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THEIR PERTURBATIONS
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Abstract

113

We give here a number of examples of non-commutative harmonic oscillators “‘in
disguise” that can be exactly solved by using the tensor product of the oscillator
representation and the finite dimensional representation of sl(R), and its perturbations.

5

1. Introduction

The aim of this paper! is to produce a variety of examples of systems,
similar to those introduced in [4], [5] and [6], that can be exactly solved by a
(quasi/perturbed) creation-annihilation procedure, in the sense we can determine
the spectrum, eigenfunctions and give deformations that produce (or destroy)
multiplicity (that, as we well see, is bounded depending on the dimension of
the associated finite dimensional representation) in an invariant way, that is
depending only on the representation and nmot on the particular realization of
the system, by using a suitable tensor product representation of sl;(R). Due
to the particular nature of the systems considered here, we remark that we will
not give any new results from the ODE (or PDE) viewpoint, but we will give a
different interpretation of the spectral quantities associated with such systems.

We now make ideas more precise by considering an example.

Let {XT,H, X} be the standard basis of s(R). Let (w,#(R)) be the
oscillator representation, let \, resp. W', be the annihilation, resp. creation, opera-
tors (see (3) below), and let ¢, := (y/)"e™"/2 (essentially, the Hermite func-
tions). Let I, be the 2 x 2 identity matrix of C?. With D, = —id,, let us
consider

D2 + x? 1 0
o122 ca 4=y )
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as an unbounded self-adjoint operator in L?(R; C*) with domain B?*(R;C?) (it
then has discrete spectrum). Of course, the spectrum of L(D? + x?)/2 is given
by the numbers {n + 1 /2 ne Z,}, with multlphclty 2, and eigenfunctions ¢, ® e;,
j=1,2, where ej,e, is the canonical basis of C>. How does the presence of
A affect the spectrum of I,(D? + x?)/2? One may easily compute the spectrum
of L(x,D,) as follows. Since ej,e; are also eigenvectors of A, one gets that
the spectrum of L(x,D,) is given by the numbers n+1/2+ 1, ne Z,, and a
“natural” basis of eigenfunctions by the functions ¢, ® e, ne Z., k=1,2,
as above. From the representation viewpoint, we are dealing with the sly(R)-
representatlon Ptrivial * 512( ) - EndC(y(R; C2>>a defined by

vaial(X_) = W(Xi) ® b, puivia(H) = o(H) ® b.

In other words, we are thinking of 4 as a “Oth-order” perturbation of the
“principal part” L(D? + x?)/2.

On the other hand, we may think of A as 7y(H), where (7yect, C 2) is
the wvector representation of sl(R) (see (4) below). Then the map py =
O ® Tyeet : Shh(R) — Ende (S (R; C?)), defined by

pvect(Xi) = w(Xi) ® 12 + 1 ® nVCCt(Xi)’ pvect(H) = CO(H) ® 12 + 1 ® nvect(H)?

is a representation, and L(x,Dy) = py.(H). The spectrum is of course given
again by the numbers n+ 1/2 + 1, n € Z,, which are now written in terms of the
representation as n+ 1/2+ (2/ —2+ 1), j = 0,2 — 1, where 2 is the partition (see
below) associated with 7ye. A “natural” basis of eigenfunctions is now given by

(p]%n = pvect(XJr)n(ﬂji, neZ,, j=0,1,

0 0
=7 ® M % =V ® H

=W’ ® m +0® m or =) 9 ® m +39Tp, ® m

where

Notice that the p; have weights F1/2, resp., the ¢ weights 2j F 1/2, resp., and
that the (/)— have in general weights 2n+2j ¥ 1/2. We may hence think of
A as belng as “heavy” as L(D?>+x?)/2. In thls case, the spectrum has a
“creation/annihilation” structure, for py.. (X~ ) =0, j=0,1

One may now intertwine system p, ., (H) by the unitary operators e**'//2 J

0
being the matrix [1 0

}, obtaining the operator

QveCl(x’ DV) = exzj/zpvect(H)€7X2J/2

—02 4 2x2 1 cos(x?)  sin(x?)
=—a1 6r U . )
2 + (x ot 2) - Lm(xz) —cos(x?)
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whose spectral problem reads as

Y 2
(W + cos(xz)) up — (x@x + 1 sin(x2)> uy = duj

2 2
Yy 2
((l;—bc — cos(xz)) uy + (xax + % + sin(x2)> up = Auy.

At a first glance, it seems quite non-trivial to obtain the eigenvalues (and
eigenfunctions) of Quect(x, Dy), but of course we already know everything about
the spectral resolution of Qyect(x,Dy). More importantly, we can actually
“invariantly”” solve the spectral problem, regardless the choice of the vector
space C>.

Recall that in the above mentioned papers, we considered systems of the
kind

—ﬁxz + 2x2

Qh<x7 D») = 2

1 ) 1
L+ (xax +5)J =¥Y()¥'(1) ~ 5,

where

1 1
Pi(1) =—=(xh+0J —xJ), and P(1)=—=(xb + 0.J + xJ).
(1) \/5( 2 ) (1) \/E( 2+ 0y )
Notice that On(x,Dy) = e/ p .i(H)e™7/2 and that O(x,D,) is unitarily
equivalent (through a symplectic scaling) to

V2 0 2 X2 1
cantem=[ B3 ()

that was the starting system of the analysis carried out in [4] and [5] of systems
such as

2 2
QD) = 10f) (=5 475 ) 7 (w04 3)

0
I(a, ) being the diagonal matrix {g ], with o, € R and of > 1 (which is

B

equivalent to an ellipticity assumption).

Since the irreducible finite-dimensional representations of sl,(R) are classi-
fied by the dimension (the vector-representation is therefore classified by the
dimension 2), we may (invariantly) summarize our discussion so far in the
following structure of the spectrum of Qyect(x, Dy).

