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Abstract. Let U; = Uy (g) be the negative part of the quantum group
associated to a finite dimensional simple Lie algebra g, and o : g — g be the
automorphism obtained from the diagram automorphism. Let g7 be the fixed
point subalgebra of g, and put U, = Ug (g9). Let B be the canonical basis

of U, and B the canonical basis of U_". ¢ induces a natural action on B, and
we denote by B? the set of o-fixed elements in B. Lusztig proved that there
exists a canonical bijection B ~ B by using geometric considerations. In this
paper, we construct such a bijection in an elementary way. We also consider
such a bijection in the case of certain affine quantum groups, by making use
of PBW-bases constructed by Beck and Nakajima.

Introduction.

0.1. Let X be a Dynkin diagram with vertex set I, and g the semisimple Lie
algebra associated to X. We denote by U, = U,(g) the quantum enveloping algebra of
g, and by U™ its negative part, which are associative algebras over Q(g). Let W be the
Weyl group of g, and wo the longest element of W. Let h = (41,...,%,) be a sequence
of i € I such that wy = s;, - -+ s;, gives a reduced expression of wg, where s;(i € I) are
simple reflections in W. For each h as above, there exists a basis 2p of U, called the
PBW-basis of U . Put A = Z]g, q~ 1], and let AU, be Lusztig’s integral form of U, .

We consider the following statements.

(0.1.1)

(i) The Z[g]-submodule of U, generated by 2y is independent of the choice of h,
which we denote by 2z (00).

(ii) The Z-basis of Lz (0)/q.%Lz(0) induced from 2}, is independent of the choice of
h.
(iii) For each h, PBW-basis 2}, gives rise to an A-basis of AU, .
We also consider a weaker version of (iii),

(iii") For each h, any element of 2}, is contained in AU, .

The canonical basis B of U, was constructed by Lusztig [L2], [L3] by using a
geometric method. It is known that it coincides with the global crystal basis of Kashiwara
[K1].

The statement (0.1.1) can be verified in general by making use of the canonical basis
or Kashiwara’s global crystal basis.
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0.2. We are interested in an elementary construction of canonical bases, in the
sense that we don’t appeal to Lusztig’s geometric theory of canonical bases nor Kashi-
wara’s theory of crystal bases. We shall construct canonical bases (as discussed in [L2]),
by making use of PBW-basis, based on the properties (0.1.1). Actually, in their the-
ories, canonical bases or crystal bases are constructed independently from PBW-bases.
However those constructions look like a huge black box, and it is not easy to trace the
construction even in the small rank cases. On the other hand, the construction of PBW-
bases is more explicit, the parametrization is easy, and they fit to direct computations.
So it is important to express canonical basis in terms of PBW-bases, which is the problem
closely related to the elementary construction of canonical basis.

In the case where X is simply laced, the verification of (0.1.1) is rather easy. In the
non-simply laced case, the problem is reduced to the case of type Bs or Gs. In the case
of Bs, the properties (i) and (iii) were verified by [L1], by computing the commutation
relations of root vectors in the case of type B, and furthermore by applying the method
of Kostant on the Z-form of Chevalley groups in the case of type G. Later [X1] gave a
proof of (iii) similar to the case of By. But in any case, it requires a hard computation.
In [X2], Xi computed, in the case of By, the canonical basis of U, explicitly in terms
of PBW-basis. The property (ii) follows from his result. But the property (ii) for G is
not yet verified (in an elementary method).

If we assume (i) and (iii) in (0.1.1), one can construct the “canonical basis”, which
is only independent of h, up to £1. We call them the signed basis of U_". Thus in the
non-simply laced case, one can construct the signed basis.

0.3. Assume that X is simply laced, and let o be a graph automorphism of X.
We denote by I the set of orbits in I under the action of ¢ : I — I. Then ¢ determines
a Dynkin diagram X whose vertex set is given by I. X corresponds to the o-fixed
point subalgebra g7 of g, and we denote by U, = U,(g7) the corresponding quantum
enveloping algebra, and U, its negative part. Let B be the canonical basis of U, . Then
o permutes B, and we denote by B? the set of o-fixed elements in B. We also denote by
B the set of canonical basis of U, . In [L4] (and in [L3]), Lusztig proved that there exists
a canonical bijection between B? and B, based on geometric considerations of canonical
basis.

In this paper, we construct the bijection B X B in an elementary way. We assume
that o is admissible, namely for n € I, if i, j € n with ¢ # j, then 4 and j are not joined in
X. Let € be the order of 0. We assume that £ = 2 or 3 (note that if X is irreducible, then
e =2or 3). Let F be the finite field Z/¢Z, and put A’ = F[q, ¢~ '] = A/eA. Let AU, 7
be the subalgebra of AU, consisting of o-fixed elements, and consider the A’-algebra
AU, 7 =AU 7 @a A’. Let J be the A’-submodule of AU, 7 consisting of elements
of the form } , _o'(z) for x € AU, . Then J is a two-sided ideal of o-U_ 7, and we
denote by V, the quotient algebra A/Uq’*” /J. We define A/Q; similarly to A/U;. We
can prove the following result (Proposition 1.20 and Corollary 1.21).

THEOREM 0.4.  Assume that (iii) in (0.1.1) holds for AU, and (iii’) holds for
AU, . Then we have an isomorphism of A’-algebras

aU; =V, (0.4.1)
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Moreover (iii) holds for AU, .

By Theorem 0.4, one can define the signed basis for U, by assuming (iii’). But in
the case of Ga, we have a more precise result (Proposition 1.23), namely

ProposITION 0.5.  Let U, be of type Go. Then the ambiguity of the sign can be
removed in the signed basis, hence (ii) of (0.1.1) holds for U, .

(0.4.1) gives a surjective map a- U7 — a/U, combined with the natural surjection
AU, 7 — V,. This map is compatible with PBW-bases, hence induces a natural map
B? — B, which is shown to be bijective (see Remark 1.24). Thus we can recover Lusztig’s
bijection B° X B by an elementary method.

0.6. In Beck and Nakajima [BN], PBW-bases were constructed for the affine
quantum enveloping algebras U_". They showed that an analogous property of (iii’)
holds for those PBW-basis, and that of (iii) holds if the corresponding diagram X is
simply laced. We apply the previous discussion to the case where X is simply laced of
type A, | (n > 1), DY (n > 4), E{" with ¢ = 2, and D{" with & = 3. Then X is
twisted affine of type Dflz, Aéi)_g, Eéz) and Df’), respectively (under the notation in
[Ka, 4.8]). We have (Corollary 2.17)

THEOREM 0.7.  Assume that X is twisted of type Dg), Agi)_l, EéQ) or Df). Then
(iii) holds for U, . Moreover the surjective map a-U, " — a/ U, gives a natural bijection

q
B’ ~B.

REMARK 0.8. Assume that g is an affine Lie algebra, and go the associated finite
dimensional subalgebra of g. We consider the automorphism ¢ : g — g. In order to
apply the construction of PBW-basis in [BN] to our o-setting, we need to assume that
o leaves gg invariant. Then g7 is necessarily twisted affine type. Our discussion can not
cover the case where g7 is untwisted type.

0.9. As mentioned in 0.3, Lusztig has given a canonical bijection between the
set of o-stable canonical bases of U, and the set of canonical bases of U, . A closely
related problem for crystal bases was also studied by many researchers, such as Naito
and Sagaki [NS], Savage [S]. However those results are concerned with the level of
the parametrization, since there exists no direct relationship between U7 and U, . The
main observation in our work is that if we replace A = Z[q, ¢ '] by A’ = (Z/eZ)[q,q 7],
we obtain a natural surjective map from AU 7 to oA-U, as A’-algebras. This has an
advantage that we can compare directly the algebra structure of U, and of U, 7, not
only the correspondence of bases. For example, the following is an easy consequence of
our results. (Notations are as in Section 1 for the Dynkin case. A similar result also
holds for the affine case.)

