A. FUTAKI AND Y. NAKAGAWA
KODAI MATH. J.
24 (2001), 1-14

CHARACTERS OF AUTOMORPHISM GROUPS ASSOCIATED WITH
KAHLER CLASSES AND FUNCTIONALS WITH
COCYCLE CONDITIONS
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1. Introduction

Let M be a connected compact Kéhler manifold. An obvious necessary
condition for M to admit a Kéhler-Einstein metric is that the first Chern class
c1(M) is either negative, zero or positive, where a real 2-dimensional de Rham
cohomology class is said to be negative (resp. positive) if it is represented by a
negative (resp. positive) definite (1,1)-form. Conversely, if ¢;(M) is negative or
zero then M admits a Kdéhler-Einstein metric by the solution to the Calabi
conjectures (Aubin [1], Yau [21]).

In the remaining case where ¢;(M) is positive, in which case M is often
called a Fano manifold, there are further necessary conditions. First of all the
Lie algebra h(M) of all holomorphic vector fields on a Kihler-Einstein Fano
manifold M is reductive (Matsushima [14]). Secondly a Lie algebra character
f:h(M) — C introduced in [10] must vanish on a Kaihler-Einstein Fano
manifold. It was also proven by Bando-Mabuchi [5] that if M admits a Kéhler-
Einstein metric then certain functional, called K-energy, of M is bounded from
below. This analytic necessary condition played a theoretically important role
in the later studies. In fact Ding and Tian [9] extended the results of [10] and
[5] to obtain a necessary condition applicable to manifolds which do not carry
any non-zero holomorphic vector fields. Tian [20] further extended these ideas
to define certain notions of stability, called K-stability and CM-stability, and
presented an example of a Fano manifold with no non-zero holomorphic vector
fields and no Kéhler-Einstein metrics. On the other hand there are known
sufficient conditions for the existence of positive Kdhler-Einstein metrics by Aubin
[2], Ding [8], Siu [17], Tian [18] and Nadel [15].

Now one would hope to have a necessary and sufficient condition for the
existence of positive Kéahler-Einstein metrics. To state such a condition, Tian
[20] introduced a notion of properness for the K-energy and a functional in-
troduced by Ding [8]. Combining [20] and [4] one can show, at least when
h(M) =0, that a Fano manifold admits a Kéahler-Einstein metric if and only if
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Ding’s functional (or K-energy) is proper, and thus the properness of Ding’s
functional and the properness of K-energy are equivalent. It can be checked
directly that if the sufficient condition obtained in, for example, [18] is satisfied
then the both functionals are proper, and that if either of the functionals is proper
then the necessary conditions obtained in [10], [9], [20] are satisfied.

The purpose of this paper is to show that there is a family of functionals
satisfying cocyle conditions and that both of the K-energy and Ding’s functional
can be derived from the family. It is constructed as follows. Given a Kéahler
manifold M with a Kaéhler class Q, there exists a Lie algebra character
Jfo :H(M) — C with the property that if M admits a Kdhler metric of constant
scalar curvature in Q then fo = 0 (cf. [11], [7], [3]). Of course when M is a Fano
manifold and Q = ¢;(M), then f, coincides with the above f. We try to lift fq
to a character of the group of automorphisms which preserve Q. This can be
performed successfully when Q is a Hodge class and the group action lifts to a
holomorphic line bundle L whose Chern class coincides with Q, see Nakagawa
[16]. We can give an explicit formula of the character in terms of the Chern-
Simons invariants of certain virtual bundles. A merit of this formula is that it is
written using Hermitian metrics of L and the anti-canonical bundle K;;' and that
we may choose these two metrics independently. Note that if in certain situ-
ations the character can be written in terms of a Kdhler form w and the pull-back
form @’ = c*w by an automorphism o, then we obtain a functional written in
terms of @ and ' satisfying cocycle conditions.

Now return to the situation where Q = ¢;(M) and L = K;;. In section 4
we will see that if we choose a Kéhler form w € Q and then choose a fiber metric
of L so that its Chern form is equal to w, then the formula of the group character
yields the K-energy. On the other hand if we choose metrics for L and K;,
equal, the formula yields Ding’s functional.

2. Review of characteristic classes of foliations

A transeversely holomorphic foliation & of complex codimension m on a
smooth manifold W of real dimension 2m + n is given by a system of local charts

{z',... 2z xl oo x"} where {x',...,x"} is real coordinates along the leaves
and {z',...,z"} are complex coordinates in the normal directions, such that for
any neighboring local charts {w m oyl ...,y"}, the w”’s are holomorphic

functions of z”’s. Then there is a subbundle Ty, of TW*® C spanned by
{dz',...,d="} in local charts. Note that the definition of Ty is independent of
the choice of local charts. A section of 77, will be called a differential form
of type (1,0). Let S be the subbundle of 7W ® C annihilated by 7y,. The
quotient bundle v(#) = (TW ® C)/S is called the normal bundle of Z.

