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Abstract. In this paper, as an analogue of the spectrum of a tensor-

triangulated category introduced by Balmer, we define a spectrum of a trian-
gulated category which is not necessarily tensor-triangulated. We apply it for
some triangulated categories associated to a commutative noetherian ring.

1. Introduction.

Classification of thick subcategories has been one of the main approaches in the

studies of triangulated categories for several decades. It has been studied so far in many

areas such as stable homotopy theory, modular representation theory, algebraic geom-

etry, commutative/non-commutative algebra and so on; see [3], [4], [5], [9], [11], [12],

[16], [19], [20], [21] and references therein. In commutative algebra, Hopkins [11] and

Neeman [16] classified thick subcategories of derived categories of perfect complexes over

commutative rings via Zariski spectra. The second author [20] classified thick subcate-

gories of singularity categories of hypersurfaces via singular loci, and it was extended to

complete intersections by Stevenson [19].

On the other hand, there is a beautiful theory initiated by Balmer [2] which is

called tensor-triangular geometry. He introduced the concepts of thick tensor-ideals,

radical thick tensor-ideals and prime thick tensor-ideals of an essentially small tensor-

triangulated category T as analogues of ideals, radical ideals and prime ideals of com-

mutative rings. Then he defined a topology on the set Spc T of prime thick tensor-

ideals of T , which is called the Balmer spectrum of T . He accomplished the following

monumental work in this theory, which enables us to do algebro-geometric studies of

tensor-triangulated categories.

Theorem 1.1 (Balmer). Let T be an essentially small tensor-triangulated category.

Taking the Balmer supports gives a bijection between the radical thick tensor-ideals of T
and the Thomason subsets of Spc T .

The Balmer theory works for arbitrary (essentially small) tensor-triangulated cat-

egories, but by definition, it does not (at least directly) work for those triangulated
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categories which are not tensor-triangulated. Such triangulated categories include two

of the most important triangulated categories in commutative algebra: the bounded

derived category Db(R) of finitely generated R-modules, and the singularity category

Dsg(R) := Db(R)/Dperf(R) of R, where R is a commutative noetherian ring. These tri-

angulated categories are not tensor-triangulated naturally, in the sense that the derived

tensor product −⊗L
R− is not well-defined on them. This is why in the present paper we

make a variant of Balmer’s theory for general (i.e., not necessarily tensor-triangulated)

triangulated categories T . Once we assign a class C of thick subcategories of T , we can

define the topological space EspC T whose underlying set is C. We then call the ele-

ments of EspC T the prime thick subcategories. We prove the following analogous result

to Theorem 1.1.

Theorem 1.2 (Theorem 2.9). Let T be an essentially small triangulated category.

Then there exists a one-to-one correspondence

RadC T
1-1←→ ParamC T .

Let us explain the notation used above: RadC T is the set of radical thick subcat-

egories of T , which are variants of radical thick tensor-ideals of a tensor-triangulated

category, while ParamC T consists of certain subsets of EspC T , which parametrizes the

radical thick subcategories as stated above.

Thus, an important and essential point is to find out a suitable class C for a given

triangulated category. In this paper, we do this for the bounded derived category Db(R)

of finitely generated R-modules, the derived category Dperf(R) of perfect R-complexes,

and the singularity category Dsg(R) of R, where R is a commutative noetherian ring.

For such triangulated categories T and a class of thick subcategories C, we introduce a

pair of maps

EspC T
s // XT ,
S

oo

where we set XDb(R) = XDperf (R) = SpecR and XDsg(R) = SingR. We define tame

thick subcategories of T to be thick subcategories representable by the corresponding

support. A tame thick subcategory is always radical, and it is natural to consider when

the converse holds. Our results include the following.

Theorem 1.3 (Theorems 3.10, 3.14, 3.17, 4.6, 4.10, 4.21 and Corollary 3.11). With

the notation introduced above, the following statements hold.

(1) Let R be a commutative noetherian ring, and T = Dperf(R). Then the following hold

true.

(i) The maps s and S are mutually inverse homeomorphisms.

(ii) The tame thick subcategories coincide with the radical ones.

Furthermore, ParamC Dperf(R) coincides with the set of Thomason subsets of

EspC Dperf(R).
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(2) Let R be a complete intersection local ring of positive Krull dimension. The following

are equivalent.

(i) The topological spaces EspC Db(R) and SpecR have the same Krull dimension.

(ii) The topological spaces EspC Db(R) and SpecR are homeomorphic.

(iii) The maps s and S are mutually inverse homeomorphisms.

(iv) The tame thick subcategories coincide with the radical ones.

(v) The ring R is a regular local ring.

When one of these equivalent conditions holds, ParamC Db(R) coincides with the set

of Thomason subsets of EspC Db(R).

(3) Let R be an excellent complete intersection local ring. Then the following are equiv-

alent.

(i) The topological spaces EspC Dsg(R) and SingR have the same Krull dimension.

(ii) The topological spaces EspC Dsg(R) and SingR are homeomorphic.

(iii) The maps s and S are mutually inverse homeomorphisms.

(iv) The tame thick subcategories coincide with the radical ones.

(v) The ring R is a hypersurface local ring.

When one of these equivalent conditions holds, ParamC Dsg(R) coincides with the

set of Thomason subsets of EspC Dsg(R).

We should remark that recently the first author [13] has also defined a spectrum

of a triangulated category, which is different from a spectrum introduced in the present

paper. More precisely, the spectrum introduced in [13] is defined as the set of irreducible

subcategories of T together with a topology, which is uniquely determined by using

the triangulated structure of T . The advantage of a spectrum introduced in the present

paper is that there is flexibility in the choice of the underlying set; for a given triangulated

category, choosing an appropriate class C makes it more manageable.

This paper is organized as follows. In Section 2, following Balmer’s work [2], for

each triangulated category T and a given class C of thick subcategories, we define the

topological space EspC T . Several analogous notions to Balmer’s theory, such as sup-

ports and radical thick subcategories, are also introduced. Later sections are devoted to

applications to commutative noetherian rings R. The spectra of the derived categories

Db(R),Dperf(R) and intermediate triangulated categories are explored in Section 3, and

the spectrum of the singularity category Dsg(R) is investigated in Section 4 as well.

2. Spectra of triangulated categories.

In this section, following Balmer’s theory [2], we define a topological space for each

triangulated category which is not necessarily tensor-triangulated, and by using it we

give a classification of a certain class of thick subcategories.
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Throughout this section, let T be an essentially small triangulated category. Denote

by Th T the set of thick subcategories of T . Fix a subset C of Th T . A thick subcategory

of T which belongs to this set C is called a prime thick subcategory. First we introduce

a topology on the set C.

Definition 2.1 (cf. [2, Definition 2.1]). For a class E of objects of T , we put

Z(E) := {P ∈ C | P ∩ E = ∅}.

One can easily check that the following statements hold; note that the fact that thick

subcategories are closed under direct summands enables the last one to hold.

• Z(T ) = ∅ and Z(∅) = C.

•
∩

i∈I Z(Ei) = Z(
∪

i∈I Ei) for a family {Ei}i∈I of classes of objects of T .

• Z(E)∪Z(E ′) = Z(E ⊕E ′) for classes E , E ′ of objects of T , where E ⊕E ′ := {X⊕X ′ |
X ∈ E , X ′ ∈ E ′}.

Thus we can put a topology on C by defining the collection of closed subsets to be Z(E).
We then denote this topological space by EspC T and call it the spectrum of T with

respect to C.1

For an object M ∈ T , we define its support by

SppM := Z({M}) = {P ∈ EspC T |M ̸∈ P}.