THEOREM 0.10.  Let b(c,h) be a canonical basis of U, , and b(c, h) the correspond-
ing o-stable canonical basis of U, . We write them as
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b(c,h) = L(c,h) + > aaL(d,h),
d>c

b(c,h) = L(c,h) + > aly L(d’, h),
d’>c

with aly,,aa € qZ[q]. If L(d’, h) is the o-stable PBW-basis corresponding to L(d, h), then
we have al, = aq (mod ¢).

Some examples of Theorem 0.10 for small rank cases were computed in [MNZ].

This research has grown up from the question, concerning the elementary construc-
tion of canonical bases, posed by Nakajima in his lecture note [N] on the lectures at
Sophia University, 2006. The authors are grateful to him for his helpful suggestions.

1. PBW-bases and canonical bases.

1.1. In this paper, we understand that a Cartan datum is a pair X = (I,( , )),
where (, ) is a symmetric bilinear form on €, ; Qa; (a finite dimensional vector space
over Q with the basis {a;} indexed by I) such that («;,a;) € Z, satisfying the property

o (aj,;) €27~ for any i € I,
o 2(wy, )/ (e, ;) € Zicy for any @ # j in 1.

The Cartan datum X is called simply laced if (o, ;) € {0, —1} for any i # j in
I, and (a;, ;) = 2 for any ¢ € I. The Cartan datum X determines a graph with the
vertex set I. If the associated graph is connected, X is said to be irreducible. Put
a;; = 2(au, o)/ (e, aq) for any ¢,j € I. The matrix (a;;) is called the Cartan matrix.

In the case where the bilinear form is positive definite, X is called finite type. In
that case, the associated graph is a Dynkin diagram. In the case where the bilinear form
is positive semi-definite, X is called affine type. In that case, the associated graph is a
Euclidean diagram. In this paper, we are concerned with X of finite type or affine type.

1.2. Let X = (I,(, )) be a simply laced Cartan datum, and let o : I — I be a
permutation such that (o(a;),0(e;)) = (a4, a;) for any 4, j € I. Let I be the set of orbits
of o on I. We assume that ¢ is admissible, namely for each orbit n € I, (a;,a;) = 0 for
any ¢ # j in 1.

We define a symmetric bilinear form (, )1 on ,c; Qay by

(o, )1 = 27| if =1,
O —{(i,j) €n x| (s, e;) #0} it n#1.

It is easy to see that X = (I, (, )1) defines a Cartan datum.

1.3. Let I ={1,2,...,2n — 1} for n > 1. For i,j € I, we put (a;, ;) = 2 if
i=7, (ag,5) = —11if i — j = £1, and (o4, ;) = 0 otherwise. Then (I, (, )) is a simply
laced irreducible Cartan datum of type As,_1. We define a permutation o : I — I by
o(i) = 2n — i for all 9. Then o satisfies the condition in 1.2. We can identify I with the
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set {1,...,n}, where s = {i,2n —i} for 1 <i<n—1and n = {n}. Then (I,(, )1) is
the Cartan datum of type B,,.

1.4. Let I = {1,2,2,2"}. We define a permutation o : I — I of order 3 by
o(l)=1and o :2+ 2"+ 2" +— 2. The set I of orbits of ¢ in I is given by I = {1, 2},
where 1 = {1} and 2 = {2,2',2"}. We define a symmetric bilinear form on ,_; Qo; by

2 if =,
(g, 05) =4 —1 if iel,je2 or 1€2,j€1,
0 it je2it]

Then (I, (, )) gives the Cartan datum of type Dy4. o : I — I satisfies the condition in
1.2, and (I, (, )1) gives the Cartan datum of type Ga.

1.5. Let ¢ be indeterminate, and for an integer n, a positive integer m, put

n

q" —q

[n]q = q-— q_1

ol = [l 00 = 1.

For each i € I, put ¢; = ¢(*»®)/2 and consider [n]y,, etc. by replacing g by ¢; in the
above formulas. Let U be the negative part of the quantum enveloping algebra U,
associated to a Cartan datum X = (I,(, )). Hence U, is an associative algebra over
Q(q) with generators f; (i € I) satisfying the fundamental relations

17aij

ST g =0 (1.5.1)

k=0

for any 7 # j € I, where fi(n) = f[‘/[n];l for a non-negative integer n.

We now assume that the Cartan datum X is simply laced. Then [n], = [n], for
any ¢ € I. Let o : I — I be the automorphism as in 1.2. Then ¢ induces an algebra
automorphism o : U XU/ by fi — f5(;). We denote by U 7 the subalgebra of U

consisting of o-fixed elements. Let A = Z[g,¢~!], and AU, be the A-subalgebra of U

generated by fi(a) for i € I and a € N (N is the set of non-negative integers). Then o
stabilizes AU, and we can define AUq’"’ the subalgebra of AUq’ consisting of o-fixed
elements.

Let X = (I,(, )1) be the Cartan datum obtained from ¢ as in 1.2. We denote by
U, the negative part of the quantum enveloping algebra associated to X, namely, U,
is the Q(q)-algebra generated by L? with n € I satisfying a similar relation as in (1.5.1).

Let € be the order of o (here we assume that € = 2 or 3), and let F = Z/cZ be the
finite field of e-elements. Put A’ = F[q,q '], and consider the A’-algebra

q

AU =207 @4 A"~ AU, 7 /(AU 7). (1.5.2)

Let J be the A’-submodule of o-U; 7 consisting of elements of the form 3, . oi(x)
for z € AU, . Then J is a two-sided ideal of o/U,*?, and we denote by V, the quotient

algebra A/U;*U/J. Let m: AU 7 =V, be the natural map.
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Let U, be as before. We can define AU, and A/U, similarly to AU, and A/U, .

1.6. In the rest of this section, we assume that X is of finite type. Let W be the
Weyl group associated to the Cartan datum X, with simple reflections {s; | i € I'}. Let
[ : W — N be the standard length function of W relative to the generators s; (i € I). Let
wp be the unique longest element in W with respect to [, and put v = I(wy). Let W be the
Weyl group associated to the Cartan datum X, with simple reflections {s, | n € I}. Then
I, wy, v with respect to X are defined similarly to [, wo,v. For any n € I, let w, be the
product of s; for i € n (note, by our assumption, that such s; are mutually commuting).
Then W can be identified with the subgroup of W generated by {w, | n € I} under the
correspondence s, <> wy. The map s; > s,(;) defines an automorphism o : W — W,
and W coincides with the subgroup W7 = {w € W | o(w) = w} of W under the above
identification. We have wg = w,, and if wy = s

"8y, is a reduced expression of wy,

n My
then wg = wy, -+ - wy,, which satisfies the relation > ;_; I(wy,) = v. Thus if we write

wy = Hie77 s; for any n € I, wo = wy, - - - wy, induces a reduced expression of wo,

woz( 11 sk1>~~-( 11 sku) =5, 5. (1.6.1)

ki€m kyEny

We write h = (m1,...,71,) and h = (41,...,4,). Note that h is determined from h by
choosing the expression wy, = s, - - - sy, for each n.

1.7. For any ¢ € I the braid group action T; : U, — U, is defined as in [L4,
Chapter 39] (denoted by T¢ , there). Let h = (i1,...,4,) be a sequence such that
wo = 8, - -+ 8, 18 a reduced expression. For ¢ = (¢1,...,¢,) € NY, put

v

L(e,h) = fiT, (f$) (T - T, ) (£, (1.7.1)

12

Then {L(c,h) | c € N”} gives a PBW-basis of U, which we denote by 2,,. Now assume
given 0 : I - T asin 1.2. Then coTjo0 ! = o) and T; Ty = T;T; if 4, j € . Hence
one can define R, = [[,., T; for each n € I, and R,) commutes with o.

We consider the braid group action ', : U, — U,. Let h = (Mm,...,m) be a

sequence for w,. For any ¢ = (71,...,7,) € N%, L(c, h) is defined in a similar way as in
(1.7.1),
L(c,h) = L(Zl)zm (L(;z)) o (Im ...Inkl)(i;vl)). (1.7.2)

Then {L(c,h) | c € N*} gives a PBW-basis of U, which we denote by 27,.
Now assume that h is obtained from h as in 1.6. Then L(c,h) can be written as

follows. For k = 1,...,v, let I be the interval in [1,v] corresponding to 7 so that
wy,, = [y, 8i; in the expression of wg in (1.6.1). Put Fy, (c) =[]y, fi(jcj) for each k.