Let E— W be a complex vector bundle of rank r over W. A basic
connection of E is a linear connection whose connection form is of type (1,0).
Not every vector bundle admits a basic connection. But, for example, an ar-
gument using partition of unity shows that the normal bundle v() carries basic
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connections ([6]). It is obvious from the dimension reasons that, for a multi-
index « with || > m, the Chern form c*(E,V) vanishes identically if V is a
basic connection. Thus we can define characteristic classes of foliations, which
we review next.

The differential graded algebra WU,, is defined as

WU, = \(ur,....un) @{Clci,...,cn)/deg > 2m} @ {C[éy, ..., Ey/deg > 2m}

where /\(UI7...7un1) is the exterior algebra in uy,...,u, with degu; =1,
Clcy, ..., ¢p) is a polynomial algebra in ¢y, ..., ¢, with deg ¢; = 2i and similarly
for C[éy,...,¢n), and where the differential d is defined by du; = ¢; — ¢ and
dCi = di’i =0.

Suppose that E carries basic connections. Let Q*W be the de Rham
complex of W. We define a differential graded algebra map Ay : WU,, — Q"W
as follows.

Choose an Hermitian metric of E and take an arbitrary metric connection
V® and a basic connection V' of E. Let p: W x I — W be the projection,
where I denotes the unit interval. Then V! =sV! + (1 —s)V® is a connection
of p*E. Denote by ¢;(V®),c;(V') and ¢;(V"!) respectively the i-th Chern forms
with respect to V%, V! and V®!'. Set &; = p.c;(V®'). Then we have

dhi = ci(V') = ei(V°),
and
dhi — d/jl, = c,-(Vl) — C,'(Vl)

since V° is a metric connection and its Chern forms are real forms. From this
it follows that the map Ay defined by

D (i) = hi = by, dw(er) = (V") dw(@) = e(V)
is a DGA-map. It is well-known that the induced homomorphism 1}, :
H*(WU,) — Hx(W;C) is independent of the choice of the Hermitian con-
nection V° and the basic connection V'. We note that > cfui e is closed
in WU,, and thus we have

Ay (Z c{‘uli’i”_k> e H" (W, C).
=0

3. The case of suspension foliations

Let M be a compact Kdhler manifold and ¢ an automophism of M.
Suppose that ¢ generates an infinite cyclic group G=Z. Let £E— M be a
holomorphic vector bundle. We assume that the action of G lifts to E. We
set E;:=(Rx E)/G and M, := (R x M)/G, where G acts on R x E by

a"(v,1) = (t = n,0"(v))
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and on R x M similarly. There is a natural transversely holomorphic foliation
on R x M with leaf dimension 1, and it descends to M,.

Lemma 3.1.  The complex vector bundle E, — M, carries basic connections.

Proof. E, is obtained as follows. Consider I x E and identify {1} x E and
{0} x E by the relation (1,v) ~ (0,0(v)). M, is also obtained similarly. The
leaves of the foliation are of the form {(¢,p)|teI}. Remark that the vector
bundle E, is flat along the leaf direction, i.e. the transition functions do not
involve the leaf coordinate.

Let ¢(r) be a smooth function on I such that ¢(f) =0 near =0 and
¢(t) =1 near t = 1. Choose any Hermitian metric / of the line bundle E — M.
We define an Hermitian metric of E, — M, by

he= (1= §(t)h+ ¢(t)a"h

Then by the above remark iz;laizt defines a basic connection, where 0
denotes the (1,0)-part of the exterior differentiation, namely

m . (')
0= dz' —
it terms of normal holomorphic coordinates z',...,z". O

So we can define fE G — R by

(1) =ily (ch uef'” ]‘> W].

Recall that, given an Hermitian metric 4 on a holomorphic vector bundle E, the
Ricci form p, is given by

i AaAn
Py = ﬂao log det A.

It represents the first Chern class ¢;(E), and its coefficients

2

0
R[f = — FRPE log det /1

are called the Ricci curvature of 2. When an automorphism ¢ of M lifts to an
action on E, we have

* —
0 Ph = Poh-

THEOREM 3.2, Let h be an Hermitian metric of the holomorphic vector bundle
E — M. Then fy(c) can be given by
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1 det 6*h &
2 g - log —— * k m—k.
) i) = 0z | tor Gl Dok

Moreover fE :G— R is a group character.

Remark 3.3. From the independence of the choice of Hermitian connections
V® and basic connections V', the above expression of fz is also independent of
the choice of Hermitian metrics /.