It directly follows by definition that the equality Z(E) =
∩

M∈E SppM holds for each

E . This shows that the family {SppM}M∈T of closed subsets forms a closed basis of

EspC T . For a thick subcategory X of T , we define its support by

SppX :=
∪

M∈X
SppM = {P ∈ EspC T | X ⊈ P},

which is a specialization-closed subset of EspC T .

For a full subcategory E of T , we denote by thick E the smallest thick subcategory

of T containing E . We provide some basic properties of supports, which says that the

pair (EspC T ,Spp) is a support data for T in the sense of [13].

Remark 2.2. (1) Spp(0) = ∅.

(2) Spp(M [n]) = SppM for M ∈ T and n ∈ Z.

(3) Spp(M ⊕N) = SppM ∪ SppN for M,N ∈ T .

(4) SppM ⊆ SppL ∪ SppN for an exact triangle L→M → N → L[1] in T .

In particular, for a subset W of EspC T , the full subcategory

1For a tensor-triangulated category T , the spectrum of T in our sense does not necessarily coincide

with the Balmer spectrum Spc T of T . To avoid confusion, instead of Spc T we adopt the notation
Esp T , which comes from the Spanish translation espectro of spectrum.
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Spp−1 W := {M ∈ T | SppM ⊆W}

of T is a thick subcategory, which implies that SppX = Spp(thickX ) for each full

subcategory X of T .

Proof. This is a direct consequence of the definition of a thick subcategory.

Indeed, the fact that a thick subcategory contains the zero object shows (1), the fact that

it is closed under shifts shows (2), the fact that it is closed under finite direct sums and

direct summands shows (3), and the fact that it satisfies the 2-out-of-3 property shows (4).

□

The following proposition is proved in [2] for Balmer spectra of tensor-triangulated

categories. We can prove the same statement for our topological space EspC T and the

proof is completely the same.

Proposition 2.3 (cf. [2, Proposition 2.9]). For any prime thick subcategory P of

T , one has

{P} = {Q ∈ EspC T | Q ⊆ P}.

In particular, EspC T is a T0-space.

Proof. Let S be the right-hand side. Then P ∈ S = Z(T \ P). If Z(E) contains
P, then P ∩ E = ∅, and Q ∩ E = ∅ for all Q ∈ S, which shows S ⊆ Z(E). Now the

assertion follows. □

Next, we define the height of a prime thick subcategory and the dimension of T .

Definition 2.4. For a prime thick subcategory P of T , we define the height htP
of P to be the largest number n such that there exists a chain P0 ⊊ P1 ⊊ · · · ⊊ Pn = P of

prime thick subcategories of T . We define the dimension dimC T of T as the supremum

of the heights of prime thick subcategories of T .

Remark 2.5. There is another notion of dimension for a triangulated category,

which is nowadays called the Rouquier dimension; see [18]. Our dimension dimC T of

course depends on the choice of C and it may or may not be equal to the Rouquier

dimension.

Let X be a topological space. Recall that the Krull dimension dimX of X is defined

as the supremum of integers n ≥ 0 such that there exists a chain Z0 ⊊ Z1 ⊊ · · · ⊊ Zn

of irreducible closed subsets of X. Recall also that X is sober if every irreducible closed

subset of X is the closure of exactly one point of X. A typical example of a sober

topological space is the Zariski spectrum SpecR of a commutative ring R.

Remark 2.6. By Proposition 2.3, for two prime thick subcategories P,Q of T one

has {P} ⊊ {Q} if and only if P ⊊ Q. This shows dim T ≤ dimEspC T . If EspC T is

sober, then dimEspC T = dimC T .
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Using the spectrum of T , we can classify a certain class of thick subcategories char-

acterized by EspC T , which we call radical thick subcategories.

Definition 2.7 (cf. [2, Lemma 4.2]). For a thick subcategory X of T , define the

radical of X by

√
X :=

∩
P∈EspC T ,X⊆P

P.

We say that a thick subcategory X is radical if
√
X = X . Denote by RadC T the set of

radical thick subcategories of T .

The following proposition tells us that the support cannot distinguish a thick sub-

category and its radical. Thus to classify thick subcategories by their supports we focus

on the radical thick subcategories.

Proposition 2.8. (1) For M ∈ T one has SppM = ∅ if and only if M ∈
√
0.

(2) For each X ∈ Th T there is an equality Spp
√
X = SppX .

Proof. The first assertion is straightforward from the equality
√
0 =

∩
P∈Esp T P.

To show the second, fix P ∈ EspC T . Then P ∈ SppX if and only if X ̸⊆ P, if and only

if
√
X ̸⊆ P, if and only if P ∈ Spp

√
X . □

We define the parameter set ParamC T as the set of supports of thick subcategories

of T :

ParamC T := {SppX | X ∈ Th T } ⊆ 2EspC T .

The reason why we call this so is that it parametrizes the radical thick subcategories of

T as follows.

Theorem 2.9. There is a one-to-one correspondence

RadC T
Spp // ParamC T .

Spp−1

oo

Proof. Let X ∈ Th T and M ∈ T . The condition SppM ⊆ SppX is equiv-

alent to saying that for each P ∈ EspC T , if P contains X , then P also contains

M . Therefore we have equalities Spp−1(SppX ) =
∩

X⊆P P =
√
X . This shows that

Spp−1 : ParamC T → RadC T is a well-defined map, and that it is a retraction of

the map Spp : RadC T → ParamC T . Applying Proposition 2.8(2), we get equalities

Spp(Spp−1(SppX )) = Spp
√
X = SppX , which completes the proof of the theorem. □

A subset of a topological space X is said to be Thomason if it is the union of some

closed subsets of X whose complements are quasi-compact. We denote by ThomX the

set of Thomason subsets of X. Theorems 2.9 and 1.1 naturally lead us to the following

question.
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Question 2.10. When does the equality ParamC T = Thom(EspC T ) hold?

We will give answers to this question in Sections 3 and 4.

3. Spectra of derived categories.

In this section, we consider what we got in the previous section for derived categories

of commutative noetherian rings, that is, we discuss those spectra.

Throughout this section, let R be a commutative noetherian ring, and let D be a

triangulated subcategory of the bounded derived category Db(R) of finitely generated

R-modules containing the derived category Dperf(R) of perfect R-complexes. The pur-

pose of this section is to investigate EspCD for a certain class of thick subcategories C.

To begin with, we recall the notion of a homological support and its basic properties for

later use.

Definition 3.1. For each object M ∈ D, the homological support of M is defined

by

SuppM := {p ∈ SpecR | H(M)p ̸= 0} = {p ∈ SpecR |Mp ̸∼= 0}.

For a full subcategory X ⊆ D, the homological support of X is defined by

SuppX :=
∪

M∈X

SuppM.

For an ideal I of R, let K(I) stand for the Koszul complex of a system of generators

of I. We can easily verify that the homological support satisfies the following properties.

Remark 3.2. (1) For an ideal I of R it holds that SuppK(I) = V(I).

(2) For M ∈ D the set SuppM is Zariski-closed (i.e., closed in SpecR).

(3) For M ∈ D one has SuppM = ∅ if and only if M ∼= 0 in D.

(4) For M ∈ D one has Supp(M [1]) = SuppM .

(5) For M,N ∈ D there is an equality Supp(M ⊕N) = SuppM ∪ SuppN .

(6) For an exact triangle L → M → N → L[1] in D there is an inclusion SuppM ⊆
SuppL ∪ SuppN .

In particular, for a subset W of SpecR, the full subcategory

Supp−1
D (W ) := {M ∈ D | SuppM ⊆W}

of D is a thick subcategory of D.