Then we have
L(c,h) = Fy, (c) Ry, (Fyy, () -+ (Ryy -+ anfl)(Fnz(C))- (1.7.3)

In particular, the following holds.
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LEMMA 1.8.  Under the notation as above,

(i) o gives a permutation of the PBW-basis Zn, namely o(L(c,h)) = L(c’,h) for
some ¢’ € N”. L(c,h) is o-invariant if and only if ¢; is constant for j € I, for
k=1,...,v.

(ii) For each ¢ € N%, let ¢ € N be the unique element such that c¢; = i for each
j € I. Then L(c,h) — L(c,h) gives a bijection

ng) '%/hna
where Z,{ is the set of o-stable PBW-basis in Zh.

1.9. For each n € I and a € N, put fga) = Hie7 fi(a). Since fi(a) and f;a)

commute each other for i, j € n, we have ﬂ?a) € AU, 7. We denote its image in o/U_>
also by f},a). Thus we can define 91(711) €V, by

g = m(f{V). (1.9.1)

In the case where a = 1, we put ﬁgl) = ﬁ, = Hien fi and g7(71) = gy- Recall that A/U, is
generated by i;a) for n € I and a € N. We have the following result.

ProprosSITION 1.10.  The correspondence i;a) — 91(711) gives rise to a homomorphism

¢: AU, =V, of A’-algebras.

1.11. Proposition 1.10 will be proved in Section 3. Here assuming the proposition,
we continue the discussion. Let 2} be as in Lemma 1.8. It is known that the PBW
-basis 2}, is contained in AU, (see Introduction). Thus o-stable PBW-basis L(c, h) in
2y is contained in AU, 7. By Lemma 1.8 such an L(c,h) can be written as

L(c,h) = fOO R, (FO9) - (Ryy -+~ Ry ) (FS1), (1.11.1)

U N2

where ¢ = (71,...,7,) and

C=(C1y 3 C) = (Vs e s Vs V2r e s V25 oo s Vs v oo 3 V) (1.11.2)
[71|-times [n2|-times |ny |-times

For each L(c,h) € 2,7, put E(c,h) = n(L(c,h)) under the correspondence in (1.11.2).
By Lemma 1.8 (i), any element z € o/U_? can be written as an A’-linear combination
of o-stable PBW-basis modulo J. Thus we have

1.11.3) The set {E(c,h) | c € N%} generates V, as A’-module.
( ) g q

1.12. It is known, for any Cartan datum X, that there exists a canonical sym-
metric bilinear form (, ) on U, which satisfies the property,
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(L(e, ), L(e', b)) = [T (£, £ H Sener H ! (1.12.1)

1_ .
k=1 d=1 i,

for ¢ = (c1,...,¢,),¢ = (c},...,c,). In particular, (L(c,h), L(c’,h)) =0 if ¢ # ¢/, and
the form ( , ) is non-degenerate. Assume that X is as in 1.2. Then o preserves the form,
namely, (o(z),0(y)) = (z,y) for any z,y € Uy.

Let F(q) be the field of rational functions over F, and put g)V, = V, ®@a’ F(q).
Then the form (, ) on U, induces a symmetric bilinear form on g, V, (note that
(>, 0i(x), Y, 0%(y)) = 0 in F(q)). We have (E(c,h), E(c’,h")) = 0 if ¢ # ¢/, and
(E(c,h), E(c,h)) # 0. Thus {E(c,h) | ¢ € N¥} gives rise to an orthogonal basis of
ONEE

Put U, = a/U, ®a/F(q). We can regard {L(c,h) | ¢ € N*} as an F(g)-basis of
F(9U, - Themap & : A'U, — V, induces an algebra homomorphism p) U, — ¥(¢)Vy;
which we denote also by ®. We need a lemma.

LEMMA 1.13.  Assume that X has rank 2, and h = (n1,...,m,). Then for k =
1,...,v, we have

(T, Ly (f ) =7(Ryy Ry, (fr)- (1.13.1)

Nk

Lemma 1.13 will be proved in Section 4. We continue the discussion assuming the
lemma. By using Lemma 1.13, we can prove the following theorem.

THEOREM 1.14. Leth and h be as in 1.6.
(i) For any c € N¥, we have ®(L(c,h)) = E(c,h).

(ii) @ gives an algebra isomorphism gy U, X ¥ Vy-

Proor. Since R,’s satisfy the braid relation, we can define R, = R,, --- R,
for a reduced expression w = =Sy, "8, € W. Let AT be the set of positive roots in
®n€ ; Qo). We consider the following statement.

(1.14.1)  Assume that, w(a,) € A*. Then ﬂ(Rw(fn)) = ‘I)(Zw(in))'

Note that (1.14.1) certainly holds in the case where X has rank 2, in view of
Lemma 1.13. We prove (1.14.1) by induction on {(w). (1.14.1) holds if I(w) = 0. Thus we
assume that [(w) > 0, and choose " € I such that [(ws, ) = [(w) — 1. From the assump-
tion in (1.14.1), o’ # n. It is known that there exist w’,w” € W such that w = w'w”,
which satisfy the condition

(i) w” is contained in the subgroup of W generated by s, and s,/,

(if) U(w) = I(w') + 1(w"),

(ili) l(w'sy) =1(w") + 1, l(w'sy) =l(w") +1

By applying (1.14.1) to the case X has rank 2, we see that m(R,, (fn)) =
(I)(Iw”(in))' Since w # w’, we have (w’) < l(w). Also note that w'(ay,), w(c,y) € AT,
Thus by induction, we have
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7 (Rur(F1)) = (Lo (f,)): 7(Rur (Fy)) = (Lo (f,))-

Since Ry (fy) = Ruy Rur(fy) and T, ( f) = LuwLyn(f,), (1.14.1) holds for w. Thus
(1.14.1) is proved.

Now the claim (i) in the theorem follows from (1.14.1). Let Z be the F(g)-subspace
of p(q)U, spanned by {L(c,h)}. Since {E(c,h)} is a basis of g,y V,, ® gives an isomor-
phism Z gV, by (i), and so Z is an algebra over F(g). Since L(;l) = ([a]zn)_liz is
contained in Z, we see that Z = p(,)U, . Thus (ii) holds. The theorem is proved. 0

1.15. We follow the point of view explained in Introduction. In the simply laced
case, the properties (i), (ii) and (iii) in (0.1.1) are known to hold. Hence there exists
the canonical basis {b(c,h) | ¢ € N”} in £%(c0), which is characterized by the following
properties,

b(c,h) = b(c, h), (1.15.1)
b(c,h) = L(c,h) mod ¢.%z(c0),

where x + 7 is the bar involution in U_". Note that {b(c,h) | ¢ € N"} is independent of
the choice of h, which we denote by B.

We define a total order on N¥ by making use of the lexicographic order, i.e., for
c=(c1,...,¢,),d = (dy,...,d,) € N, ¢ < d if and only if there exists k such that
¢; =d; for i < k and ¢ < dj. Then the second formula in (1.15.1) can be written more
precisely as

b(c,h) = L(c,h) + Y aaL(d, h) (1.15.2)
c<d

with aq € qZ[q].

1.16. We choose h and h as in 1.6. Since o permutes the PBW-basis L(c,h), o
permutes the canonical basis B. We denote by B? the set of o-stable canonical basis of
U, . Take b = b(c,h) € B?. Then L(c,h) is o-stable, and c is obtained from ¢ as in
L.11. Since b € AU 7, one can consider 7(b). Then we can write as

n(b) = E(c,h) + Y aaF(d,h) (1.16.1)
c<d

with aq € ¢F[g]. The total order ¢ < d on N¥ is defined similarly. The bar involution
can be defined on V,, and the map 7 is compatible with those bar involutions. Thus we
have

7(b) = (b). (1.16.2)

Let .,%(oo) be the F[g]-submodule of V, generated by E(c,h). Then the set {m(b) | b €
B} gives rise to an F[g]-basis of .%F(c0) satisfying the properties (1.16.1) and (1.16.2).
Note that the set {w(b) | b € B7} is characterized by those properties, and this set is
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independent of the choice of h, which we call the canonical basis of V.
Let Zp(00) be the F[g]-submodule of g(, U, generated by {L(c,h) [ c € N¥}. We
have the following result.