Proof. Let h, be as in the proof of Lemma 3.1, and put

L (et ) det o iy ”"il
! det i, "

where r is the rank of E. Then the Ricci form p, is written as

3) pr, = (1= 4(0)py + ¢(D)pge-
It is obvious that
0' = h7'oh,

also defines a basic connection, and it is easy to check that
0° = h;'oh, + %h;lalht
defines an Hermitian connection, where
0
0, = dl&'
From the definition of u; we easily get
. i
Wil = E&, log det 7,.
We also have
* i N\ A
wer =5 (0; + 0)0 log det h;.
It follows that, for all k&, we have
X X l l _ m
4) Ay (cfue™) = Eat log det h; A (ﬂ 00 log det h,) .

From (3) and (4) we have
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o 1 det o*h m
et W) = (m+ 05| g0 tog ST dtn (it 600~ p0)
MxI eth

B 1 deto*hgn(m) 1 m—k k
*(m—i—l)%JMlOg (16[/12(]()1(—1—1('0/1) A (Poen = Pn)

k=0
1 det O'*h m—k
_ZJ Og det 4 th N Poep -

This completes the proof of the first half.
From (2) and the fact that the right hand side of (2) is independent of the
choice of the metric 4 it is easy to check

fe(o7) = fi(0) + fi (7).

This completes the proof of the second half. An alternate proof can also be
given as follows. There is a fibration p: W = Mg = EG x¢g M — BG = S'.
The integration over the fibers gives

pelidiycfuie"™) e H'(BG; R) =~ Hom(G, R).

The interpretation of the last isomorphism shows that fE is a homomor-
phism. O

4. A Lie algebra character and its lifting to a group character

In this section we first review the Lie algebra character obtained as an
obstruction to the existence of Kédhler metric of constant scalar curvature ([11],
[7], [3]), and give an explicit formula of its lifting to a group character.

Let Q be a fixed Kédhler class on an m-dimensional connected compact
Kihler manifold M, and o =i/(2n) 3" g;dz' A dZ/ a Kihler form which rep-
resents Q. The Ricci form of w will be denoted by

_ b g gsi— L3
Pur 2HZRU. dz' A dz! =5~ 00 log det g.

We put
V.= Q"M],

L S0

where s, = gini]f denotes the scalar curvature of w. Then there is a smooth
function F,, uniquely determined up to constant such that

— um = AF,.
Define f : h(M) — C by
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1

S(X) =5 JM XF,,0™.

It is known that f is independent of the choice of w € Q. This implies that f is
invariant under automorphisms of M and is a Lie algebra character. Obviously
if M admits a Kéhler metric of constant scalar curvature then we have F, =0
and f vanishes.

Let ¢ be a Hodge metric, Q its Kéhler class, and L a holomorphic line
bundle with ¢;(L) = Q. We assume that the action of an automorphism o lifts
to L. Consider the character defined by

o 1 m Am\ .
/= 2m+1<m+1)!;(—1)1<j )fKM1®U,2,

m
2m+1 m +1 |Z < > Ky@Lm=2

Jj=

um m+1 ; m+1)\ .
2m+1(m+1) (m—|—1)z(_1)]< j >fLm+12/-

The following theorem has been proved by the second author [16].

THEOREM 4.1. Let X e h(M). Then we have

flexp(emx))

where Rf(X) denotes the real part of f(X).

The proof of this theorem will follow from later computations. Combining
Remark 3.3 and Theorem 4.1 we obtain the following.

CorOLLARY 4.2. The Lie algebra character Rf can be lifted to a group
character f which can be written explicitly using Hermitian metrics of L and Ky,.
Moreover f is independent of the choice of these metrics in each of the terms of

fKMl QL™ %> fKM®L"’ 2j and fLm+l 2.

In the rest of this paper we show that a suitable choice of Hermitian metrics
of L and K;;' yields the K-energy, and when L = K;;! a different choice yields
Ding’s functional.

Let w be a Hodge metric of M and & an Hermitian metric of L. As before
P, and p, respectively denotes the Ricci forms of w and 4. By the assumption
we have [p,] = c1(L) = [w]. From Theorem 3.2 we have
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A 1 o*a™ ] a*h
(5) 2nf(o) = T m+1 '; < )JM(log o +(m—2j) log 7 >

m
Z a*(pw+(m_2j)p/1)lc A (pw+(m_2j)ph)m7k
k=0

1 I im oo™ ) a*h
—m;(—l) <j>JM<—log o T (m=2j) log — >
> 0" (=po+m=21)p)* A (—p,+(m=21)py)"

k=0
m+1 ) m_|_1
um 1 /< . )(m—I—l—Zj)erl

2}11+1(m+1) (m+1) Z( ) j

* m

o vk m—k
XJMlog - ;rmh A

Using

J

4 |/
(—1)"( >(/ 2))F =0 for k £/,
=0

c.f. [19], and putting

we obtain

O 2nln11(0) =5 ] tomr> o'k g

+1log 7Y ko'p, natpit A ppE

m
+1og 7> a'pi A (m—k)p, A pi !
k=0

1 J m k 7k
—5| (Hlogy) > apy A py
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m
+log 7Y k(=0"p,) A atpy Ayt
k=0

+log 7> a'pf A (m—=k)(=p,) A pi !