For a partially ordered set S, let maxS (resp. minS) be the set of maximal (resp.

minimal) elements of S. We always regard a set of sets as a partially ordered set with

respect to the inclusion relation.
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To define the spectrum of D, we have to fix a class of prime thick subcategories. We

adopt the following definition of prime thick subcategories of D.

Definition 3.3. For X ∈ ThD, we define the set I(X ) of ideals of R by

I(X ) := {I ⊆ R | K(I) ̸∈ X}.

This is well-defined since the condition K(I) ̸∈ X is independent of the choice of a system

of generators of I; see [7, Proposition 1.6.21]. We say that a thick subcategory P of D
is prime if I(P) has a unique maximal element, i.e., #max I(P) = 1. When this is the

case, we denote by s(P) the maximal element of I(P). Let C denote the set of prime

thick subcategories of D. We thus obtain the spectrum EspCD of D with respect to C

by Definition 2.1.

To avoid complication, omitting the subscripts C, we simply write EspD, RadD
and ParamD.

Remark 3.4. The motivation of this definition of a prime thick subcategory of D
comes from [14, Proposition 3.7], which states that I(P) has a unique maximal element

for a prime thick tensor-ideal P of the right bounded derived category D-(R) of finitely

generated R-modules.

Next, we give a typical example of prime thick subcategories. For each prime ideal

p of R, we define the full subcategory S(p) of D by

S(p) := {M ∈ D |Mp
∼= 0}.

Lemma 3.5. Let p ∈ SpecR. Then S(p) is a prime thick subcategory of D with

s(S(p)) = p.

Proof. It is easy to check that

S(p) = Supp−1
D {q ∈ SpecR | q ⊈ p}, (3.5.1)

which especially says that S(p) is a thick subcategory of D. For an ideal I of R, one

has K(I) ̸∈ S(p) if and only if K(I)p ̸∼= 0, if and only if p ∈ SuppK(I) = V(I). Hence

I(S(p)) = {I ⊆ R | p ∈ V(I)}, and we see that max I(S(p)) = {p}. □

Lemma 3.5 says that S assigns to each prime ideal of R a prime thick subcategory

of D. Conversely, s also assigns to each prime thick subcategory of D a prime ideal of R.

Lemma 3.6. For a thick subcategory X of D every maximal element of I(X ) is a

prime ideal of R. In particular, s(P) is a prime ideal of R for any prime thick subcategory

P of D.

Proof. Take a maximal element p of I(X ). Note then that p ̸= R. Consider

elements a, b ∈ R with ab ∈ p. By the octahedral axiom, there is an exact triangle

K(a) → K(ab) → K(b) → K(a)[1] in D. Tensoring K(p) with this, we obtain an exact

triangle K(p+(a))→ K(p+(ab))→ K(p+(b))→ K(p+(a))[1] in D. Since p+(ab) = p,
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the complex K(p+(ab)) does not belong to X . Therefore, either K(p+(a)) or K(p+(b))

is outside X . The maximality of p implies that a ∈ p or b ∈ p. □

Lemmas 3.5 and 3.6 lead us to the construction of a pair of maps of topological

spaces

s : EspD ⇄ SpecR : S.

These maps are basic tools to investigate the structure of EspD by comparison with

SpecR.

It is hard to check from the definition whether a given thick subcategory is prime

or not. We give a useful characterization of prime thick subcategories in terms of their

homological supports.

Theorem 3.7. Assume either (a) D = Dperf(R), or (b) R is a local complete

intersection. Then for a thick subcategory P of D it holds that

P is prime ⇐⇒ SuppP = {q ∈ SpecR | q ̸⊆ p} for some p ∈ SpecR.

When the latter condition holds, one has p = s(P).

Proof. We prove the theorem step by step.

(1) Let W be a specialization-closed subset of SpecR, and let p be a prime ideal of R.

Then it is straightforward that max(W ∁) = {p} if and only if W = {q ∈ SpecR | q ̸⊆ p}.
(2) Let X be a thick subcategory of D. Then max(I(X ) ∩ SpecR) = max I(X ).

In fact, Lemma 3.6 implies there are inclusions max I(X ) ⊆ I(X ) ∩ SpecR ⊆ I(X ). It

remains to note the general fact that for two partially ordered sets A,B with maxB ⊆
A ⊆ B one has maxA = maxB.

(3) For each thick subcategory X of D, the equality I(X ) = {I ⊆ R | V(I) ̸⊆
SuppX} holds. In fact, case (a) follows from [16, Theorem 1.5]. Case (b) will follow if

we show that K(I) ∈ X if and only if V(I) ⊆ SuppX for an ideal I of R and a thick

subcategory X of D. Taking the homological supports shows the ‘only if’ part. For the ‘if’

part, as there exist only finitely many minimal primes of I, we can find a complex M ∈ X
such that V(I) ⊆ SuppM . Since R is assumed to be a local complete intersection, it

follows from [17, Theorem 5.2] that M is proxy small, and by [8, Proposition 4.4] the

Koszul complex K(I) is in thickM , and hence it belongs to X .
(4) For X ∈ ThD one has I(X ) ∩ SpecR = (SuppX )∁. Indeed, for a prime ideal p

of R it holds that V(p) ⊈ SuppX if and only if p ∈ (SuppX )∁. Using (3), we deduce the

equality.

(5) Now let us show the assertion of the theorem. Let P be a thick subcategory

of D, and let p be a prime ideal of R. Then SuppP = {q ∈ SpecR | q ⊈ p} if and

only if max((SuppP)∁) = {p} by (1), if and only if max(I(P) ∩ SpecR) = {p} by (4), if

and only if max I(P) = {p} by (2), if and only if the thick subcategory P is prime with

s(P) = {p}. □

Remark 3.8. The same characterization of prime thick tensor-ideals of Dperf(R)

holds. Indeed, it follows from [2, Corollary 5.6], every prime thick tensor-ideal of Dperf(R)
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is of the form {M ∈ Dperf(R) | Mp
∼= 0} for some p ∈ SpecR. Therefore the thick

subcategory P of Dperf(R) is prime if and only if SuppP = {q ∈ SpecR | q ̸⊆ p} for

some p ∈ SpecR.

Here we consider composition and continuity of the maps s and S.

Corollary 3.9. (1) The maps S and s are order-reversing with s · S = 1. More-

over, S is continuous.

(2) Assume either that D = Dperf(R), or that R is a local complete intersection. Then

s is also continuous, and P ⊆ S(s(P)) = Supp−1
D (SuppP) for any prime thick

subcategory P of D.

Proof. (1) It is directly verified that S, s are order-reversing. Lemma 3.5 shows

s · S = 1. The equality

S−1(SppM) = SuppM (3.9.1)

holds for each M ∈ D, which shows that S is a continuous map.

(2) Fix an ideal I of R and a prime thick subcategory P of D. If K(I) is not

in P, then I belongs to I(P) and is contained in s(P). Conversely, if K(I) is in P,
then V(I) is contained in SuppP. The latter set consists of the prime ideals that are not

contained in s(P) by Theorem 3.7. In particular, s(P) does not contain I. This shows that

s−1(V(I)) = SppK(I), whence s is continuous. The equality S(s(P)) = Supp−1
D (SuppP)

follows by Theorem 3.7 and (3.5.1). □

We may ask when the maps s and S are mutually inverse bijections. Here is an

answer to this question.

Theorem 3.10. (1) One has mutually inverse homeomorphisms

EspDperf(R)
s // SpecR.
S

oo

(2) Let R be a local complete intersection. Then the following mutually inverse bijections

are induced.

max(EspD)
s // min(SpecR).
S

oo

(3) Let R be a local complete intersection of positive Krull dimension. Then the following

are equivalent.

(i) The maps s : EspD ⇄ SpecR : S are mutually inverse bijections.