Example 1.1. Let (7yet, V) be the vector representation (see (4)
below). There exists an L*(R; V)-complete system of Schwartz eigenfunctions
{&onCon &l nElntvez, © L (R V), with the +-functions being even and the
—-ones being odd, such that
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1

1
Ovect (X, Dx)fai_N = <2N + E) g({N’ Qvect()@Dx)é;:,N = (2N+2 + 5)5?]\1

Hence, as a consequence, the L2-structure of Spec(Qyec(x,Dy)) is given by

eigenvalue | —1/2 | 2N —1/2 (N>1) | 1/2 | 2N +1/2 (N > 1)

eigenvector | &7 é({ M & N1 & EonEino

multiplicity 1 2 1 2

One may further introduce a parameter ¢ € C, and consider the system L,(x, D)
= Puivial(H) + el ® A.  This “deformation” of the considered “harmonic oscil-
lators in disguise”, that amounts to perturbing the principal part of the system by
“lower order terms”, gives the existence of ‘“‘quasi-creation/annihilation” opera-
tors. By means of these “quasi-creation/annihilation” operators, can one find
a basis independent of ¢, constructed by using p..., that “deforms” piyia(H)
into p,(H)? And if that is the case, what is then a “lower order term” for
Pvect> 10 the sense that the spectrum may still be explicitly computed? A partial
answer is Theorem 3.4 below, that represents a sort of “rigidity theorem”. Such
a basis indeed exists, but it is the “trivial” one, that is the one given by the
functions ¢, ®e;, ne Z,, j=1,2.

Example 1.2. Let

cos(x?)  sin(x?)

_p? 2
Ovect,e(X, Dy) 1= M[ + <x6x +1>J—|—e[ ceR.

2 2 sin(x?)  —cos(x?) ]’

The system Qyect (X, D) interpolates systems QOp(x, Dy) and Qyect(x, Dy), it has
spectrum given by the numbers 2N + 1/2 + ¢ (even eigenfunctions) and 2N +
3/2 + ¢ (odd eigenfunctions), where N € Z., with multiplicity one for any N > 0
when ¢ ¢ (1/2)Z.

Notice that Qe .(x,Dy) is equivalent in %'(R; V) (through a transfor-
mation that is also unitary in L2(R; V) to p,(H) = o(H) @ Iy + &l @ mtyeet(H),
whence we have the right of thinking of p, :sh(R) — Endc (' (R;V)) as a
deformation of py = pyiviar N0 P; = Pyeer- The maps p,, with ¢ # 0,1, are not
representations, but associated with them, one may find the ‘“quasi-creation/
annihilation” operators referred to earlier.

Remark 1.3. We remark that considering the n-fold tensor product of the
oscillator representation of sl(R), that is the sl(R)-module (v ® -+ ® wy,
S (R™)), yields naturally the same kind of results for systems in the multivariable
case (the PDE case).

Let us put things in the following perspective. Recall that, given N € Z .,
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an m-tuple v = (vi,...,v,) € Z} withvi+---+ vy, =Nand v > --- > v, > 1,is
called a partition of N. Moreover, to each partition v of N, there corresponds a
(unique, up to equivalence) decomposition into irreducibles of the sl,(R)-module
(m @ ®my, V), where dimecV = N and =#; corresponds to v, 1 <j<m (see
Section 2 below).

Let hence N =2, vy =2 be the partition associated with the vector-
representation, and let viyvia = (1,1) be the one associated with the direct sum
of two trivial representations. We hence have the correspondences

Vvect — pvect(H) = L(X, Dx), and  Vigiyial — ptrivial(H) +4= L(X, DX)'

Hence pyo(H) and pyyia(H) + A are isospectral (even is #'(R; V)). The matrix
A in the wyia case, is thought of as a suitable two-parameter perturbation
(m = 2) written in terms of 7ryjyia @ Zuivial (S€€ Section 2 below). More generally,
given NeZ,, let v be a partition of N, (r(), V) the corresponding (up to
isomorphisms) sl (R)-module, with dim V' = N, and let X y(H) = 0 @ n(,) (H) be
the corresponding system. So, if ve Z and V' € Z "' are partitions of N, we
will see (see Remark 4.1 below) that the systems pv(H ) + (m-parameter suitable
perturbation) and p,,(H) + (m’-parameter suitable perturbation) are isospectral
(even in '(R;V)). In some sense, the partition v does not distinguish among
different, but equivalent, forms of the same system, the only ‘“invariant” in the
spectrum being the parity of N: when N is even, every system associated with a
partition v of N is isospectral to a perturbation of one associated with the partition
£Q’n/ 2) =(2,2,...,2) e Z iv/ 2, whereas when N is odd, every system associated with
a partition v of N is isospectral to a perturbation of one associated with the
partition yN=0/2) = =(2,2,...,2,1) e Z (N=1)/2+1 Loosely speaking, in the system
case one has as primary symmelrles lhe parity in the variable x € R and that in the
size of the system.
We will hence study N x N systems in L*(R;C") such as

D? + x? . .
(1) L(x,Dy) =uly 5 +A4, u>0, AeMaty(C) diagonalizable,

and suitable perturbations parametrized by the partitions of N, and also ‘“gen-
uine” infinite dimensional perturbations (see Section 5 below). Of course, the
discussion extends to cases such as L(x, D) = B(D? + x?) + A4, with B= B* >0
and [4,B] =0. Since

Spec(L(x, D,)) = Spec(e 2 L(x, D,)eB™), Be C*(R;u(N)),

one is able to treat by the same methods, seemingly more difficult systems.

Example 1.4. Let oo: R — U(N) be a smooth map valued in the unitary
group, with temperate growth on R. Put

A() = Qo)) !, B) = 3 (0eA() — A(x)?) + 22(x) o)’
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Then the system defined by

2
P(x,D.) = Iy (%”2) 4 A(x)0, + B(x),

is unitarily equivalent to the system Iy(—02+x?)/2 + 4.

We hence aim at making this approach, when possible, as much “invariant”
(and algebraic) as possible, with respect to the matrix 4 and the representa-
tion space V. The main idea will be writing the matrix 4 in terms of sl(R)-
symmetries. One of the advantages of our approach is to describe the spectrum
in terms of “pure sl(R)-symmetries” of A. Though dealing with a number of
special examples, our method finally gives the possibility of studying (through a
three-step recurrence equation) the spectrum of more “asymmetric” cases fol-
lowing the lines of [4] and [5] (see also [6] and [3]), as in Section 5, and to
naturally deal with more geometric systems, such as the one in Section 6 below.

2. Tensor products

Let us recall a few elementary facts about sl,(R). Let us consider the
standard basis {H, X", X~} of sl;(R), that is to say, the following commutation-
relations of sly(R) are fulfilled:

©) XX = H, XY = 22X,
Let us set
._X+ax T,_x_ﬁx
Y= 5 Y= 7
Then [,'] = 1, whence the map o : sly(R) — End¢c(¥(R)) defined by
T 2
() olt) =i -1 o) =L upry — -

gives the oscillator representation of sl(R) on ¥ (R) (and on ¥'(R)). Because
the action of sl;(R) leaves the parity invariant, we have the irreducible decom-
position of w:

y(R) = %ven(R) @ %dd(R) = <¢+(R) ® S (R)

Put ot := ®|y, (ry- Then gy = e/ (resp. Y'p,) gives the lowest weight vector
of the irreducible representation of (wt, % (R)) (resp. of (w~, % (R))) (see [2]).