PROPOSITION 1.17.  There exists a unique F[q]-basis {b(c,h) | ¢ € N} in Lp(c0)
satisfying the following properties,

b(c, h) = b(c, h), (1.17.1)
b(c,h) = L(c,h) + Y agaL(d.h), (g € ¢F[q)).

c<d

Moreover, the set {b(c,h)} is independent of the choice of h, and Lg(o0) does not
depend on the choice of h.

ProoOF. It is clear that the map ® : p()U, — ¥(q) V¢ is compatible with the bar
involutions. Then the proposition immediately follows from Theorem 1.14. 0

1.18. For any X, we consider the following statements corresponding to (iii) and
(iii’) in (0.1.1).

(1.18.1) PBW-basis 27}, gives an A-basis of AU, .
(1.18.2)  Any element L(c,h) € 27}, is contained in AU, .

As was explained in Introduction, the proof of (1.18.1) is reduced to the case of
rank 2, namely the case of type By and G, and in that case, (1.18.2) was proved by
Lusztig [L1] and Xi [X1]. In any case, the computation in the case of G2 is not easy.
(1.18.2) can be proved by computing the commutation relations of root vectors, which is
relatively easy compared to (1.18.1).

In the discussion below, we only assume that (1.18.2) holds for AH;, and will prove
that (1.18.1) holds for AU, .

1.19. We return to our original setting, and consider the map ® : AU, — V.
By (1.18.2), the PBW-basis 27}, = {L(c,h)} is contained in o/U, . Since {E(c,h)}

is an A’-basis of V, we see that ® is surjective, by Theorem 1.14 (i). Let A/ﬁq_ be

the A’-module generated by {L(c,h) | ¢ € N¥}. Again by Theorem 1.14, A/ﬂ; is an
A’-submodule of g U, , which is independent of the choice of h. We show that

AU, =aU,. (1.19.1)

By (1.18.2), we know that Afﬁq_ C a'U, . On the other hand, for each n € I, one can

find a sequence h = (1,...,nn) such that n; = 7. This implies that AU, is invariant
under the left multiplication by i;a). Since this is true for any 7, we see that o/U, is
contained in A/ﬂ;. Thus (1.19.1) holds.

Summing up the above arguments, we have the following integral form of Theo-
rem 1.14.
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PROPOSITION 1.20.  Assume that (1.18.2) holds for AU, . Then ® induces an
isomorphism a-U, ~ V. In particular, the PBW-basis 2’3, gives an A’-basis of al,.

As a corollary, we have

COROLLARY 1.21.  Assume that (1.18.2) holds for AU, . Then (1.18.1) also holds.

PROOF. Let Aﬁq_ be the inverse limit of AQ;/E”(AQ;)‘ Then Aﬂq_ has a natural
structure of the module over Z.[q,q"!] = 1'&nA/€”A7 where Z. is the ring of e-adic
integers. We have a natural embedding AU, C Aﬂq_. Now take z € AU, . (1.18.1)
shows that x can be written as a linear combination of PBW-basis with coefficients in
A modulo 5(AQ;). We regard x as an element in Aﬁq_. Then = can be written as a
linear combination of PBW-basis with coefficients in Z.[g,¢!]. On the other hand, we
know that z is a linear combination of PBW-basis with coefficients in Q(g). Thus those
coefficients belong to A = Z[q, ¢~ '], and we obtain (1.18.1). O

1.22.  We assume that (1.18.2) holds for U . Then by Corollary 1.21, we have
(1.22.1) InU,, L(c,h) is a linear combination of various L(d, h) with coefficients in A.

Then by [L3, Lemma 24.2.1], one can define a basis {b(c,h) | c € N¥} of U_’, satisfying
the properties

b(c,h) =b(c, h), (1.22.2)
b(C, h) = L(E)h) + Z aQL(Q>h)7 (ag € qZ[q]).

c<d

In this construction, we cannot give the independence of the basis {b(c,h)} from h.
But by using the almost orthogonality of PBW-basis (1.12.1), one can prove a weaker
property, namely, the independence from h, up to sign (see [L3, Theorem 14.2.3]); if we
fix h, h’, then for any c, there exists a unique ¢’ such that

b(c,h) = £b(c’.h). (1.22.3)

We denote by B the set of canonical basis {b(c,h)} in U, . On the other hand,
let B’ be the canonical basis in a'U, given in Proposition 1.17. We temporally write
them as {b’(c,h)}. Then the image of b(c,h) under the natural map AU, = AU,
coincides with b’(c, h), and this gives a bijection B X B'. In the case where ¢ = 2, this
does not give a new information on the sign of b(c,h). But in the case where ¢ = 3, we
have the following result.

ProPOSITION 1.23.  Assume that € = 3, and X is of type Go. Then the canonical
basis {b(c,h) | c € N%} is independent of the choice of h, namely, if we fir h,h', then
for any c, there exists a unique ¢’ such that

b(97 h) = b(9/7 h/)
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PROOF. By (1.22.3), we have b’(c,h) = ab/(c/,h’) for some a = +£1. But by
Proposition 1.17, b’(c,h) is determined uniquely as an element in Zg(c0), which is
independent of the choice of h. It follows that ¢ = 1 mod 3. This implies that a = 1,
and the proposition is proved. O

REMARK 1.24. By Proposition 1.20, we have a natural bijection B’ ~ B?. By the
discussion in 1.22, we have B ~ B’. Hence
B’ ~B ~B. (1.24.1)
Thus we have a natural correspondence B? <> B between the set of o-stable canon-
ical basis of U, and the set of canonical basis of U, . This is nothing but the reformu-
lation, by our context of elementary setting, of Lusztig’s result [L4, 1.12 (b)] (see also
[L3, Theorem 14.4.9]) obtained by geometric considerations.

2. PBW-bases for affine quantum groups.

2.1. In Beck and Nakajima [BN], the PBW-bases were constructed in the case
of affine quantum groups. In this section, by making use of their PBW-bases, we shall
extend the results in the previous section to the case of affine quantum groups.

Let g be an untwisted affine Lie algebra associated to the simply laced Cartan datum
X, with the vertex set I, and gg the simple Lie algebra over C with the vertex set I,
associated to the simply laced Cartan datum X, such that

LgO = 9o ®C C[t7t_1]7
g=Lgyo® Cce Cd,

where c is the center of g and d is the degree operator. Here Lgy & Cc is the central
extension of the Loop algebra Lgg.

Let go = ho © @,c,(80)a be the root space decomposition of go with respect to a
Cartan subalgebra by of gg, where Ay is the set of roots in gg. Then h = hy ® Ccd Cd
is a Cartan subalgebra of g, and g is decomposed as

g=b@<@(go)a®tm>@( &b f)o@tm). (2.1.1)

a€lg meZ—{0}
meZ

We define § € b* by (d,d) = 1,{hp ® Cc, ) = 0. We regard o € Ay C b as an element
in b* by a(c) =0,a(d) = 0. Then (gg)a ® t™, ho ® t™ correspond to the root space with
root « + md, md, respectively, and (2.1.1) gives a root space decomposition of g with
respect to h. Let A (resp. A1) be the set of roots (resp. the set of positive roots) in g.
Also Ad be the set of positive roots in Ag. Then A* is given by

AT = AT AT U Zo0, (2.1.2)

where
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At ={a+mé|ac Af,m € Zso},
At ={a+mé|ac —Af,m € Zso}.

Af’Jr L Ar<e’+ is the set of positive real roots, and Z-d is the set of positive imaginary
roots. The simple roots Il are given by

HZ{Oéi|i€Io}L|{a0:6—9},
where 6 is the highest root in Af.