(ii) The maps s : EspD ⇄ SpecR : S are mutually inverse homeomorphisms.

(iii) One has D = Dperf(R).



1293(269)

Construction of spectra of triangulated categories 1293

Proof. (1) We use Corollary 3.9. It suffices to show that S is surjective. Let

P ∈ EspDperf(R). Then we have S(s(P)) = Supp−1
Dperf (R)

(SuppP) = P, whose last

equality follows from [16, Theorem 1.5].

(2) Again, we use Corollary 3.9. We have only to show that S : min(SpecR) →
max(EspD) is a well-defined surjection. First, let p ∈ min(SpecR). Take a prime thick

subcategory P of D containing S(p). We have s(P) ⊆ s(S(p)) = p, and p = s(P) by

the minimality of p. Therefore P ⊆ S(s(P)) = S(p), and we get P = S(p). Thus

the map S : min(SpecR) → max(EspD) is well-defined. Next, take P ∈ max(EspD).
The inclusion P ⊆ S(s(P)) and the maximality of P show that P = S(s(P)). Choose

a minimal prime p of R contained in s(P). Then P = S(s(P)) ⊆ S(p). Again the

maximality of P implies P = S(p). Thus S : min(SpecR)→ max(EspD) is surjective.
(3) It follows from the assertion (1) that (iii) implies (ii), while it is trivial that (ii)

implies (i). Let us show that (i) implies (iii). Denote by m the maximal ideal of R. Since

dimR > 0, there is a prime ideal p of R strictly contained in m. Set P = thick{K(q) |
q ∈ SpecR, q ⊈ p}. Then we can verify that the equality SuppP = {q ∈ SpecR | q ̸⊆ p}
holds. Theorem 3.7 implies that P is a prime thick subcategory with s(P) = p, whence

P = S(s(P)) = S(p). We have Supp−1
D {m} ⊆ S(p) = P ⊆ Dperf(R).

Take any X ∈ D. Taking a truncation of a projective resolution of X gives rise to an

exact triangle P → X →M [n]⇝ in Db(R), where P is a perfect complex,M is a maximal

Cohen–Macaulay R-module and n is an integer. Let x be a maximal regular sequence

on R. Then x is also a regular sequence on M , and M/xM ∈ Supp−1
D {m} ⊆ Dperf(R).

This shows that M/xM has finite projective dimension as an R-module. It follows from

[7, Exercise 1.3.6] that M ∈ Dperf(R), and we conclude that X ∈ Dperf(R). □

Applying Theorem 3.10(3) to D = Db(R), we immediately obtain the following

result.

Corollary 3.11. Let R be a local complete intersection with dimR > 0. Then

the following are equivalent.

(1) The maps s : EspDb(R)⇄ SpecR : S are mutually inverse bijections.

(2) The maps s : EspDb(R)⇄ SpecR : S are mutually inverse homeomorphisms.

(3) The ring R is regular.

Remark 3.12. If R is an artinian complete intersection local ring, then the maps

s : EspDb(R)⇄ SpecR : S are always mutually inverse homeomorphism. Indeed, write

SpecR = {m}. Let P be a prime thick subcategory of Db(R). Then Theorem 3.7

implies that SuppP = {p ∈ SpecR | p ̸⊆ m} = ∅. This implies P = 0, and thus

EspDb(R) = {0}. It remains to note that S(m) = 0 and s(0) = m.

From now on, we discuss the relationship of radical thick subcategories of D with

tame thick subcategories, which are defined below.
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Definition 3.13. (1) A thick subcategory X of D is called tame if there is a subset

W of SpecR such that X = Supp−1
D W . In this case, W can be taken as a specialization-

closed subset; in fact, it holds that Supp−1
D W = Supp−1

D (Supp(Supp−1
D W )). Denote by

TameD the set of tame thick subcategories of D.
(2) We put X tame := Supp−1

D (SuppX ) for each full subcategory X of D. This is the
smallest tame thick subcategory of D containing X . In this sense, we call it the tame

closure of X .

For a topological space X, we denote by SpclX the set of specialization-closed

subsets of X, that is, the unions of closed subsets of X. The theorem below complements

the bijection given in Theorem 2.9.

Theorem 3.14. There is a diagram of maps of sets

RadD
Spp //

()tame

��

ParamD
Spp−1

oo

S−1

��
TameD

inc

OO

Supp // Spcl(SpecR),
Supp−1

D

oo

s−1

OO

where inc stands for the inclusion map. The horizontal maps are mutually inverse bi-

jections, and the compositions of the maps ending at bottom sets are commutative (in

particular, the composition of the two vertical maps starting from each bottom set is the

identity). Moreover, RadD = TameD if and only if the maps s : EspD ⇄ SpecR : S
are mutually inverse bijections.

Proof. Let us prove the theorem step by step.

(1) We have already got the mutually inverse bijections (Spp,Spp−1) in Theorem 2.9.

(2) Using Remark 3.2(1), we see that W = Supp(Supp−1
D W ) for a specialization-

closed subset W of SpecR. This yields the mutually inverse bijections (Supp,Supp−1
D ).

(3) It is easy to check that there is an equality Supp−1
D W =

∩
p∈W∁ S(p) for any

subset W of SpecR. This shows TameD ⊆ RadD, and we have ()tame · inc = 1.

(4) It is seen from (3.9.1) that S−1(SppX ) = SuppX for a full subcategory X of D,
which shows that S−1 is well-defined. We claim that for a specialization-closed subset

W of SpecR there are equalities

s−1(W ) = Spp{K(p) | p ∈W} = Spp(thick{K(p) | p ∈W}).

Indeed, the second equality follows from Remark 2.2. To show the first equality, pick any

P ∈ s−1(W ) and put p := s(P) ∈W . Then p ∈ I(P), which implies K(p) /∈ P and hence

P ∈ SppK(p). Conversely, pick any p ∈ W and P ∈ SppK(p). Then K(p) /∈ P, which
implies p ∈ I(P). The unique maximality of s(P) shows that s(P) contains p, and we get

s(P) ∈ W since W is specialization-closed. Therefore P belongs to s−1(W ). Thus the

claim follows, which shows that s−1 is well-defined. Since s · S = 1 by Corollary 3.9(1),

we see that S−1 · s−1 = 1.

(5) We have S−1(SppX ) = SuppX = Supp(X tame) for a full subcategory X of

D, which implies S−1 · Spp = Supp ·()tame. Using this equality and the fact that the
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horizontal maps are bijections which we have already seen in (1) and (2), we can easily

deduce ()tame · Spp−1 = Supp−1
D ·S−1.

Finally, let us prove the last assertion of the theorem. The ‘if’ part is easily deduced

from the commutative diagram. To show the ‘only if’ part, assume RadD = TameD.
Then every prime thick subcategory of D is tame, and hence it is in the image of S by

Corollary 3.9(2). □

Now we give a partial answer to Question 2.10.

Corollary 3.15. There are equalities and a one-to-one correspondence

ThDperf(R) = TameDperf(R) = RadDperf(R)
Spp // ParamDperf(R) = Thom(EspDperf(R)).

Spp−1

oo

Furthermore, the maps in the diagram in Theorem 3.14 are all bijections for D =

Dperf(R).

Proof. The Hopkins–Neeman theorem [16, Theorem 1.5] says that all the thick

subcategories of Dperf(R) are tame. It follows from Theorem 3.14 that every tame

thick subcategory of Dperf(R) is radical. Hence we obtain the equalities ThDperf(R) =

TameDperf(R) = RadDperf(R).