Let now (7, V) be an N-dimensional (N > 1) representation of sl(R), where
we take V' ~ CY. For example, when V = C 2 is irreducible, one has the vector-
representation

(4) nvect(H)_[é _OJ nvect()ﬁ)_{g H nvect(X)_ﬁ 8]
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As it is well-known, the sl(R)-module (7, V') admits a decomposition into irre-
ducible components (as sl(R)-modules), that we will write as

V=1eoehno @V, n=nd@mnd- - @,

the (7m;,¥;) being irreducible sly(R)-modules, where dim V;=v;, 1<j<m,
and v +---+ v, =N. By Proposition 2.2 below, by virtue of the fact that
an isomorphism class is determined by a dimension, we may assume that
(vi,v2,...,vm) € Z" be a partition of N, that is vy >v;>--->v,>1 and
v+ -+ v, =N. Remark that giving a partition (v{,vs,...,v,) of N is equiv-
alent to giving a Young-diagram with N boxes, where the number of cells in the
first row is vy, the one in the second is v, etc., the one in the last row is v,,. For
example, the partition (5,3,2,1) of 11 is represented by the Young diagram

It is also convenient to recall the following facts about commutation relations
(among generators) of sl,(R), and the list of finite dimensional irreducible sl(R)-
modules (see [2]).

LemMa 2.1 ([2], p. 52). For all X, Y € sl,(R) and for any given ne Z \{0}
one has the formulas

n—

. X" Y] = XX, Xt
k=0

. [H, (X*)"] = £2n(X *)",

. [(X5)", XF] = n(X*)" ' (H + (n - 1)).

PropoSITION 2.2 ([2], p. 55). Let (n, V) be an irreducible sly(R)-module of
dimension v, for some v>1. Then V has a basis {vy,...,v,_1}, such that

n(H)vj=2j—v+1y, 0<j<v—1,
n(XJr)U/ = Uj+1, 0 S.] <v- 17 n(XJr)UV—l = Oa
(X )oo =0, w(X )y =j0v—jy-1, 1<j<v-1

Furthermore, with C denoting the Casimir operator of sly(R), that is the gen-
erator of the center of the enveloping algebra U (sly(R)) of sh(R); C = H?+
AXTXT + X XF),

n(Cw =01, YveV.

In particular, V is determined up to isomorphism by its dimension.
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Hence, since in our case we are dealing with V=1V ®---® V,, V; being
irreducible sl,(R)-modules, we have for each (7, V) a basis {vg"), . .,vf,'/’zl}, 1<
J < m, with the above properties. At this point, it is convenient to fix a Her-
mitean product {-,-» in V that makes the basis {vé’);k =0,...,vi— 1,1 <j<m}
orthogonal (whence the @ in the decomposition of } becomes orthogonal).
Then there exists a positive-definite Hermitean matrix Q such that <{v,w) =
{Q, Weyn, Where (-, -, denotes the canonical Hermitean product of C" and
¥, w, respectively, are the vectors of CV corresponding to v, w, respectively. We
will then denote by Ugq(N) the Lie group of the unmitary matrices on V' with
respect to <,», and 4* will stand for the adjoint of 4 with respect to the
aforedefined Hermitean product. We will finally write /)y for the identity map
of ¥, and Iy for the identity map of CV.

DEerFINITION 2.3. Let N be an integer > 1. It is well known that the Young
diagrams with N boxes “‘parametrize” bijectively the partitions of N and the
N-dimensional sl,(R)-modules (7, V) (through the irreducible decomposition of
7), up to equivalence. We hence get a correspondence

Vi—= ), T Vg

In our case, fixing ve %y = the set of partitions of N, will therefore fix an
N x N-system.

In the sequel, given a finite dimensional complex vector space V, we will
systematically identify L*(R; V) with L?>(R)® V. Likewise for %'(R;V) and
F(R; V). Having fixed the Hermitean structure on ¥V, from now on we will
take on L?*(R;V) the following inner-product:

2 0) oy = jR )90 dv, ¥f.ge PR V).

DerNITION 2.4, Let A € Ug(N), and Be C*(R;Uq(N)) with temperate
growth in x e R. Define, for ve %y,

Q(v) = Qv;x, Dy) == 0(H) @Iy + 1 ® (m(H) @ - - @ 7n(H)) = 0 @ n(H),

where 7= n(, and, recall, o @ n(Y)=w(Y)® Iy +1®n(Y), for any given
Y esl,(R). Define also

04.80V) = Q4 (v; x, Dy) := B(x)A0(v; x, D) A ' B(x)".

Note that
isometry

Typ:=B()A:L*(R;V) —— L*(R; V),
Ty.5 € Aute(S(R; V)N Aute (S (R; V).
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Moreover, Q(v) is a globally elliptic self-adjoint (with respect to the scalar-
product defined above) unbounded operator in L>(R; V), with domain B?*(R; V)
and compact resolvent. Recall that

B(RV)={fe L' (R V);x"0{f € (R V), Vo, f e Z, |o] + |f] < 2}.
Example 2.5. Let V' =C". One has
Qh(x; Dx) = QIN,exp(xzj/z)(L 1) Qvect(xa Dx) = Ql,exp(x21/2)(2)'

The usual 1 x I-harmonic oscillator is

(=07 +x7%) = 01.1(1),

N —

whereas the scalar N x N one is

1
(=0 + )y = O (L1, 1),
N

The next step is now to establish the spectral resolution of Q4 p(v). One has
the following proposition.

PROPOSITION 2.6. Consider the sly(R)-module (o ® n, ¥ (R;V)). Put
p(H) = QA,B(VH;X, Dx)> p(Xi) = TA,B(CU ® n(Xi))T/I,B'

Then (p, & (R;V)) defines a representation of sly(R). Furthermore, p is equivalent
to the tensor product representation (0 @ n, S (R; V). In fact, the operator Ty p
defines the intertwining operator between these representations:

/)(X)TA’B:TA‘BCO@ﬂ(X), VX6§[2(R).