2.2. Let 0 : I — I be the permutation as in 1.2. We assume that o preserves
Iy. Thus if X is irreducible, X has type A%, (n > 1), DY (n > 4), ESVY for e = 2, and
Dfll) for ¢ = 3. Correspondingly, X has type Dfi)_Q, (n > 1),A§i)_3, (n > 4),Eé2) and
Df) under the notation of the table in [Ka, Section 4.8]. Let I, be the set of o-orbits in
Iy, and X be the corresponding Cartan datum. Then X, has type Bpn+1,Cnh—1, F4, G2,
respectively.

o induces a Lie algebra automorphism o : g — g, and let g” be the subalgebra of
g consisting of o-fixed elements. o preserves gg, and o(c) = ¢,0(d) = d. We define g§
similarly. Then g§ is a simple Lie algebra, and g7 = Lg§ @ Cc @ Cd is the affine Lie
algebra associated to g§. Note that g7 is isomorphic to the affine Lie algebra g associated
to X, which is the twisted affine Lie algebra of type X ,gr) given above (here r coincides
with €). Moreover g§ is isomorphic to 9, associated to X ;. We have h? = hg ® Cc @ Cd,
and h7 >~ b, by ~ b, (Cartan subalgebras of g and go).

Note that o acts on A, leaving A& invariant. Moreover, (J) = §. Thus Ar>e’+ and
A are stable by o.

Let A" (resp. A™F, A™ ™) be the set of positive roots (resp. positive real roots
positive imaginary I‘OOtb) in the root system A of g. Since g is twisted of type Xn , by
[Ka, Proposition 6.3], A" can be written as A" = AT UAS and A™ T = Z-d,
where

AT ={a+md|ac (A)s,m € Zsoy U {a+mrd |ac (A, m € Zso}, (2.2.1)
AT ={a+md|ac —(Af)s;m € Zoo} U{a+mrd | a€ —(A), m € Zso}.

Here (AJ)s (resp. (AF);) is the set of positive short roots (resp. positive long roots) in

the root system A, of g .

2.3. Let h**={xeb* |[(c,\)=0} ={A€bh*| (N ) =0} be the subspace of h*.
Then h** = @,.;, Ca; ® C5. We define a map

cl: h*0 = b

by cl(a;) = «; (i € Ip) and cl(d) = 0, where b = (ho)*. Then cl induces an isomorphism
h*0/Cé ~bg- o actson h*0 and on b}, and cl is compatible with those o-actions. Hence cl
induces a map (§*°)7 — (h3)°. The restriction map h* — (h)* induces an isomorphism
(h*)7 2 (h7)*, which implies that (h*°)7 ~ h** since h” ~ h. Similarly we have (h$)7 ~
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(h§)* =~ b7 Under those identifications, the induced map (h*°)” — (h3)? coincides with
the map cl : Q*O — by, defined for g similarly to g.

2.4. Let Qg be the image of 691'610 Za; in h*°/CS. Then Q. can be identified
with the root lattice of go via cl. We define ¢ : h** — GL(h*) by

(319,
2

tHEON) = A+ (N, 0)¢ - {()\,f) + (A, 5)}5, (€ eh O Nep"), (2.4.1)

which induces a map t : h*°/Cd — GL(H*), and consider the restriction of t on Q.. Note
that in the case where A € h*?, (2.4.1) can be written in a simple form

HEYN) = A — (N, 6)0. (2.4.2)

Let W be the Weyl group of g and W, the Weyl group of go. Then we have an exact
sequence

Put
Pa={\eb | (\ ) € Zfor any i € Iy}/C0.

Then P, is identified with the weight lattice of gg via cl. We define an extended affine
Weyl group W by W = Py x W, (note that g is simply laced).

Let W be the Weyl group of g and W, the Weyl group of g . Let (, )i be the
non-degenerate symmetric bilinear form on Qg, normalized that (a;, «;)1 = 2 for a short
root «; (i € I,) (see 1.2). The form ( , ); is extended uniquely to a non-degenerate
symmetric bilinear form (1, ); on h* by the condition that (X,d) =(c, A) for any X € b*.
For a € A, put a” = 2a/(a,a)r. Put @ | = 6977610 Za,, and QZ[ = 697)610 Zay . Since
g is the dual of the untwisted algebra, we have @  C chl Asin (2.4.1), we can define a
map t : h*°/Cs — GL(h*), and we have an exact sequence

t

1 QY

—~cl

w W, — 1. (2.4.4)

For each i € I, let w; be the fundamental weight of (Ag, bjy), defined by (w;, oj) = d;5
(1,7 € Ip). Then under the isomorphism cl : h**/C8 =~ b5, Pa =~ @),
of o on h*0 induces an action of o on P., which is given by w; Weiy (i € o).

Zw;. The action

Thus we have an action of o on W, which preserves Wy. On the other hand, we define
the fundamental coweig}it wy of (Ag,b5) by (W) = Sy (0,1 € L), and put
W, = |nlwy. We define P, = @nelo Zw,, which we regard as a lattice of h*?/C4 dual

to Q; Define the extended affine Weyl group by W = Ecl x W,. Since the map

(Pa)” 3Py, Y wi nw) =3, (2.4.5)

Syl
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is compatible with the action of W ~ W, we have an isomoprhism

W = (Pa)" x W ~PyxWy=W. (2.4.6)
Let 7 = {w € W | w(A") C A+}, which is a subgroup of the automorphism group
of the ambient diagram. Then we have W=97xW. Similarly we define 7 = {w € W |

w(AT) € A*} so that W = 7 x W. The action of ¢ on W preserves .7, and we have
T =7.

2.5. Following [BN, 3.1], put

§=) w € P, (2.5.1)

i€ly

and consider ¢(¢§) € W, which we simply denote by £. Here £ € WeaW =9 x W, and
one can express £ as

=8y, " 8y, T (2.5.2)

with 7 € 7 = 77, where w = s, ---s,, is a reduced expression of w € W (w is the
W-component of £). Accordingly, we obtain a reduced expression of w = s;, ---s;, € W
such that

w = ( 11 skl) ( 11 skv> =55, 5. (2.5.3)

kiem ky€ny
As in [BN, 3.1], we define a doubly infinite sequence attached to g
h= (.. i1,d041,...) (2.5.4)

by setting ixy, = 7(ix) for k& € Z. Then for any integer m < p, the product
SipSimy1  Si, € W is a reduced expression. Similarly, we define a doubly infinite
sequence

h:("'anfl?nOunla'”) (255)

by the condition that my+, = 7(nx) for k € Z, which satisfies the property that
Sip Snmgs " S, € W is a reduced expression for m < p. Note that & € (Pe)?, and
under the isomorphism (Py)? ~ P in (2.4.5), £ coincides with the element Znel
Thus the sequence (2.5.5) is exactly the sequence defined in [BN, 3.1] attached to g.
By (2.4.2), for 8 = a+mé € AST and n € Z, (n&)"Y(B) = B+ n(&B)0 =
a+ (m+n(& B))8. Since (€,8) > 0 by (2.5.1), (nf)~1(8) € A~ if n < 0 is small enough.
Similar argument holds also for g € Ar<e’+ by replacing n < 0 by n > 0. It follows that

U @ nwr(an)) =art, U @z nwr(an)) =ar™, (2.5.6)

neZ<o n€Zso
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Similar formulas hold also for the root system A™ of g. As a corollary of (2.5.6), we have

(2.5.7) Let h be as in (2.5.4). Then any ¢ € I appears in the infinite sequence
(...,i-1,%0,41,-..). Similarly, let h be as in (2.5.5). Then any 7 € I appears in the
infinite sequence (...,7n-1,70,71,---)-

2.6. LetUj (resp. Qq_) be the negative part of the quantum enveloping algebra
U, (resp. U,) associated to X (resp. X). We follow the notation in 1.5. We fix h as in
(2.5.4), and define 8, € AT for k € Z by

ﬁk _ siosi_l cee Sik+1 (Oéik) lf k S O, (261)
SiySiy " Sip_y (Qiy) if k£>0.
Then, as in [BN, 3.1], we have
At =B |k €Zeo}, AST ={B| k€ Zso}). (2.6.2)
We define root vectors fj5 () ¢ U, by

o TiTi, T (D), it k<0,
fé ) = {TilT_ll k+1 (¢) itk 0 (263)

iv Tig lk 1(f ) ! > .