Let us show the equality ParamDperf(R) = Thom(EspDperf(R)). The homeo-

morphisms s,S induce mutually inverse bijections between the Thomason subsets of

EspDperf(R) and those of SpecR. Note here that a subset of SpecR is Thomason if and

only if it is specialization-closed. Therefore, for each T ∈ Thom(EspDperf(R)) we have

s(T ) ∈ Thom(SpecR) = Spcl(SpecR), and T = s−1(s(T )) belongs to Param(Dperf(R))

by Theorem 3.14. Conversely, for any U ∈ Param(Dperf(R)) we have S−1(U) ∈
Spcl(SpecR) = Thom(SpecR) by Theorem 3.14 again, whence U = S(S−1(U)) ∈
Thom(EspDperf(R)). We now conclude that ParamDperf(R) = Thom(EspDperf(R)).

Combining Theorem 2.9, we are done. □

Remark 3.16. Recall that the derived category Dperf(R) has the structure of a

tensor-triangulated category, so that Balmer’s theory can be applied to it. The one-to-

one correspondence in Corollary 3.15 is identified with Theorem 1.1 for T = Dperf(R).

Indeed, there are equalities

EspDperf(R) = SpcDperf(R), Spp = supp,

where supp stands for the Balmer support.

Let us show these equalities. The latter one follows from the former one and the

definitions of Spp and supp. The former equality follows from (i) and (ii) below; let P
be a thick subcategory of Dperf(R).

(i) Suppose that P belongs to EspDperf(R). Then P ≠ Dperf(R). As any thick

subcategory of Dperf(R) is a tensor-ideal, so is P. Setting p := s(P), we have P = S(p)
by Theorem 3.10(1). Let X,Y ∈ Dperf(R) be objects such that X ⊗R Y ∈ P. Then

Xp⊗Rp
Yp
∼= 0 in Dperf(Rp), which implies either Xp

∼= 0 or Yp
∼= 0. Hence either X ∈ P

or Y ∈ P holds, and we conclude that P ∈ SpcDperf(R).
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(ii) Suppose that P ∈ SpcDperf(R), and let I, J be maximal elements of I(P).
Then neither K(I) nor K(J) is in P. Since P ∈ SpcDperf(R), we have K(I + J) =

K(I)⊗RK(J) /∈ P. Hence I+J ∈ I(P), and the maximality of I, J shows I = I+J = J .

Thus I(P) has a unique maximal element, and P ∈ EspDperf(R).

We close this section by proving a theorem on the dimension of D, which improves

Theorem 3.10(3).

Theorem 3.17. (1) There is an inequality dimD ≥ dimR.

(2) Consider the following conditions :
(a) dimD = dimR, (b) dimEspD = dimR,

(c) EspD ∼= SpecR, (d) D = Dperf(R).
Then the implications (d) ⇒ (c) ⇒ (b) ⇒ (a) hold. If R is a complete intersection

local ring with positive Krull dimension, then the implication (a)⇒ (d) holds as well.

Proof. (1) The assertion follows from Corollary 3.9(1).

(2) Theorem 3.10(1) shows the implication (d) ⇒ (c), while (b) ⇒ (a) is shown by

Remark 2.6 and (1).

To show (c) ⇒ (b), let f : EspD → SpecR be a homeomorphism. Then EspD is a

sober space since so is SpecR, and we obtain dimEspD = dimD by Remark 2.6. Note

that f({P}) = {f(P)} for each P ∈ EspD. Using Proposition 2.3, we see that P ⊆ Q
in EspD if and only if f(P) ⊇ f(Q). It follows that dimD = dimR, and consequently,

dimEspD = dimR.

Finally, we show the implication (a)⇒ (d), assuming that (R,m) is a local complete

intersection with d := dimR > 0. Take a chain p0 ⊊ · · · ⊊ pd = m of prime ideals of R.

Applying S gives rise to a chain

0 = S(m) = S(pd) ⊊ S(pd−1) ⊊ · · · ⊊ S(p0)

of prime thick subcategories of D. Since D has dimension d, we have htS(pd−1) = 1.

It follows from Corollary 3.9(2) and the fact s(0) = m that s−1(pd−1) = {S(pd−1)}.
Replacing p with pd−1 in the proof of Theorem 3.10(3), we obtain D = Dperf(R). □

4. Spectra of singularity categories.

In this section, we investigate the spectra of singularity categories of commutative

noetherian rings. The flow will go similar to the previous section, while the results which

will be obtained in this section are completely independent.

Throughout this section, we assume that R is a commutative noetherian ring. Recall

that the singularity category Dsg(R) of R is defined as the Verdier quotient

Dsg(R) := Db(R)/Dperf(R).

By definition Dsg(R) is a triangulated category, and we can define its spectrum

EspC Dsg(R) for a given C. The purpose of this section is to explore the structure

of the topological space EspC Dsg(R).
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We denote by SingR the singular locus of R, that is, the set of prime ideals p of

R such that the local ring Rp is singular (i.e., nonregular). We equip SingR with the

relative topology to regard it as a subspace of SpecR. First of all, let us recall the

definition of a singular support, which plays an important role in this section.

Definition 4.1. For an object M ∈ Dsg(R), we define the singular support of M

by

SuppM := {p ∈ SingR |Mp ̸∼= 0 in Dsg(Rp)} = {p ∈ SingR | pdRp
Mp =∞}.

For a full subcategory X ⊆ Dsg(R), we define the singular support of X by

SuppX :=
∪

M∈X
SuppM.

Here we state some basic properties of singular supports, which correspond to

Remark 3.2.

Remark 4.2. (1) For p ∈ SingR it holds that Supp(R/p) = V(p).

(2) For M ∈ Dsg(R) the set SuppM is Zariski-closed.

(3) For M ∈ Dsg(R) one has SuppM = ∅ if and only if M ∼= 0.

(4) For M ∈ Dsg(R) one has Supp(M [1]) = SuppM .

(5) For M,N ∈ Dsg(R) the equality Supp(M ⊕N) = SuppM ∪ SuppN holds.

(6) For an exact triangle L → M → N → L[1] in Dsg(R) it holds that SuppM ⊆
SuppL ∪ SuppN .

In particular, for each subset W of SingR the full subcategory

Supp−1 W := {M ∈ Dsg(R) | SuppM ⊆W}.

of Dsg(R) is a thick subcategory.

We adopt the following definition of prime thick subcategories of Dsg(R). We should

compare this with Definition 3.3. The way to define the set I(X ) is quite different, but

the definition of a prime thick subcategory is similarly done.

Definition 4.3. For each X ∈ Th(Dsg(R)) we define the set I(X ) of ideals of R

by

I(X ) := {I ⊆ R | V(I) ⊆ SingR, R/I ̸∈ X}.

We say that a thick subcategory P is prime if I(P) has a unique maximal element. Denote

by s(P) the maximal element of I(P) and by C the set of prime thick subcategories of

Dsg(R). We obtain a topological space EspC Dsg(R) as defined in 2.1.
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Similarly to the previous section, we simply write EspDsg(R), RadDsg(R) and

ParamDsg(R) by omitting the subscripts C. For each p ∈ SingR we define the full

subcategory S(p) of Dsg(R) by

S(p) := {M ∈ Dsg(R) |Mp
∼= 0 in Dsg(Rp)}.

Analogous statements to Lemmas 3.5 and 3.6 hold true, although the proof is rather

different.

Lemma 4.4. (1) Let p ∈ SingR. Then S(p) is a prime thick subcategory of Dsg(R)

with s(S(p)) = p.

(2) For a thick subcategory X every maximal element of I(X ) belongs to SingR. In

particular, s(P) belongs to SingR for any prime thick subcategory P of Dsg(R).

Thus one obtains a pair of maps

s : EspDsg(R)⇄ SingR : S.

Proof. (1) We easily verify the following, which shows that the subcategory

S(p) of Dsg(R) is thick.