In particular, the system defined by the operator Q4 p(vz; x, Dy) is unitarily equiv-
alent to the system defined by the operator Q(vg;x,Dy).

Proof. One just recalls that
(T4, 50 @ n(Y)Ty g, Ta, 30 @ n(Z) T gl
= Tup([0(Y), 0(Z)| @ Iy +1 @ [n(Y), 1(Z)]) T
=Ty p(o([Y,Z]) @Iy + 1 @n([Y,Z]) T p = T4 s(0 @ n([Y, Z])) T ,
for all Y,Z esl,(R). The proof then follows by direct check. O

Using the irreducible decomposition of the tensor product representation w & 7,
we now have the following theorem.
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THEOREM 2.7. Let 1 <k <m and let 0 <j < v — 1. Pick constants cyf]),i,

0<l<j,

<j, 1</<j, a>0,

W+ (T Fw—=2¢) TGF1/2)
’ ‘“(/)ruzw/z) r(vk> !

where I is the Gamma-function. In parllcular c/ >0, for all £ =0,...,j, all
j=0,....vk =1, and all k=1,...,m. Define the Schwartz functions

j J
k k i—/ k k
goj(. = E c§7}+w(X+)j [% ®U§ ), (P] E C o(XT) 7 /‘PT(P ®Uz )

~
Il

<)
\

) WOE W gt and B0E = o),
for 0<j<w—1,k=1,....m and n>0. Then
pXIE =0, 0<j<w—1,1<k<m,

and the system of functions {h}fzi}gféf”'_l’lgkgm = S (R; V), is an orthogonal

basis of L>(R; V), dense in both (R;V) and ' (R; V), made of the eigenfunc-
tions of Q4 p(vz):

1
04, 8(vz; X, Dy)h; ’2 — (2n+2j+2 T _Vk>h./(‘,k2+a

2
for any 0<j<w—1, any k=1,...,m, and any ne Z,. In particular, the
lowest eigenvalue depends on the partition v in the following way:
. 3
min Spec(Q4, p(Va; X, Dy)) = AL

Proof. We start off by proving that p(X *)h;f(gi =0. We will consider only
the +-case, the other being similar. It clearly suffices to prove that

(X)) @Iy +1@r(X"))g/"" =0.

A simple computation shows that it holds by virtue of the choice of the constants
cﬁkj , for they satisfy the recurrence

)+ o _ U=+ D=+ 1F1/2) @
j ‘,j /(Vk _ {) /-1,

We now compute the action of Q4 p(vx;x, Dy) on the h/(kn) *>s. Since from Lemma
2.1 one has

04,50 %, D), p(X D) "W = 2mp(X ) "% v e Z,\ {0},

1<j, 1<¢<j.

it is possible to reduce matters to the case n = 0, for which it suffices to show that
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P 3 i
0@ nH) (XY 9y @) = (5+3-n)or) @1

But this is an immediate consequence of the fact that the weight of w(X )’ ¢,
is 2(j—7¢)+ 1/2, and the one of v{(»k) is 2/ —v.+1. (In fact, each function
(X g, ®v{ is a weight vector of w ® n(H).)

Next we prove that { ]n tneZz., 0<j<w-1,1<k<m} is an orthog-
onal basis of L?(R; V). By virtue of the orthogonal decomposition

L*(RV)=LX(R,V)® L*(R; V) (@Lz (R; Vi ) ® (éLZ(R; Vk)>,
k=1

we may suppose m =1 and consider only the +-case (so, in the following
claim we will drop the index k). Since w(X*)"p, = (even polynomial of degree
2n) X @,, it suffices to prove the following elementary lemma.

Lemma 2.8. Let ke Z,. Then, upon defining N, ={0,1,...,v—1},
W = Spanc{h; ;neZ /e N,n+/( <k}
= TAﬂB(SpanC{w(X+)n¢0 ® vysne Z+7/ € van +/ < k}) =

In particular, for any given even polynomial p € Clx] and 0 <j <v—1, one has
that T4 g(ppy ® v;) belongs to some W,'.

Proof of Lemma 2.8. We may suppose A=B=1y, so that T, p is the
identity operator and /1, = (0 ® n(X +)) =: ¢/, One has the following ele-
mentary facts. Let n, n € Z+, 0<j,j < v — 1. Then

() (0(X) "0 @ vy, (X" 9y ® v] ) = whenever n #n' or j #j';
(i) (0, 070) = whenever j # j';
(iii) (¢/,,0) ) =0, whenever n#n' or j#j'.

In particular, the w(X™)"p, ® v/’s, resp. the (,oﬂn’s, are linearly independent. The

problem is therefore equivalent to proving that S; = W," for all ke Z,, for it

is clear that

(k+1)(k+2)

—

v(iv+1)
2

fO<k<v-1,
dim S} = dim W, =

+vk—v+1), if k>w.

Let us proceed by induction on k. When k =0, one obviously has the claim,
for ¢0+, 0 =93 =@ ®vo. Suppose next we have the result up to k. We prove it

for k+1. Being (0 ®@n(X"))" =1 0( ) (X" @na(XT)", we get that
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Spanc{p; ;neZ.,jeNy,n+j=k+1}
< Spanc{w(X")"py @ vsne Z.,je Nyyn+j=k+ 1},
whence the equality
Spanc{g; ;neZ,,jeN,n+j=k+1}
= Spanc{w(X*)"py®vsne Z.,je Nyyn+j=k+1},

by virtue of the fact that the two vector spaces have the same dimension
min{k + 2,v}. Since W,” < W,", and by the induction hypothesis S; = W,", we
get

Wi =W, ®@Spanc{y/,ineZ,,jeN,n+j=k+1}
=S ®@Spanc{w(X")"pyQ@usneZ,,jeNyn+j=k+1} =S,
This ends the proof of the lemma.

Hence, if(Tj‘Bf,h](.yk,z‘—) gy =0foranyneZ,, any j=0,...,v — 1, and
any k=1,...,m, then also (f; /k P(X)90) 12(r,c) = 0 for any polynomlal D, f(k>
being the v<k)-component of f. Then by usual arguments f =0, whence
f=0. The result follows. O

Remark 2.9. It follows that as an sly(R)-module, one has the irreducible
decomposition of (p, Z(R;V)):

kal— m Vi— 1

V) ~ @ Span{h/(,k neZ ® @ @ Span{ ’1€Z+’

k=1 j=0 =1 j=0

even odd

where the closure refers to the %-topology. The same decomposition holds for
L*(R; V), with closure in the L>-topology, and orthogonal @-sum. In partic-
ular, the functions h H and hj(l”o ,0<j<w—1,k=1,...,m, give the lowest-
weight vectors of the irreducible summands, respectively.