We fix p € Z, and let c1, = (cp,cp_1,...) € N%<r ¢ = (cp1,Cpy2,...) € N%>» be
functions which are almost everywhere 0. We define L(cy,),L(c_,) € U by

FEOT (7 OV, Ty (1,7 - (2.6.4)
L(C—p) =...7 ! (f(cl”r?’)) -1 (f(6p+2))f(cp+1).

tp+1 1p+2 tp+3 1p+1 tp+2 p+1

=
¢l
+

I

In the case where p = 0, we simply write ¢y ,c_, as cy,c_. Thus (cy,,c_,) is
obtained from (ci,c_) by the shift by p. Note that L(cs) (resp. L(c_)) coincides
with fég")f - 1)f(c 2 ... (resp. - f(zs f(:2 f(cl)) A similar discussion works for U, .
We fix h as in (2.5.5). Br € AT for k € Z is defined similarly to (2.6.1), and the
root vectors iﬂk € U, are defined as in (2.6.3). For c, = (Yp» Yp—1,---) € NZ=»,
c_ = (Vp+1,Vpt2:---) € NZ>» define L(c, ). L(c_, ) € U, similarly to (2.6.4).

It is known by [BN, Remark 3.6], for i € Ip,n € I,

Jkéta; = _wifu (k>0), frs—a, = T2ETifs, (k> 0), (2.6.5)

f = T’f (k>0 = T_—Q’“nTniﬂ, (k> 0). (2.6.6)

=k|n|d+om ikmw—%

2.7. Foriely,nely k>0, put

Ji,k = fro—aifi — @ fifro—ais (2.7.1)

v = Lpoto—andn ~ qg]inik\m&an' (2.7.2)

—n,k[n]

It is known that {bvzk (i € In,k € Z~p) are mutually commuting, and similarly, yn kil
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(n € Iy, k € Z<() are mutually commuting. For eachi € Iy, k € Z~, we define ]Si’k ey,
by the following recursive identity;

k
_ 1 .
P = . E @i o P g (2.7.3)
9 5—1

Similarly, for n € Ly, k € Z~o, we define Emklnl ey, by

—mk\n\ Zq\n\ L, s|n|—n (k—=s)[n| (2.7.4)

an s=1

For a fixed i € I, regarding ]Si’k (k € Z<0) as elementary symmetric functions, we define
Schur polynomials by making use of the determinant formula; for each partition p(, put

Sp( y = det( i — k+m)1§k,m§t (2.7.5)

where (p!,...,p}) is the dual partition of p(*). For an |Iy|-tuple of partitions co =
(p)ier1,, we define S, by

Seo = [[ Spi0- (2.7.6)

i€l

Similarly, for a fixed n € I, choose a partition B("), and define a Schur polynomial
by

gg(’” = det(ﬂn,(%*“m)lnl)1gk,m§t (2.7.7)
where (p),...,p}) is the dual partition of B("). For an [j-tuple of partitions ¢, =
(g("))nﬂo, we define

Se, = T Spn- (2.7.8)

nel,

We denote by ¢ the set of triples ¢ = (c,cg,c_), where ¢y € N%<0 c_ € NZ>o0,
and cg is an Jp-tuple of partitions. For each ¢ € ¢, p € Z, we define L(c,p) € U, by
-1 -1 -1 .
L(C,p) — L(C+p) X (,‘Zjip+1,‘rip+2 o ',‘T’io (SCO)) X L(C*p)’ if p S 07 (279)
L(cy,) x (T, -+ T3, T3, (Sey)) x Lc—p), if p>0.

Similarly, we denote by € the set of triples ¢ = (c,,cq,c_), where c, € NZ<o c_ €
NZ%>0, and ¢, is the set of I-tuples of partitions. We define L(c,p) € U, in a similar
way as in (2.7.9). The following results are proved in [BN]. Note that Lemma 3.39 in
[BN] can be applied to the case where X is simply laced.

ProprosITION 2.8 ([BN, Proposition 3.16]).  L(c,p) € AU, and L(c,p) € AU, .

q’
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ProposITION 2.9 ([BN, Theorem 3.13 (i), Lemma 3.39]). We fix h and p as
before.

(i) For various ¢ € €, L(c,p) are almost orthonormal, namely,

(L(c,p), L(c, p)) € be.cr + aZ[[q]] N Q(q).

In particular, for a fived h,p, {L(c,p) | c € €} gives a Q(q)-basis of U .

Similarly, L(c,p) are almost orthonormal, and {L(c,p) | c € €} gives a Q(q)-basis
of Q;.

(ii) {L(c,p) | c € €} gives an A-basis of AU, .

2.10. We first fix h as in (2.5.5), then construct h as in (2.5.4) from h by
making use of the relation (2.5.3). We also fix p > 0, and consider the sequence
Wp = Sp,Sn,_1Sn,_o -+ I W > W, Then wp determines an integer p > 0 such that Wy,
corresponds to wy = 8;,8;,_,8i,_, -+ in W. For each s, appearing in w,, let I} be an
interval in Z such that s,, = ][, f

Put Fy, (cx,) =1 ey, #) We also define R, =TI

: V5 JEN
with R,. Note that L(cy,), L(c_,) can be expressed as

1, Si; corresponds to a subexpression of w;, as above.

T; for n € I,. Then o commutes

L(cy,) = Fy, (c4, )Ry, (an 1(C+p))RnpRnp 1 (an_z(ch,)) B (2.10.1)
L(C*p) = Rnp]:FlR;p+2( 77p+3( ))R;p+l( Np+2 (C*p))FUBJrl (C*p)'

We have a lemma.
LEMMA 2.11.  Take h,p as in 2.10.

(i) o permutes the PBW-basis {L(c,p)} of U, , namely, o(L(c,p)) = L(c’,p) for some
cev.

(ii) Let ¢ = (c4,co,c_) € €. Then L(c,p) is o-stable if and only if c¢; is constant
for each j € I}, corresponding to sy, in wy,, and pW is constant on i € n for each
n € Ly. In particular, the set of o-stable PBW-basis in U, with respect to h,p is
in bijection with the set of PBW-basis {L(c,p)} in U, if h,p are obtained from
h,p.

PROOF. By (2.10.1), we have o(L(cy,)) = L(c, ), o(L(c—,)) = L(c’ ) for some
c’+p € NZSP,C’_p € NZ>». On the other hand, since o(frsta,;) = froxa,q, for i €
Ip,k > 0 by (2.6.5), we have U(lzi’k) = '(Za(i),k; and so U(E,k) = ﬁa(i),k. This implies
that o(S,@)) = S,y for each i € Iy. We see that (Sc,) = Se; for some Ip-tuple of
partitions cf,. Thus we obtain (i). (ii) follows from (i). O

2.12.  We apply the discussion in 1.5 to the affine case, and we can define a
homomorphism 7 : A-U 7 — V. For any € I, and a € N, we define f(a) [Lics fi(a),
and put gf7 (A( )) as in 1.9. Then Proposition 1.10 still holds for the affine case,
and we can define an algebra homomorphism ¢ : /U, — V, of A’-algebras. Assume
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that h,p are obtained from h,p as in 2.10. We denote by Zhn,p the set of PBW-basis
{L(c,p) | ¢ € €} of U, and 2] the subset of 24, consisting of o-stable PBW-
basis. Similarly, we denote by 2, , the set of PBW-basis {L(c,p) | c € €} of U, . By
Lemma 2.11 (ii), we have a natural bijection L p = KH@ by L(c,p) <+ L(c,p). We
put E(c,p) = n(L(c,p)) under this correspondence. Then by Lemma 2.11 (i), and by
Proposition 2.9 (see the discussion in 1.12), we see that { E(c, p)} gives rise to an A’-basis
of V,. -

Assume that L(c,p) € 27, corresponds to L(c,p) € £, ,, with ¢ = (cy,co,c-),
c = (c;,¢p,c ). We consider L(cy,), L(c—,) € U7 and L(c, ),L(c_ ) € U,. The
following result can be proved in a similar way as in Theorem 1.14 (i).