S(p) = Supp−1{q ∈ SingR | q ⊈ p}. (4.4.1)

Since p is in SingR, we have (R/p)p ̸∼= 0 in Dsg(Rp). Hence p belongs to I(S(p)). Any

ideal I belonging to I(S(p)) satisfies R/I ̸∈ S(p), which implies I ⊆ p. Thus, p is a

unique maximal element of I(S(p)).
(2) Pick a maximal element p of I(X ); note p ̸= R. Let a, b ∈ R \ p be elements

with ab ∈ p. Then the ideals p + (a) and p : a strictly contain p. Therefore R/p + (a)

and R/(p : a) ∼= p + (a)/p belong to X by the maximality of p. The exact sequence

0→ p+(a)/p→ R/p→ R/p+(a)→ 0 implies R/p ∈ X , which is a contradiction. Thus

p is prime. As p ∈ I(P), we have V(p) ⊆ SingR, which implies p ∈ SingR. □

The following proposition should be compared with Corollary 3.9. They are similar,

but there are some differences. In particular, the inclusion relations between P and

S(s(P)) are opposite.

Proposition 4.5. (1) The maps S and s are order-reversing with s · S = 1, and

S is continuous.

(2) The map s is also continuous, if either s is injective and SingR is closed, or SingR

is finite.

(3) Suppose that R is a Gorenstein local ring. For any P ∈ EspDsg(R) there is an

inclusion S(s(P)) ⊆ P.

Proof. (1) It is straightforward that S, s are order-reversing maps, while

Lemma 4.4(1) implies s · S = 1.
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(2) First of all, we claim that if SingR is closed and so is s−1(V(p)) for each p ∈
SingR, then s is continuous. Indeed, write SingR = V(I) with an ideal I of R. Each

closed subset of SingR is of the form V(J)∩SingR = V(I+J), where J is an ideal of R.

Let p1, . . . , pn be the minimal primes of I+J . Then for each i the prime ideal pi is in the

singular locus of R, and s−1(V(pi)) is closed by assumption. Hence s−1(V(J)∩SingR) =∪n
i=1 s

−1(V(pi)) is also closed, and the claim follows.

Now, assume that s is injective. Then s is a bijection with s−1 = S. Fix P ∈
EspDsg(R). We have

SuppP = SuppS(s(P)) = {q ∈ SingR | q ̸⊆ s(P)}

by (4.4.1) and Remark 4.2(1). Take any p ∈ SingR. Then P ∈ s−1(V(p)) if and only

if p ⊆ s(P). Also, P ∈ Spp(R/p) if and only if R/p /∈ P, and in this case p ∈ I(P) and
hence p ⊆ s(P). If p ⊆ s(P) and R/p ∈ P, then p ∈ V(p) = Supp(R/p) ⊆ SuppP, which
gives a contradiction. Consequently, we obtain s−1(V(p)) = Spp(R/p) for all p ∈ SingR.

The above claim shows that s is continuous.

Next, assume that SingR is a finite set. Then, in particular, SingR is a closed subset

of SpecR, and by the above claim it suffices to show that for each p ∈ SingR one has

s−1(V(p)) =
∪

q∈V(p)

Spp(R/q)

because by assumption the union is finite and hence it is closed. Note that each q ∈ V(p)

is in the singular locus of R. A prime thick subcategory P of Dsg(R) belongs to the right-

hand side of the above equality if and only if R/q /∈ P for some q ∈ V(p), if and only if

there exists a prime ideal q of R such that p ⊆ q ∈ I(P), if and only if p ⊆ s(P), if and
only if P belongs to the left-hand side of the above equality.

(3) Consider the thick subcategory X := thick{R/p | p ∈ SingR, p ̸⊆ s(P)} of

Dsg(R). We observe that X is contained in P and that the equality SuppX = {p ∈
SingR | p ̸⊆ s(P)} holds. Therefore, R/p belongs to X for every p ∈ SuppX . Since

R is a Gorenstein local ring, we can apply [20, Corollary 4.11] to get the equality X =

Supp−1(SuppX ), whose right-hand side coincides with S(s(P)) by (4.4.1). □

Let R be a local ring with residue field k. For M ∈ Db(R), we define its complexity

by

cxR M := inf{c ∈ Z≥0 | dimk Ext
n
R(M,k) ≤ rnc−1 for some r ∈ R and for all n≫ 0}.

We refer the reader to [1, Subsection 4.2] for fundamental properties of this numerical

invariant. Since cxR P = 0 for P ∈ Dperf(R), the complexity is well-defined on the

isomorphism class of each object of Dsg(R). Now we state and prove the following

theorem, which should be compared with Theorem 3.10.

Theorem 4.6. Let R be a local ring with closed singular locus and admitting a

complex of finite positive complexity (e.g., let R be a singular excellent local complete

intersection). The following are equivalent.
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(1) The maps s : EspDsg(R)⇄ SingR : S are mutually inverse bijections.

(2) The maps s : EspDsg(R)⇄ SingR : S are mutually inverse homeomorphisms.

(3) The ring R is a hypersurface.

Proof. The implication (2) ⇒ (1) is clear.

We show the implication (1) ⇒ (3). Let C be the full subcategory of Dsg(R) con-

sisting of complexes with finite complexity. Then C is a thick subcategory, and C ̸= 0

by assumption. If C does not contain the residue field k of R, then I(C) contains the

maximal ideal m of R, that is, C is a prime thick subcategory with s(C) = m. Hence

C = S(s(C)) = S(m) = 0, which gives a contradiction. Thus k is in C, and R is a

complete intersection by [10, Theorem 2.3]. There is a finitely generated R-module M

with complexity 1 by [6, Proposition 2.2]. The full subcategory C′ consisting of objects

of Dsg(R) with complexity at most 1 is thick and nonzero. An analogous argument as

above shows k ∈ C′. Therefore, R is a hypersurface.

Finally, we prove the implication (3)⇒ (2). In view of (1) and (2) of Proposition 4.5,

it suffices to show that S is surjective. We first claim that

S(p) = {X ∈ Dsg(R) | R/p ̸∈ thickX}

for each p ∈ SingR. Indeed, for each X ∈ Dsg(R), one has X ̸∈ S(p) if and only if

Xp ̸∼= 0, if and only if V(p) ⊆ SuppX, if and only if Supp(R/p) ⊆ SuppX. Since R is a

local hypersurface, the last condition is equivalent to saying that R/p ∈ thickX by [20,

Theorem 6.8]. Thus the claim follows.

Let P be a prime thick subcategory of Dsg(R). Setting p = s(P), we have S(p) =
S(s(P)) ⊆ P by Proposition 4.5(3). Take any object X ∈ P. Then thickX is contained

in P and R/p = R/s(P) does not belong to P, which yields R/p /∈ thickX. The above

claim implies that X belongs to S(p), and we obtain S(p) = P. It follows that S is

surjective, which completes the proof of the assertion. □

Remark 4.7. There is a case where R is not a hypersurface but s,S give mutually

inverse homeomorphisms. For instance, let R be a Cohen–Macaulay local ring with quasi-

decomposable maximal ideal (in the sense of [15]) which is locally a hypersurface on the

punctured spectrum. Then, by [15, Theorem 4.5] every thick subcategory of Dsg(R) is

of the form Supp−1 W with W a specialization-closed subset of SingR, even if R is not

a hypersurface. Hence, the same argument as above proves what we want. For such a

ring R, the existence of complexes of finite positive complexity fails.

Next, as we did in the previous section, we introduce tame thick subcategories of

Dsg(R) and relate them with radical ones. Most of the arguments in the previous section

does work for Dsg(R) just by replacingD, SuppD,Spec,K(p) with Dsg(R), Supp,Sing, R/p

respectively. We will give definitions, properties, results, and proofs that are essentially

different from the ones given in the previous section.