Remark 2.10. Let ve®y and let ¥V ~C". Fixing the another inner-
product in L*(R; V) and taking 4 e U(N) and Be C*(R;U(N)) with temperate
growth (where U(N) denotes the unitary group with respect to the canonical
Hermitian structure, rather than the structures tailored to the basis given by 7,
as we did above) yields that in general Q4 3(v) is no-longer self-adjoint. In this
case Theorem 2.7 holds true, the only difference being that the @’s are no longer
orthogonal sums.

Example 1.1 is now a consequence of Theorem 2.7, upon considering the
sl (R)-module (nvect,Cz) given by the vector representation, and defining
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+ _ +\n,x2J /2 + P
&t =p(X e Pyt j=0,1,

where (one picks o« =2 to determine the basis)
0 0
o =0 ® M 0 =¥'n® H
. . 0 1 o 0 ; 1
o7 =20 g ® | |+ ® | o1 =20XT W0 ® | |+ ® | )

COROLLARY 2.11. Same  hypotheses of Theorem 2.7, with v=
(Viyewoyvm) €¥y. Let 1€U(slh(R)) be the unit element of the enveloping
algebra. Take 0 € C", and let us set

04.85(v) := T4 3(Q0) + 1 ®@7s(1)) T g,
where we put mi(1) =Iy,. (Recall, ns(1) =617 (1) ® - @ Opmin(1).) Then

1
Spec(Q4,8,5(v)) = {” 5t (2 —w+1)+oneZ, 0<j<w-1,1<k< m},
with the same basis {h(/kz,i % fgi'& /<y 1 (independent of o).

Proof of Corollary 2.11.  We immediately have that x|y, (1) = Iy,, whence
Ta5(1 @ ms() T phl)" = 0kl )E, vneZy, 0<t<w—1, 1<k<m [

3. Perturbing the representation

We now define “quasi-creation/annihilation” operators, suited for deforming
the system defined by Q4 s(vz;x,Dy). Of course, once the sl;(R)-module is fixed
(that is, once a partition of N is fixed), it suffices to “deform” the operator
Q(Vn;x; Dx)~

DeriNITION 3.1, Let v = (vi,v2,...,Vn) € ¥y. Put m=m) (so that also
v=rw,). Let e=(e,&,...,&,) € R™, and let us define 7, =111 @ -+ ® g7y
Define the following operators (the ‘“quasi-creation” operator and the “quasi-
annihilation” operator, respectively):

AT(vie) =X @Iy + 1 ®m(XT),

A (vie) =oX) Iy +1®n(X7),
and finally, the following “twisted”” harmonic oscillator:

O:(v;ix,Dy) =o(H)® Iy + 1 ® n.(H).
Notice that Q( 1....1)(v; X, Dx) = Q(v; x, D) then.

One has the following crucial property.
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LemMmA 3.2. One has
(6) [0@n(X7),A (v;e)] = [0 @ n(XT), A" (v;¢)] =0,
(7) [0:(n), (0 @ (X T))"] = 2n(w @ n(X ™))" A" (vje), Vn> 1.

Formula (7) holds also in the case w ® n(X~) and A (v;¢), upon replacing 2n
by —2n. In particular (with either + or — throughout)

®) Q) (0 @n(X7))"]
= £2n(0 @ 2(X*))" £ (0 @ (X *)" (1 ® (1. - 7)(X)),

for all n > 1. Finally

®) [0:(v), 2(v)] = 0.
(All of the formulas above are understood on &' (R;V).)

Proof. Formula (6) and formula (9) are clear. As regards formula (7), the
proof obviously goes by induction. It suffices to consider only the case relative
to A"(v;e). The case relative to A™(v;¢) is similar. The step n =1 is obvious.
So, suppose it true up to n, and consider the case n+ 1 (for simplicity we
consider only the +-case): since [, bc] = [a,b]c + b[a, ], we have with a = Q,(v),
b=(w@n(X")" and c= 0w @ n(XT),

[0.(v), (0 © (X "))"]

[0:(v), (@ ®@7(X 7)) |0 @ (X ™) + (0 @ (X)) "[Q:(v), 0 @ 7(XT)]
=20 a(X )" AT (ne)o @ a(X) +2(w @ n(X))"At (v;¢)
=2+ 1)(0@n(X7))"A"(ve),

by virtue of the induction hypothesis and equation (6). Formula (8) is an
immediate consequence of formula (7) and the definitions. This concludes the
proof of the lemma. O

Remark 3.3. Tt is worth noting that, with &2 := (¢?,...,¢2) € R™, the opera-

Y ¥m

tors A" (v;e), A (v;e) and Q,(v) satisfy the following relations:

(AT (v;8), A" (v;8)] = Qu(v) + 1 ® (2 — ) (H) = Q,2(v),
[Q:(v), A" (vie)] = £2(A*(vie) + 1 ® (w2 — 1) (X)) = £2A% (7).

Hence the map w ® 7w, : sh(R) — Endc(9'(R; V) is a representation iff ¢e
{0,1}™. Notice moreover that the functions



268 ALBERTO PARMEGGIANI AND MASATO WAKAYAMA

J
. X iy k
CRCEDICAMCEC S -
/=0

J
k)— k)— i—{ k
o) =Y T (@o(X ) " Yie @ o,

where one chooses cgf())i () =1 and

(k)+ . o
o Gy B (j\ Tw—=¢) T(T1/2
(k) (8)_ 0 (/) o k

C 2 N p— )
b &f i—¢F1/2)  T(w)

I1</<j<w-1,

are solutions to

such that, upon choosing c(()]f).i(s) =g,
)+ Fve —j) TG F1/2) (k)
7O Ey ot Y
(k) o =) TGF1/2) + (k)
(0/ (8) - ]—($1 2) r(Vk) lrb Yo ® Uj ’

as ¢ — 0 in R"™.

We are now ready to study the spectrum of Q, 4 p(v) in terms of w ® =, by
using Lemma 3.2.