PROPOSITION 2.13. <I>(L(g+£)) =m(L(cy,)) and (L(c_ )) = m(L(c—,)).

2.14. Let cg = (p(i))ielo be an Ip-tuple of partitions appearing in c, and ¢, =
(E(n))nélo be an I,-tuple of partitions appearing in ¢ as in 2.7. We have p() = B(”) if
i € n for each n € I,. Then S, € U7, and we consider 7(Sc,) € V4. On the other
hand, we can consider §90 S Q;. We show a lemma.

LEMMA 2.15.  ©(S, ) = 7(Se,)-

ProOOF. Take i € Iy such that ¢ € . We consider Hi@] Jko+a;, € U7 and

iklnlﬂan € U, , and similar elements obtained by replacing «; by —«;, a; by —ay. By

applying Proposition 2.13 for the case where p = 0, we have
q)(iklnlﬂan) = w(H fk5+a,i), (I)(ikwé_an) = W(H fké—a,;). (2.15.1)
IS €M
Next we show, for n € I,k > 0, that
B (¢ Gy i) (sz k) (2.15.2)
1EN

It is known by [B], [BCP] that Ty, (frs+a,) = [ré+a, for i # j,k > 0. Hence if
(v, ) = 0, we have

fifrs—as = HT-ETi(fi) = ToFETi(fi 1) = ToFTi(fif) = fro—ait (2.15.3)

by (2.6.5). Again by using (2.6.5) we have

Srs—ai fro—a; = fro—a; fro—a- (2.15.4)

In the case where |n| = 1, (2.15.2) immediately follows from (2.15.1). We assume
that |n| = 2, and put n = {7, 5}. Then by using commutation relations (2.15.3), (2.15.4),
we have

Gikthjn = (Frs—asfi — @ fifro—ai)(frs—a, fi — @ Fi frs—a,)
= fro—aifro—a, fifi + @ Fifi fro—a, fro—a, — €2,
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where

Z = [rs—a; filifro—a; + fifks—ai frs—a, [
= fifro—a; fr6—a; fi + fifrs—ai frs—a, [
= fifro—a,; frs—a,fi + 0(fjfrs—a, [ro—a; fi)-

Since Z € J, we have

W(Ji,k&j,k) = 7(frs—ai fro—a, [ifj — @ofifi Fro—a fro—a,)-

Now (2.15.2) follows from (2.15.1). The proof for the case || = 3 is similar. Thus
(2.15.2) is proved.

Since Ji,k and Jj,g commute for any pair, Ji,k commutes with ﬁj,g for any pair
i,7,k,£. Then by a similar argument as in the proof of (2.15.2), for each n € I, we have

o(P, ) :W(Hé,k). (2.15.5)

i€n

(Note that ([k])" = [k],, in A".)

Since P, ), are commuting for any pair 4, k, (2.15.5) implies, by a similar argument
as above, that

(S ) = W<Hsp<i)> (2.15.6)
i€n
for any n € I,. Lemma 2.15 follows from this. O
The following result is an analogue of Theorem 1.14 and Proposition 1.20.
THEOREM 2.16. (i) For any c € €, we have ®(L(c,0)) = E(c,0).
(ii) PBW-basis {L(c,0) | c € €} gives an A’-basis of a/U, .
(iii) @ gives an isomorphism AU, X V.

ProoOF. (i) follows from Proposition 2.13 and Lemma 2.15. By Proposition 2.8,
(the image of ) L(c, 0) is contained in AU, . Hencethemap ® : /U, — V, is surjective.
As in the proof of Theorem 1.14, ® can be extended to the map p)U, — r(y) Vs
which gives an isomorphism of F(q)-algebras. Let A/ﬁq_ be the A’-submodule of FUy,
spanned by L(c,0). Then ® gives an isomorphism A/ﬂ; ~ V, of A’-modules. In

particular, A/Qq_ is an algebra over A’. We note that

alU, =alU,. (2.16.1)

In fact, A/ﬁq_ C a'U, by Proposition 2.8. Since {E(c,p) | c € €} is an A'-basis
of Vg, {271 (E(c,p)) | c € €} gives an A'-basis of Afﬁ; for any p. Hence by (2.10.1),
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a’U, is invariant under the left multiplication by i;]z) By (2.5.7), for any n € I, there

exists p such that n = n,. Thus Afﬁq_ is invariant under the left multiplication by
any i;k'), and (2.16.1) follows. Now (ii) and (iii) follow from (2.16.1). The theorem is
proved. O

COROLLARY 2.17.  For any p € Z, the PBW-basis {L(c,p) | ¢ € €} gives an
A-basis of AQ;.

PrOOF. By a similar argument as in the proof of Corollary 1.21, we see that
{L(c,0) | ¢ € €} gives an A-basis of AU, thanks to Theorem 2.16. Then by [BN,
Lemma 3.39], {L(c, p)} gives an A-basis of AU, . The corollary is proved. O

REMARK 2.18. In the case where g is a simply laced affine algebra, the fact that
{L(c,p) | ¢ € €'} gives an A-basis of AU, (Proposition 2.9 (ii)) was known by [BCP] for
p = 0, and was proved by [BN] for arbitrary p. Corollary 2.17 is a generalization of this
fact to the case of twisted affine algebras. Once this is done, one can define the (signed)
canonical basis b(c, p) parametrized by L(c,p) as in (1.22.2). The basis {b(c,p) | c € €}
is independent of the choice of h and p, up to +1. In [BN], in the simply laced case, this
ambiguity of the sign was removed by using the theory of extremal weight modules due
to [K2]. It is likely that our result makes it possible to extend their results to the case
of twisted affine Lie algebras.

3. The proof of Proposition 1.10.

3.1. In this and next section we write [a],: as [a]; for any ¢ € Z. Thus [a], = [a]:

and [a]g, = [a]}, since (ay,a,)1/2 = [n|. a/U, is the A’-algebra with generators i;“)
(n € I,a € N) with fundamental relations

1—am,/
> VRN g =0, (g #), (3.1.1)
k=0

lall, £ =f2, (a€N), (3.1.2)

where A = (a,,y) is the Cartan matrix of X. In order to prove Proposition 1.10, it is

enough to show that gr(]a) satisfies a similar relations as above, namely,

l—am/
(1—0.,”,”/—’(:)
> (=D gy =0, (n#n), (3.1.3)
k=0
la]}, 94 = g8, (a€N). (3.1.4)

First we show (3.1.4). We have

A =TLAY = Aa)™" ] £2 = (alp) 71 F2.

i€n 1€n
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Since || = 1 or €, we have ([a]})I" = [a]im in A’ = Flq,q"!] with F = Z/cZ. Thus
(3.1.4) follows.

For the proof of (3.1.3), we may assume that X is of rank 2. Here we change the
notation from 1.3, and consider I = {1,2} with Cartan matrix

2 0 2 a
=) = (B3
where X is of type A; X Aj in the first case, and a = —1, —2, —3 according to the cases
X is of type As, Bs, Gs.
Assume that X is of type A; x A;. In this case, we have (a5, ;) =0 for any 4,5 € I

such that ¢ # j. It is easily seen that gigo = g291, which coincides with the relation
(3.1.3). Thus (3.1.3) holds.