Definition 4.8. A thick subcategory X of Dsg(R) is said to be tame if there

exists a subset W of SingR such that X = Supp−1 W . Denote by TameDsg(R) the set

of tame thick subcategories of Dsg(R). We put X tame := Supp−1(SuppX ) for each full
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subcategory X of Dsg(R). Note that X tame is the smallest tame thick subcategory of

Dsg(R) containing X , and we call X tame the tame closure of X .

Proposition 4.9. (1) For W ⊆ SingR one has Supp−1(Supp(Supp−1 W )) =

Supp−1 W =
∩

p∈W∁ S(p).

(2) For a full subcategory X of Dsg(R) it holds that S−1(SppX ) = SuppX =

Supp(X tame).

(3) For a specialization-closed subset W of SingR the equality s−1(W ) =

Spp(thick{R/p | p ∈ W}) holds. If R is a Gorenstein local ring, then the equal-

ity s−1(W ) = Spp(Supp−1 W ) also holds.

Proof. The only statement essentially different from what we got in the previous

section is the latter assertion of (3), so we only give a proof of it. Let P be a prime

thick subcategory of Dsg(R), and set p := s(P). If P ∈ s−1(W ), then p ∈ W and

Supp(R/p) = V(p) ⊆ W as W is specialization-closed. Hence R/p ∈ Supp−1 W . We

have R/p /∈ P since p ∈ I(P). Thus P ∈ Spp(R/p) ⊆ Spp(Supp−1 W ). Conversely,

suppose P ∈ Spp(Supp−1 W ). Then P ∈ SppX for some X ∈ Supp−1 W . If Xp
∼= 0,

then by Proposition 4.5(3) we get X ∈ S(p) = S(s(P)) ⊆ P, which implies P /∈ SppX,

a contradiction. Therefore Xp ̸∼= 0, which gives p ∈ SuppX ⊆ W . Thus s(P) =

p ∈ W , and we obtain P ∈ s−1(W ). Now we conclude that the equality s−1(W ) =

Spp(Supp−1 W ) holds. □

We should compare the following Theorem 4.10 with Theorem 3.14.

Theorem 4.10. Suppose that R is a Gorenstein local ring. Then there is a diagram

of maps of sets

RadDsg(R)
Spp //

()tame

��

ParamDsg(R)
Spp−1

oo

S−1

��
TameDsg(R)

inc

OO

Supp
// Spcl(SingR)

Supp−1

oo

s−1

OO

The horizontal maps are mutually inverse bijections, and the compositions of the maps

ending at bottom sets are commutative. Furthermore, RadDsg(R) = TameDsg(R) if and

only if the maps s : EspDsg(R)⇄ SingR : S are mutually inverse bijections.

Proof. The only statement essentially different from Theorem 3.14 is the new

commutativity relations Spp ·inc = s−1 · Supp and inc · Supp−1 = Spp−1 ·s−1, but the

former follows from the latter and the two horizontal one-to-one correspondences in the

diagram. Take any W ∈ Spcl(SingR). Then we have

(inc · Supp−1)(W ) = Supp−1 W = (Spp−1 · Spp)(Supp−1 W ) = (Spp−1 ·s−1)(W ),

where the last equality follows from Proposition 4.9(3). We conclude that inc ·Supp−1 =

Spp−1 ·s−1. □
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The following result corresponds to Corollary 3.15, which also gives a partial answer

to Question 2.10.

Corollary 4.11. Let R be a local hypersurface with closed singular locus. One

then has the following equalities and one-to-one correspondence, and the maps in the

diagram in Theorem 4.10 are all bijections.

ThDsg(R) = TameDsg(R) = RadDsg(R)
Spp // ParamDsg(R) = Thom(EspDsg(R)).

Spp−1

oo

Proof. It follows from [20, Main Theorem] that every thick subcategory of

Dsg(R) is tame. It is easy to see that a subset of SingR is Thomason if and only if

it is specialization-closed. Now essentially the same argument as in the proof of Corol-

lary 3.15 works. □

Next, we further study prime thick subcategories of Dsg(R). We introduce the

following notion.

Definition 4.12. For a thick subcategory X of Dsg(R), we define the tame interior

Xtame of X as the largest tame thick subcategory of Dsg(R) contained in X .

In the case where R is a Gorenstein local ring, one can describe tame interiors

explicitly as follows.

Lemma 4.13. Let R be a Gorenstein local ring. For a thick subcategory X of

Dsg(R) one has

Xtame = thick{R/p | p ∈ SingR and V(p) ∩max I(X ) = ∅}.

Proof. Let Y be the right-hand side. The set W := {p ∈ SingR | V(p) ∩
max I(X ) = ∅} is a specialization-closed subset of SingR, and Y is a tame thick sub-

category with singular support W by [20, Corollary 4.11]. If p ∈ SingR is such that

R/p /∈ X , then p ∈ I(X ) and V(p) ∩max I(X ) ̸= ∅. Therefore, SuppR/p = V(p) is not

contained in W , which shows that R/p is not in Supp−1 W = Y. Thus, Y is contained

in X .
It remains to show the maximality of Y, and for this, it suffices to verify that if

p ∈ SingR is such that Supp−1 V(p) is contained in X , then Supp−1 V(p) is contained in

Y. Assume that Supp−1 V(p) is not contained in Y. Then V(p) is not contained in W ,

and we find an element q ∈ V(p) such that V(q) ∩max I(X ) ̸= ∅. Hence p is contained

in some r ∈ max I(X ). Then R/r ∈ Supp−1 V(p) but R/r ̸∈ X , which is a contradiction.

Consequently, Supp−1 V(p) is contained in Y, and we are done. □

We obtain a characterization of the prime thick subcategories of Dsg(R) in terms of

tame interiors.

Proposition 4.14. Let R be a Gorenstein local ring. A thick subcategory X of

Dsg(R) is prime if and only if Xtame = S(p) for some p ∈ SingR. When this is the case,

one has s(X ) = p.
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Proof. Suppose that X is a prime thick subcategory of Dsg(R). Set p = s(X ).
Proposition 4.5(3) implies that S(p) is contained in X , while S(p) is tame by (4.4.1).

Hence S(p) is contained in Xtame. Let q ∈ SingR be such thatV(q)∩max I(X ) = ∅. Then
q is not contained in p, and R/q is in S(p). Using Lemma 4.13, we obtain Xtame = S(p).

Conversely, assume Xtame=S(p). Then the equality (Supp(Xtame))
∁=(SuppS(p))∁

holds, which gives

{q ∈ SingR | V(q) ∩max I(X ) ̸= ∅} = {q ∈ SingR | q ⊆ p}

by Lemma 4.13 and (4.4.1). The right-hand side has a unique maximal element, which is

p. Note that every maximal element of I(X ) is also maximal in the left-hand side. Thus

p is the only maximal element of I(X ), which means that X is a prime thick subcategory

with s(X ) = p. □

Except trivial examples S(p), it is difficult in general to find prime thick subcat-

egories of Dsg(R). Our next aim is to provide methods to construct new prime thick

subcategories from given or trivial ones.

Proposition 4.15. Let R be a Gorenstein local ring. Let P, Q be prime thick

subcategories of Dsg(R).

(1) Assume P ⊆ Q and s(P) = s(Q). Then any thick subcategory X with P ⊆ X ⊆ Q is

a prime thick subcategory of Dsg(R) satisfying s(X ) = s(Q).

(2) If s(P) ⊆ s(Q), then P ∩ Q is a prime thick subcategory of Dsg(R) satisfying s(P ∩
Q) = s(Q).