THEOREM 3.4. Let v= (vi,...,Vy) € ¥y, and pick &= (e,...,&,) € R".
Let us define Qg 4,8(v;X,Dy):= T4 pQ0,(v;ix,Dy)T; 5. Then the spectrum of
Q. 48(v) in L>(R; V) (but also in &' (R; V), and in S (R;V)) is given in terms
of o ®m by

Spec(Q:. 4.5())

1
:{2n+II §+sk(2j—vk+1);neZ+,0sjgvk—1,1Skgm},

where to — there correspond the even eigenfunctions g(lfzf =o(X") "9 ® v§k>, and
to + there correspond the odd eigenfunctions g@f = o(X) "o, ® vﬁk).

The description holds true also in case ¢ C™, and upon addition of
T4, 3(1®@7ms(1))T; 5, 0 € C™, the k-part of the spectrum being then shifted by a

factor O (with the same eigenfunctions).

Remark 3.5. It follows that

Spec(Q(isl7»~<7i€n1)7/4«3(v)) = SpeC(Q(sl,.u,sm%A,B(V))
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(any choices of +). This follows from the change of index, for an arbitrary k,
given by vy — 1 —j ="

Proof of Theorem 3.4. We may suppose 4 = B= Iy, so that p=w ® 7.
Let us define for 1 <k <m, 0<j<v —1 and ne Z, the following functions
(belonging to V(R' V))

[ = =g @0, 0T = px )"
k)— k k (k)— n k—
;=10 = v e g —p(X*)ﬁ’
Recall that n(X™")v, () = o)

v =0, for any glven k=1,....m (ie. v<k>1 is the
highest weight vector of 7y ). In particular ﬁk =0, whence also f‘A w =0 for
any given ne Z,. It will be also convenient to put f = 0 whenever j > n.

One has, by the same arguments of Lemma 2.8, that
(10) {j;fﬁ)i;n €Z,,0<j<v—1,1<k<m}is a basis of L*(R; V).

One immediately has, for 0 <j < v, — 1,

2

Let us consider for simplicity throughout the sequel of the proof the +-case.
As a consequence of formula (8) above, one has, for n > 1,

_ 1 .
O:,4,8(v; x, Dx) f; ?i (1 Fo+e(2—w+ 1))/?%”.

1 .
(1) Qix DAY = (204 345y~ )74+ 2000~ g

and, in particular, being ﬂkk21+1 0,

1
(12) Q(vxD)fU’ <2n+2+8k(vk—l)>ka)fn, neZ.,.
Let us now set, for 0 </ <w —2 and k=1,...,m,

_ ) )+ . )+
f/n + Z N /-Hn/’ and gkal,n T w1l

(k) +
n—j

coefficients {oc](-n H<j<y—1-, are picked to be o; HH = (—1)"<}1.>, I<j<vw—7.
Since ’ J

where, recall, [, =0 when n<j, for any given 0<s<v,—1, and the

(k) + (k)+
g»k 1,n 1 0 --- 0 ka 1,n
(k)+
g, | 0 f
(13) vi—2,n+1 _ . Vi— 2n+l . VneZ., Vi — 1,...,1’}’1,
(k)-s: * % 1

gO,nJrkal fO n+ve—1
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one has that {g%i} is a complete system of L?(R; V'), and simple computations

show that, by virtue of the choice of the coefficients aj(f(,fi,

1
0.(v; x, Dx)gyf}f = (2n + 3 + e (20 — v + 1)>g£k,)fr

To see that the functions g(/kii are the usual vector-valued Hermite ones, it

suffices to notice that
. n 4\ n—s (k)
Z s o(X7)" 00 ® vy

s=1
SRy s’ k
) Z( s >w(X+)n " ® U5"+>j+x’ =0,

s'=0

+WIQ—1V(

J=1

n
J

whence one immediately gets
k k k)— k
gi = o(X ) 0@ v, gl =X ) Wiy @y
This concludes the proof of the theorem. O

Remark 3.6. One could interpret matters also as follows. Define the
bounded operators T;: L*(R; V) — L*(R; V), j=1,2, by

T, :(}}(?i — above finite linear combination of the (Hermite functions ® v;k)),

and

(

T;: g/l_{ni — above finite linear combination of the ( ﬁ(k)i).

n

Then
T =T,

Notice that 7'} operates in terms of the trivial representation, whereas 7, operates
in terms of the tensor representation.

4. The system L(x,D,) of the introduction (see (1))

In this case, let us take ¥V = C", u=1, and consider a complex N x N
diagonalizable matrix 4. We distinguish two cases: N is even, N is odd.

In the first case, let aq,...,ay € C be the eigenvalues of A, possibly repeated
according to their multiplicity. Organize them in pairs like, say, («;,0on/24/),

1 <j < N/2, and associate with this pattern the partition vﬁﬁ{z) =1(2,2,...,2)
—_———

N/2
of N, and the representation n,ﬁaNn/ 2. Tvect @ Tlvect @ -+ + @ Tyeet. Then, with

N/2
e= (01— oan/241)/2, - (s —an)/2) € CY2and 3= (a1 + anjai1)/2,-- -
(o2 + o) /2) € V2,
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Ut AU, = 22 ) + 205 ),

can, ¢ can,o
and
(14) L(x,Dy) = Uy(Qu0) +1 @ 70 () U
In the second case, we proceed as before: we group the eigenvalues of A4, let them
be a,...,ay_1,ay € C (possibily repeated according to their multiplicity), group
them two-by-two in pairs such as (o, n_1)/247), 1 <j < (N —1)/2, leaving
out the eigenvalue oy, and consider the partition vcan n2. =(2,2,...,2,1)
-1)/2

and the associated representation nﬁﬁm N2 . = Tlyect @ *+ + D Tyect D anld] Notice

\__.q,.___/

(N-1)/2

that myiyiai (1) = 1. Let then & = ((e1 — oqv—1)241)/2, -+ (%v—1)/2 = %N 1)/2 0) e
CV-D/241 and 6 = (o + An-1)/241)/ 25 -5 (Uy—1y/2 + on—1) /2, ) € cV-1/2+1
As before,

Uy 1AUA — pv=1) /2)( )—|—7L'<<N7~1)/2)(1),

can, ¢ can,o

and
(15) L(x, D) = Us(Q:0n ") + 1@ mi ;P () U
Of course, L(x,D,) may also be thought of as

(16) L()C, Dx) = UA Q(l, 17 ceey 1) + 1 ® (ntrivial,zl (‘B e (‘B ntrivial,aw)(l) U,4715
N N

where a;,. .., oy are the eigenvalues of A. The interest in writing L(x, Dy) in the
forms given by (14) or (15) (according to whether the dimension is even or odd,
respectively), resides exactly in writing the matrix A, through a representation
whose irreducible summands are not all frivial, as a combination of suitable
perturbations of images of elements of #(sly(R)) that commute with H.

