toric minimal model of X. Assume
that dim X =n+m. Then
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(1) fotr:X — C™ is a flat morphism,

(2) Ky, is t-nef,

(3) X, has only hypersurface singularities in a quotient space. Moreover these
singularities are defined by

(Fi—Fy=0)cC"™/G, (1<i<m)
where
a) G is an abelian group which acts on C"" diagonally,
p y
(b) C""/G has only Gorenstein terminal singularities,
(c) Each F; is written as
Pitl
F=1]] 5 O0<i<m)
J=pi+l

0:170 <p1 <P2<"'<Pm<l’m+1:n+m

where x; is the j-th coordinate of C"™. Moreover F; are invariant
monomials under the action of G.

Remark 3. 1If dim X =2 +m (i.e. Every fibre of f is 2-dimensional), then
F;, (1 <i<m) is written as

F=xy 0<i<m-—1), F,=XnXms

by changing indices if necessary. Because F; are invariant monomials under the
action of G, the action of each element of g € G is nontrivial only on coordinates
X and x,.1. Since C*"/G has only Gorenstein terminal singularities, the
action of G must be trivial. Thus each fibre of f o7 is smooth and 7 gives a
simultaneous resolution of f.

Proof of Theorem 1.1. Since S is reduced, there exists an open set 0 € U,
(U < S) which satisfies the following commutative diagram:

X Xs Uz~ ﬂ*%red g{red

| |

U — Yred

where # is an open immersion and 2. — Jeq 1S the restriction of a versal
deformation space to some irreducible component with its reduced structure.
For Theorem 1.1, it is enough to prove that there exists a birational morphism
T: Zred — Zrea Which satisfies the assertions of Theorem 1.1. By [2, Theorem
8.1], we describe Zreq — S1ed as a Gorenstein homogeneous toric deformation.
Then by Theorem 3.1, there exists a birational morphism Zjeq — Zted Which
satisfies assertions (1) and (2) of Theorem 1.1. We check the assertion (3).
Because dim Zpeq = dim Feq + 3, F; is written as

E =X (0 <i<m- 2)7 mel = Xm—1Xm, E‘n = Xm+1Xm+2
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or
F=x 0<i<m-—1), Fyu=XuXmi1Xmi2-

Each F; are invariant monomials under the action of G. Hence, in the latter case,
singularities of a fibre is isomorphic to C*/G. There exists no 3-dimensional
Gorenstein quotient terminal singularities. Thus G is trivial. Therefore the cen-
tral fibre has only the following singularities:

{xm—lxm — Xm+1Xm42 = 0} < C4/G

Again there exists no 3-dimensional Gorenstein quotient terminal singularities.
Hence C* /G has only isolated singularities. The proof of Theorem 1.1 is com-
pleted by the classification of 4-dimensional isolated Gorenstein toric singularities
[8, Theorem 2.4]. O

Proof of Theorem 3.1. By [1, Theorem 3.5, Remark 3.6], the construction of
o is as follows:
(1) o is defined by 0 =R-oP, where P is an (n+ m — 1)-dimensional
polygon given by

P = Conv< U R x e,).

i=0
Note that R; (0 <i<m) are integral polytopes in R"' and
Rixei:={(x1,- -, %1,0,...,1,...,0) e R"™| (x1,...,X,1) € R}

(2) f is defined by (x"" — x™) (1 <i <m), where r;: Ng = R"™™ — R is the
(n+ i)-th projection.
Thus, all primitive one dimensional generators of ¢ are contained in the hy-
perplane in Ng defined by ro +---+r, =1. By [9, Theorem 0.2], there exists a
toric minimal model X. Let o = ()0, be the corresponding cone decomposition.
By [9, Definition 1.11], these cones satisfy the following three conditions:
(1) o, is a simplex.
(2) One dimensional primitive generators ky,...,k, ., of ¢, are contained in
the hypersurface defined by ro+---+r, = 1.
(3) The polytope

n+m n+m

Aizzz:ocjk/-, ZOC/SI, OCJ‘ZO
=0 =0

contains no lattice points except its vertices.
Let X := Spec Clo; N M] and let k" (1 <j <n+m) be the dual vectors of k;.
By (1), X, can be written as follows:

)(/1 ~ Cn+771/G

where G := N/ @;’:{" Zk; and the action of G is diagonal. Because each k; are
contained in the hypersurface defined by ro+---+r, =1 and {r,k)> >0
(riea"),
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{riykjy =1 for p; <j < pin
{riykj» =0 other j
where 0 =po <p1 <pr < -+ <Ppm < Pm+1 =n+m. Thus x"" is written as
Pi+1
=11 %
Jj=pi+1

where x; = x% is the j-th coordinate of C"*. The monomials x" are invariant
under the action of G, because r; € Y N M. Thus if we set F; = x"/, the proof of
Theorem 3.1 is completed. O

Remark 4. There exists an example of a flat family of isolated Gorenstein
toric singularity which has no simultaneous terminalization even after finite base
change.

Lemma 3.2. Let Y be a hypersurface singularity in a cyclic quotient space
defined by
{xix2—x3xy =0} =« C*/G, G=Z/IZ.
where the action of G given by
(X1,-5xa) = (%1, .., (%xy), (0<a <)
a+a=a3+as=0 (mod/).

Note that { is a primitive l-root of unity and a;’s are coprime. Let X be the sub-
variety C*/G x C defined by
X1X2 — X3X4 = 1

and f: X — C the projection. Then Y has only isolated Gorenstein toric sin-
gularities and f admits no simultaneous terminalization even after any finite base
change.

Proof. 1t is easy to see that Y has only isolated toric singularities. Since
the residue form

dxy A dxy A dxs A dxy
Res

X1X2 — X3X4

is G-equivariant, Y has only isolated Gorenstein toric singularitics. Because

4
Z a; > 21,
i=1

C*/G has only Gorenstein terminal singularities. We derive a contradiction
assuming that there exists a simultaneous terminalization after some finite base
change. Let Z be the subvariety C* /G x C defined by

X1X2 — X3x4 = 1.
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From the assumption, there exists a simultaneous terminalization 7: 2 — Z.
Let Z' be the subvariety in C° defined by

X1X2 — X3X4 = ",

Then there exists a finite morphism Z’ — Z. Since Z’' has only hypersurface
singularities whose singular locus has codimension four, it is Q-factorial by [7,
X1.3.13]. By [6, Lemma 5.16], Z is again Q-factorial. Because a general fibre
of f: X — C is smooth, the codimension of exceptional set of 7 is greater than
two. That contradicts to [5, VI 1.5 Theorem].
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