Proof. (1) There are inclusions Ptame ⊆ Xtame ⊆ X ⊆ Q. By Proposition 4.14 we

have Ptame = S(s(P)) = S(s(Q)) = Qtame, which is the largest tame thick subcategory

contained in Q. Therefore, Xtame = Ptame = S(s(P)). Applying Proposition 4.14 again,

we see that X is prime and s(X ) = s(Q).
(2) Proposition 4.14 implies Qtame = S(s(Q)) ⊆ S(s(P)) = Ptame. As Qtame ⊆ Q

and Qtame ⊆ Ptame ⊆ P, we get Qtame ⊆ P ∩ Q ⊆ Q. It follows from (1) that P ∩ Q is

prime and s(P ∩Q) = s(Q). □

We introduce the notion of covers to state our next results.

Definition 4.16. Let T be a triangulated category. Let X ,Y be thick subcate-

gories of T . Then we say that Y is a cover of X if Y properly contains X and there are

no thick subcategories Z of T with X ⊊ Z ⊊ Y.

It is unclear in general whether a cover of a given thick subcategory exists or not.

The following proposition gives us sufficient conditions for the existence of covers.

Proposition 4.17. Let R be either

• a complete intersection which is a quotient of a regular local ring, or

• a Cohen–Macaulay local ring with quasi-decomposable maximal ideal which is locally

a hypersurface on the punctured spectrum.
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Then the zero subcategory 0 of Dsg(R) admits a cover. If in addition SingR is finite,

then S(p) admits a cover as well for each p ∈ SingR.

Proof. In either case, there is an order isomorphism between Th(Dsg(R)) and the

set of specialization-closed subsets of a noetherian topological space X; see [15], [19]. By

[13, Lemma 2.9], it restricts to an order isomorphism between the set T := {thickM |
M ∈ Dsg(R)} and the set of closed subsets of X. Thus T satisfies the descending chain

condition (with respect to the inclusion relation), and we can take a minimal element

X := thickM of T \ {0}. We can easily check that X is minimal among all nonzero

thick subcategories, i.e., X is a cover of 0. The last assertion of the proposition is shown

similarly. □

We obtain a sufficient condition for a given thick subcategory to be prime, using the

notion of covers.

Proposition 4.18. Let R be a Gorenstein local ring. Let X be a non-tame thick

subcategory of Dsg(R) and p ∈ SingR. If X is a cover of S(p), then X is a prime thick

subcategory of Dsg(R) with s(X ) = p.

Proof. By (4.4.1), the thick subcategory S(p) is tame. As S(p) is contained in

X and X is not tame, we have S(p) ⊆ Xtame ⊊ X . The assumption that X is a cover

of S(p) implies S(p) = Xtame. It follows from Proposition 4.14 that X is a prime thick

subcategory of Dsg(R) such that s(X ) = p. □

As another application of covers, we get criteria for a Cohen–Macaulay local ring to

be a hypersurface.

Theorem 4.19. Let R be a singular Cohen–Macaulay local ring possessing a com-

plex of finite positive complexity. Assume that 0 admits at least one cover (e.g., R is a

complete intersection which is a quotient of a regular local ring). Then the following are

equivalent.

(1) R is a hypersurface.

(2) Every cover of 0 is tame.

(3) There is a tame cover of 0.

Proof. The implication (1) ⇒ (2) follows from [20, Theorem 6.8], while the

implication (2)⇒ (3) is trivial. Let us show the implication (3)⇒ (1). We denote by m

the maximal ideal of R, by k = R/m the residue field of R, and put d = dimR. Let X be

a tame cover of 0. Then X = Supp−1{m} since it is minimal among the nonzero tame

thick subcategories of Dsg(R). Again the minimality of X shows that for each nonzero

object X ∈ X one has thickX = X = Supp−1{m}, which contains k.

By assumption, there exists a maximal Cohen–Macaulay R-module M with finite

positive complexity. Take a maximal regular sequence x = x1, . . . , xd on R, and set N =

M/xM . Then N is an R-module of finite length and with finite positive complexity. As

N belongs to Supp−1(m), the above argument says that thickN contains k. Since the full

subcategory of objects of Dsg(R) with finite complexity is thick, k has finite complexity.
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Therefore, R is complete intersection by [10, Theorem 2.3] and cxR C = cxR k = codimR

for any 0 ̸= C ∈ Dsg(R). It follows from [6, Proposition 2.2] that there is a finitely

generated R-module L with complexity 1. Then codimR = cxR L = 1, which means

that R is a hypersurface. □

Remark 4.20. Let (R,m) be a Gorenstein singular local ring. If s−1(m) consists

only of S(m) = 0, then Supp−1{m} is a unique cover of 0. Indeed, let X ≠ 0 be a thick

subcategory of Dsg(R). If Xtame = 0, then X ∈ s−1(m) by Proposition 4.14, and X = 0.

This contradiction shows Xtame ̸= 0. As m ∈ Supp(Xtame),

0 ⊊ Supp−1{m} ⊆ Supp−1 Supp(Xtame) = Xtame ⊆ X .

This proves that Supp−1{m} is a unique cover of 0. In particular, every cover of 0 is

tame. By Theorem 4.19, we obtain another proof of Theorem 4.6 in the Gorenstein case.

Finally, we prove a result corresponding to Theorem 3.17, which is an application

of Theorem 4.19.

Theorem 4.21. (1) One has the inequality dimDsg(R) ≥ dimSingR.

(2) Consider the following four conditions.
(a) dimDsg(R) = dimSingR. (b) dimEspDsg(R) = dimSingR.

(c) EspDsg(R) ∼= SingR. (d) R is a hypersurface.
Then the implications (c) ⇒ (b) ⇒ (a) hold. The implication (d) ⇒ (c) holds if R

is a singular local ring with closed singular locus. The implication (a) ⇒ (d) holds if

R is a Gorenstein local ring with closed singular locus possessing a complex of finite

positive complexity.

Proof. (1) Proposition 4.5(1) shows the assertion.

(2) It is clear that (c) implies (b), while it follows from (1) and Remark 2.6 that

(b) implies (a). If R is local and SingR ̸= ∅ is closed, then Theorem 4.6 shows that (d)

implies (c).

Let us show that (a) implies (d) under the assumption that (R,m) is a Gorenstein

local ring with closed singular locus possessing a complex of finite positive complexity.

Set n := dimDsg(R) = dimSingR. Take a chain p0 ⊊ · · · ⊊ pn = m in SingR, and apply

S. We get a chain

0 = S(m) = S(pn) ⊊ S(pn−1) ⊊ · · · ⊊ S(p0)

in EspDsg(R). As dimDsg(R) = n, we have htS(pn−1) = 1. Fix a prime thick sub-

category P of Dsg(R) with htP = 1. Then P is a cover of S(m) = 0. If P is not

tame, then P ∈ s−1(m) by Proposition 4.18. Hence S(pn−1) ∩ P ∈ s−1(m) by Propo-

sitions 4.15(2) and 4.5(1). As S(pn−1) is tame by (4.4.1), it is not equal to P. Thus

S(pn−1) and P are distinct prime thick subcategories of height 1, which forces us to

have S(pn−1) ∩ P = 0. Similarly to the last paragraph of the proof of Theorem 3.10,

for a maximal Cohen–Macaulay R-module M in P and a maximal regular sequence x

on R, we have M/xM ∈ S(pn−1) ∩ P = 0, and M ∼= 0 in Dsg(R), whence P = 0, a
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contradiction. Thus any height 1 prime thick subcategory of Dsg(R) is tame, and so is

every cover of 0. It follows from Theorem 4.19 that R is a hypersurface. □
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