However, notice that the number of independent parameters in all cases
is exactly the same, that is N, for in case of equation (14) (resp. (15)), one
considers perturbations of the form UA( ®7t,( )+ 1 ®n(1)U!, with (1,5) €
CV2 % CN? (resp. (1,5) e CWV=V/2 % ¢W=D/2+1y " \yhereas in case of equation
(16), one considers perturbations of the form Uy(l1 ® #.(1))U; ", with ze C".

The above argument shows that the spectrum of the family of systems Q(v)
(and the kind of perturbations considered here) is actually parametrized by the
parity of N, and not by the partition v. More precisely, one has the following
remark.

Remark 4.1. With 7e = ngavn/ 2 when N is even, Tean = nﬁ(aﬁ' D2 when N
is odd, respectively, let 7 = n(,) =7 @ - - @ 7, for some ve #y. We think of
n(H) as an N x N-matrix A € Maty(C) whose eigenvalues are then given by the
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;k>:2j—vk+1, and eigenvectors by the vﬁk), 0<j<w—-1, k=1,....m

hence fixing an isomorphism ¥ ~ CV. Let &0 be the complex perturbation
parameters constructed as above by suitably grouping the eigenvalues ac](-k). Then

7Z(H) =4= ncan,s(H) + ncan,é(l)a
whence
Q(W X, Dx) = Qs(‘%an?x; Dx) +1® ncan,5(1)~

It is hence possible to change 7 into 7@, by perturbation, and obtain that the
eigenvalues of the Q(v) are functions only of the perturbation parameters, once
the parity of the size N is fixed. This makes the basis {gon@v/(k)}, the ¢,
being the Hermite functions, the universal one to study the map

(17) Yy x C' x C' 3 (v,6,0) — Specy (g, V>(Qs(v) +m),5(1)) = C,
where / = N/2 when N is even, / = (N —1)/24+ 1 when N is odd.

One naturally generalizes Theorem 2.7 and the above considerations to
systems of the kind

L(x,Dy) = Q:(v;x,Dy) @ m(yr), (1) + A® B

(considered as unbounded operators on L*(R;V ® V') with domain
B?(R; V® V'). Here we take N,N'eN, v=(v,...,vm) €Wy, V =
V.oV ) EYN, £,0€C™, pe R”’ , where (7, V) and (7, V') are two
slp(R)-modules, of (complex) d1mens1on N and N’, respectively, where 4 =
1 ® (n),:(H) + 7(),5(1)) and B = 7,y o (H) + 7y p(1 ), with o, fe C™.

5. A “genuine” infinite-dimensional perturbation

The following example deals with an infinite-dimensional perturbation of
the system. Let us consider an sl(R)-module (7, V), dim¢ V' =N, and let
us define, V=V @ ---®V, being the decomposition into irreducible sum-
mands of V, the bounded operators (in the +-case and —-case, respectively)
ME : L2 (R; Vi) — L2 (R; Vi),

k k k k
M) = AX (RN E + BE(kREE + CE( R )

forneZ,,0</<w—1,k=1,..,m where {4(¢,k)},cz., {Br(/;k)},cz.;
{CEH(4,k)} ez, €47 (Z;C). Then, upon setting

M= (@ M,j) (@M ) (LR V) 2 2Ry,
k=1

the spectrum of the operator (and of all the unitary equivalents of it)

Qv x, D) +M=0(H)QIy +1@nr(H)+M: L*(R; V) L*(R; V),

unbounded
———
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with domain B?(R; V), may be explicitly computed in terms of o ® #, upon
studying a three-term recurrence system. (Of course, one may consider cases
with infinitely many steps, and cases in which the coefficients 4*, Bf have
temperate growth in ne Z,, the resulting operator Q(v;) +M: ¥ (R; V) —
S'(R; V) being then continuous, and defined on a suitable domain when con-
sidered as an unbounded operator in L>(R;V).) In fact, to get the recurrence
that produces the spectrum, write (in the +-case and —-case, respectively)

W/(k)i = Span{h%i} ,

neZ,

m v—1
so that L2 (R; V) @ P wh*
k=1 /=0

Then
bounded - (k
M‘VV/(/\')t — Mki o m(k)i bounded W/(/)i’
R PaGRs . * .
Vr + (R . / 9 ! ) - / + c ) )
Oyt gy W5 NS (R V) w R EN g (R, V)
’ C )
and the eigenvalue equations (for k=1,...,m and 0 </ <v; — 1)
_ (k)£ (R
n A / ) )
(Q(v)+M)u Ju, ue WWENS' (R V)
is solved for non-zero u = C Y= )k /,)1 e S(R; V) (because of ellipticity),

where {¢V") o (W)} e z, =C and /1 e C are determined by the recurrence equations

(AF + CE(4, ) = D) + A (L LNE () + BEL (4,005, (2) = 0,

where C/ ( 1) =0, C!‘Oi(i)eC\{O}, the l&lf,)qi’s are the eigenvalues of the

operator Q(v,), and |C £(1)] — 0 as n — +oo faster than n~?, for any d e Z,,
when 4 is an elgenvalue of Q(vy)+ M (see [4]).

6. A geometrical example

Let us denote by QF(R"):=%(R"; Nc(R")), where A(R"):=
A*(R") ®g C, the (complex-valued) Schwartz space sections of differential forms
on R", and consider the differential complex

0— Q%R 2oL (R ... 2

— Q%L(R") — 0,

where the operator D is defined by

' 1 n
D:Q%(R") — QE''(R"), Do = 7 (doc +) i dx A oc), Vo e Q5 (R,
j=1

d being the usual exterior differentiation. Let x, denote the Hodge-star, with
respect to the usual Euclidean structure of R”, and let Q;,(R") := L*(R"; N'¢(R"))
be the Hilbert space of the L? complex-valued differential forms. Then D
extends to a unbounded operator on Qj,(R") and its L>-adjoint is the complex
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0— Qy(R") = Q) ' (R) % - 2 QY (R") — 0,
defined by (recall that d* = (—1)"®*D*1«, dx,)
k k-1 1 - 0 k
D" :QL(R") — Q5 (R"), Dau=-—|d"a+ xi— Jo |, VoeQo(R").
SR — QU7 (RY) v RPN 5 (R")
Then D* = (D*)* =0. It is elementary to check that on k-forms
DD* +D*D = lzn:(—az T
- 24 Y / 2