m
- /MJ log 7> a'pf A pp*
M k=0
m m
= J log 7Y a*py A ppF+logi > ka*p, nopit App
M k=0 k=0

m
+10g 7> a"pk A (m—k)p, A py !
k=0

m
—/WJ log 7Y o*pi A ppt.
M k=0

Suppose now that p, = w. We put

o*h

= —logy = -1 .
4 ogy 08 —

Then we have

*

o*h
2n66(p———6610g 7 =0'p,—p=0"0w— w.
So if we put w, := c*w, then
i A *
w¢=w+%aa¢ and Py = Po,-

Define a functional .#(w,w,) by

M, 00) =2 (0).

THEOREM 4.3. ./ (w,w,) coincides with the K-energy.

Proof. From (6) we have

n’IWl

m
(m—&—l)V%(a),coq,):J g72w A o™ —JM(kap%/\w;f*I Aok
k=0

m+1
—J (;)Zw;f‘l Am+1=kp, n o™k
M
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m

+,umj (pr;f A"k
M =0
m m

:J lg—me A "k

—(m+1) J goZa) A Py, A @K

m
k-1
—J 0 k(py, = pu) A @
M=o
m
+umj ngw/qf/\wm*k
M =0

The third term of the right hand side is equal to

w1 m—k
J log ﬁZk — o) W, A

w m

= JM log w—ﬁq(w;a A o™

—w”’—l—?.(a); AW

+ -+ mw, — a)(';’_1 A ®))

m

W,
:—J log Z (™ +c0¢Aco’"1+~--+a)$
M

Thus we obtain

m—1

(7) Vil (0, w,) = —J (prg APy A"
M k=0

m—2 m—1
—wp A ")

)+(m+1)JMlog

k-1

™
1 e o om m— k

M =0

This last expression is equal to the K-energy (c.f. [4], §5).

Proof of Theorem 4.1. Let X € h(M), and define ¢, by

(exp(tRX)) w —

where RX denotes the real part of X. Then

-

m

m

m
¢ .
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d . d
2n— tRX)) =— |24
w0 = 4| Kao.o)

== flico(s0 — pm)o™
M

== | Al@l—o)Fo™.
M

Since X is holomorphic, di(X)w =0. Hence the harmonic integration theory
shows
i(X)w = idu + io
where o = o; dz/ is a harmonic (0, 1)-form. Therefore we have
Ly ® = i00(Ru).
It follows that
Pli—o = Ru

modulo constant. Using 0= 0, we have

[ 8 Eom = | A"

= ,J R(div(X))Fpo™
M

= 20R(/(X)).
This completes the proof of Theorem 4.1. O

Suppose that ¢;(M) > 0 and that p, =  + (i/2n)00F,. Then we have

[ i 1 ;'
M(w,0,) = —?JM (;;Zw;f A (a) —&—ZnééFw) A " F! +?JM log a)(f” w,'

This last expression is the K-energy for Fano manifolds used in [20].
Suppose again that ¢;(M) >0 and that L =K;!. We choose h= ™.
Then from (6) we have
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o m

2/ (o) = j mZwa Ak,

where we have put o, :=c*w. We assume 7 :=p, >0, ' := =Po, > 0, and put
n' =n+ (i/2n)00y. Then of course y = —log w,! [o™, and thus

m

®) awfio) = | w3t an”
Here i is normalized by

J e VoM =V.
M

We wish to rewrite the right hand side of (8) in the form invariant under the
change of Y into  + constant. If we define F, by

i
=5+ —00F, Epgm — v
Py ’7+27r > JM" n ,

then
m
F, =log
'7 ;7}71
and
1
- —y+F, m =1.
vV J M ¢ K
Hence

2an() ﬁj WZW”‘AW’”" log( JM by >

We define

1 ’” 1
7 __ 1 ko k1 _J ~p+F,
(0, w,) (m+1)VJM¢,§_Ow") A® og(V Me ™|,
where F, is normalized by l/VfM efor™ =1,

THEOREM 4.4. F (w,w,) coincides with Ding’s functional.

Proof. Ding’s functional ([8]), which we denote by Z(w,w,), is defined by

1 1
9 =J,(p) —— m_ | _ Fo—p  m
(@, @) = Ju(9) VJMWO 0g<VJMe & >
where J,(p) is defined by
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le) = | plo” = o),
1
Jolp) = jo olo) 4

But one computes

This completes the proof.
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