Hence for e€ R, on Q,(R") we may consider the following “deformation” of
DD* 4+ D*D,

* ¥ 1 & N < n n
(DD* + D*D), := (22(—0§j +>;,?)> Id+e;<k—2>n§>,
=0

J=1

projection
EREAR N

where H,((”) 1 QL (RY) QY (R"). Let now (M,s) be a compact symplectic
manifold of dimension 2m, m > 1. Let w, be the skew-symmetric bivector field
dual to o (see, e.g., [1] and references therein; for example, when o = d¢& A dx,
then w, = 3/0x A 0/0&), and let wik) : QN (M) x QF(M) — C* (M) be the (—1)*-
symmetric pairing induced by w,, where QF(M) is the space of smooth real-
valued differential k-forms on M. (In the sequel Q*(M) will denote the space of
smooth real-valued differential forms on M.) Choose vy = ¢”/m! as volume
form on M, and define the symplectic Hodge’s star
g1 QK(M) — Q¥ K(M), by the condition f A (x,0) = (WH (B, a))vas.

a

Then #,%, =1d. Following [1], one puts

L: Qk(M) Sa—0A ocer+2(M),
L' = —sx,Ls, : QK (M) 5 00— wy]a e Q52

and
2m rojection
A= (k—mI}):Q"(M)— Q" (M), where I} : Q"(M) ™25 Q5 (M),
k=0

For p e M, we will denote by A, (resp. L,) the map induced by A (resp. L) on
N(T; M).
One has the following important relations

(18) LLUT=A [AL=2L [AL]=-2L"
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Since ¢ and w, are real operators, one is allowed to think of the operators L, L
and A as acting on Qg (M), resp. on Qé(M), just by “declaring” them complex-
linear (here Qg (M), resp. Qi(M), stands for the space of smooth complex-valued
differential forms, resp. k-forms, on M). Relations (18) hold true also in this
case. The map wk) extends to a (—1)k-symmetric pairing (we keep the nota-
tion) wi QL(M) x QL (M) — C*(M; C), by w{(Tk)(ﬁ® b,a®a):= abw&k)(ﬂ, o),
where a,b € C and «, f € QX(M). Tt follows that *,(ox ® a) = a(,a) for all a € C
and o € Q¥(M), whence *, extends to a C-linear map QX (M) — Q2" *(M), and
L" is the (formal) adjoint of L with respect to the Hermitian form on Qg (M)
given by

(o) = JM/)’u*ao-ozj WO (B @)ou, @, € QE(M).

M

DrrFINITION 6.1 (see [1]). Let (7, V) be an sly(R)-module of dimension
< +o0. One says that V' is an sly(R)-module of finite H-spectrum if

« ¥V can be decomposed as the direct sum of eigenspaces of H;

« H has only finitely many distinct eigenvalues.

In view of relations (18), one has the following proposition (see [1]).

PROPOSITION 6.2.  The map Torm : sla(R) — Endc(Qn(M)), defined by
nform(X+) = L7 nform(X_> = L*; nform(H) = A7

defines (Tigorm, Qe-(M)) as an sly(R)-module of finite H-spectrum. Note that
Qé(M) is the eigenspace of A relative to the eigenvalue k — m.

Remark 6.3. 1In [1], the author considered sl,(C) instead of sl,(R). This
gives no problem here.

Let us now fix an arbitrary pe M, and consider the Hilbert space
Hy = Q:(R") ® Ne(T; M) = L*(R"; Ne(R") ® Ne(T;M)). The elements of
H, are of the form (with standard notation) > _; s f1(x)9s(p) dx; ® dy,
with f e L*(R";C) and g;(p) € C, and with x e R" and y = (y1,..., o) local
symplectic coordinates at p. We may fix an inner product in H, by requiring
that the {dx; ® dy,}; ; be an orthogonal basis. We may then introduce the
following natural “Laplacian”

Qp = (DD* + D*D)H ® I/\*C(’];;M) + IQLZ(RH) ®Ap : Hp — Hp

Hence, the spectral properties of Q, in terms of the tensor product representation,
are obtained by Theorem 2.7 (and its corollaries), once a decomposition into
irreducibles of (7rorm, A'c(7,"M)) is found, that is to say, once a partition of
dime Ne(T) M) = 227 is fixed (hereafter, dim = dim¢). Notice that the basis
{h;l‘,zi} of Theorem 2.7 diagonalizes Q, for all e€ R.
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Examples. * When m =1, we have dim /\OC(TP*M) = dim /\ZC(Tp*M) =1
and dim /\IC(T*M) =2, whence the pattern

N (T M) = AT M) 0, N (T M) =5 0.

Hence the partition of 2> we are looking for is v = (2,1,1).
e When m =2, we have dim /\OC(TP*M) = dim A? c(TyM) =1,

dim A% (T; M) =6, dim A'e(T; M) = dim N (T, M) =4,

whence the pattern
L L
Ne(T; M) = /\ZC(T* ) =1m L[ po ) @ Ker Lyl p2 ) 5opd (T M) =0,

Nel(T M) S Nl Ty )Ao, with dime Ker Ly[ 52 (7.0 = 5.
Hence, the partition of 24 we are looking for is v=(3,2,2,2,2,1,1,1,1,1).

Since M is compact we may regard the point p € M as a parameter, and
consider
0= (DD +D*D), ® loxm) + 1o,k @ A,

as an operator acting on L*(R"; N'c(R")) ® Q5 (M), that is the space of finite
linear combinations of tensor-products of elements of L? and of Qg (M), and
hence we may think of the Qg (M)-part as parameters, separately from the
R"-part. This gives no problem for M is compact and by virtue of the Leb-
esgue dominated convergence theorem. (When M is not compact, one may use
Q7 (M).) Again, we can then use Theorem 2.7 (and its corollaries) to write
down the spectrum of Q. Notice, moreover, that we may solve by explicit
Hilbert-space methods, equations such as

Qu=p, e (R Nc(R") ®Qc(M)),

where (with standard notation and with (x;y) € R" x M)

Blx; y) =Y > filx)gs(y) dx @dys, fie L*(R";C), g, C*(M;C).
115, W]k

One may finally proceed further to consider Q as an (unbounded) operator on the
space of sections L*(R" x M; N'c(T*R") ® No(T*M)). However, in this case
things are more delicate, for Q is no longer elliptic, and the spectrum is no longer
discrete.
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