3.2.  Assume that X is of type Ay. We have two possibilities for I, i = {i} or
i ={i,7'} for i = 1,2. In the former case, (3.1.3) clearly holds. So we may assume that
I={1,2,1,2"} with 1 = {1,1'},2 = {2,2'}, where (o, ;) = —1 for {7,j} = {1,2} or
{1’,2'}, and is equal to zero for other cases. We have g1 = m(f1f1-) and g = 7(fafa).
The relation (3.1.3) is given by

9195 — 929192 + 95 g1 = 0. (3.2.1)
By (3.1.4), this is equivalent to
9195 — (6° +47*)929192 + 9391 = 0. (3.2.2)

We show (3.2.2). It follows from the Serre relations for Ay, we have

fufs = (@+a Dfafifo+ 51 =0, (3.2.3)
foft —(a+a Dfifofi + fif2 =0,

and formulas obtained form (3.2.3) by replacing f1, fo by fi/, for. By multiplying these
two formulas, and by using the commutation relations f; f; = f; f; unless {4, j} = {1,2}
nor {1’,2'}, we have

(frhi)(fafo)® + (g + a2 (fafo ) (rfr)(fafor) + (fafo )2 (frfir) + Z =0,
where
Z =—(q+q ") fafd frfv fo+ for £3 fr frfar)-
Since & = 2, and Z € J, we obtain (3.2.2). Thus (3.1.3) is verified for X of type As.

3.3.  Assume that X is of type By and X is of type A3. We have I = {1,2,2'},
I={1,2} with 1 = {1} and 2 = {2,2'}, where (o, ;) = —11if {i,5} = {1,2} or {1,2'}
and is equal to zero for all other i # j. By (3.1.4), (3.1.3) is equivalent to the formulas

9195 — (@° + ¢7*)g29192 + 9591 = 0, (3.3.1)
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9297 — 311919297 + 311979291 — 9192 = 0. (3.3.2)

We show (3.3.1). Here U, satisfies the formulas (3.2.3) and the formulas obtained
from (3.2.3) by replacing f1, f2 by f1, fo. By multiplying f3 from the right on (3.2.3)
for f1f3, we have

ffsfy —a+a D fafifs fo+ f31f5 =0, (3.3.3)
Here by applying (3.2.3) for fif2,, we have
Fo(fif3) fo = (g +a ") (fofor) frfofar) = Fof3 f1 o,
[3Af3) = (a+a )3 fo fufe — (fofo)* fr

Substituting these formulas into (3.3.3), we have

filfafo)® = (a+a )2 (fofo ) i(fofe) = (fofe ) L+ Z =0,

where

Z=(q+q "3 fafrfe+ f3 fo frf).

Since § = 2, Z € J, we obtain (3.3.1).
Next we show (3.3.2). First note the following equality. By using (3.2.3) for fifa2f1
and for fo f7, we have

(q+q D fifo(fifafr) = fife (foff + f112)
= fi(fofo ) fE + fi(fo f2) fo
= filfafo) ST+ (a+a D fifofrifa— fifo fo (3.3.4)

Here by applying (3.2.3) for fof? and for fo f? twice, we have

fofi(fofD) = fo fi(la+a ") fufefi — f112)
= fz'ff((q +q Vfafi — f1f2)
= (((J+q_1)f1f2'f1 — f12f2/)((Q+q_1)f2f1 - f1f2)
=(q+qa V2 fifefifefi — @+ D A(fo D) fe
—(g+q Vi fe fao + fifo fifo
=(qg+q¢ "V fifofifefi— ((a+a ) = 1) fLfa fife
—(g+a Vfifafo i+ (g+a D fafor

Substituting (3.3.4) into the last equality, we obtain

fofifeft =@+ O A(ffo) 7 = (a+a D (fafa) fr + [Lfo fife (3.3.5)

On the other hand, by applying (3.2.3) for fo fZ, we have
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(fofD) fofi = @+ a D fifo fifafi — fifo fo i
= filfefo) [T+ (q+a D fifofife — fifofo — [ fo fafr. (3.3.6)

The second identity is obtained by substituting (3.3.4) into the first identity. Now by
applying (3.2.3) for fofZ we have

forfofd = for(fofB) fr = (q+ ¢ D for frfof? — for fifafr.

By substituting (3.3.5) and (3.3.6) into the last formula, we have

(fofo) [P = (@ + 1+ ) [i(fafo ) fE — (@ + 1+ g2 fE(fafo) fr + fP(fafor). (3.3.7)

Since [3]; = ¢ + 1+ ¢~ 2, by applying 7, we obtain (3.3.2). Note that the formula (3.3.7)
is obtained without appealing modulo 2. Thus (3.1.3) is verified for X of type Bs.

3.4. Assume that X is of type G2 and X is of type Dy. We have I = {1,2,2/,2"},
I={1,2} with 1 = {1} and 2 = {2,2',2"}, where (o, ;) = —1if {4,5} = {1,2},{1,2'}
or {1,2”}, and is equal to zero for all other ¢ # j. By (3.1.4), (3.1.3) is equivalent to the
formulas

9195 — (@ + a7 %)929192 + 9391 = 0, (3.4.1)

4
9201 — [4l1919207 + M 919201 — (41979291 + 9192 = 0, (3.4.2)
1

4
2
Here U satisfies the formulas (3.2.3) and the formulas obtained from (3.2.3) by replacing

fi, f2 by fi, fo or fi, for. By multiplying f f, from the right on (3.2.3) for fif3, we
have

where [4]1 = q3 —+ q —+ q_l + q_3 and |: :| = C]4 + q2 + 2+ q_2 + q_4. ‘We show (341)
1

FER S f3n = (a+ ) fafuf3 f3n fo + F2 F1 £ f30 = 0. (3.4.3)

Concerning the middle term, by applying (3.2.3) for f1f2, then for fif2,, we have

F(fif3) 3 fa=(a+a ) fafo (fifs) o fo — 213 fifan fo
= (q+q B2 fafo for frfofor for — (@ + q V) fofor fon fr fofor
— fof3 fifaf3. (3.4.4)

Concerning the third term, by applying (3.2.3) for fif2,, then for fif2, and finally
for f2f1, we have

FE( S50 f5 = (a+ a ) f5 far frfor for — F5 130 (f1F3)
= (q+q V5 farfrfor f3 = (g + DV o 50 (F3 1) for + F3 130 f5
= (q+a V3o frfor f = (a+q ) for f3n fo fr ol
+(a+a ) o fo frf3 for + J3 3 f3 i
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It follows that

Si(fafo for)? = (a4 a2 (fofar for) fr(fafor o) + (fofor for )2 1+ Z =0,

where

Z=(q+a ") (faf2 f1 3 f2 + for 3 1 3 for + for f3n f1 3 for)
Since € = 3, Z € J, we obtain (3.4.1).

3.5. It remains to prove (3.4.2). We shall prove the following formula in A U .

(fofor for) F1 = (A1 fr(fofo for) ff + B] fi(fofor for) fT
1
— [ f (fofor for) 1 + fL(fafo f2r) =0 mod J. (3.5.1)

Clearly (3.5.1) will imply (3.4.2). The proof of (3.5.1) by the direct computation as in
the case of Bs seems to be difficult. Instead, we will prove (3.5.1) by making use of
PBW-basis of U, .

Let h = (41,...,4,) be a sequence associated to the longest element wy of W. Here
W is of type Dy, and v = 12. We choose h as

h=(22,2"1,22,2"1,272 2"1). (3.5.2)

We define B = s;, -+ si,_, () for k=1,...,v = 12. Then the set AT of positive
roots is given as

A+ = {517 .. '7612}
= {2,2/,2",122'2",12'2" 122" 122/,1122'2",12,12',12", 1}, (3.5.3)

where we use the notation for positive roots such as 12 <+ aq +ao, 122" < a1 +ag +agr,
etc. For k = 1,...,v, the root vector f/(gi) is defined by f[(ii) =T, ~~Tik71(fi(:)). Then
PBW-basis of U} is given as {L(c, h) | c € N'?}, where for ¢ = (ci,. .., c12),
Lieh) = £ 1) 135 15 15t i 1530 Finran 115 15 £l 1)
We use the following commutation relations,
f12 = f1f2 — qufl, (smnlarly fOI‘ flgl, flgll), (354)
fio2r = fiafor — qfor fi2 = fio fo — afafrzr,  (similarly for fioor, fi2om),

froor0r = froo forr — qfor froor = fraron fo — qfafroar = froon for — qfor fr2on,
frioorom = from froor — qf122 fror = frafioror — qfroron f12 = fior fioor — @ fr000 fro0.

The following formulas are obtained by applying the commutation formula of Lev-
endorskii and Soibelman [LS].

frooro fo = q_1f2f122'2”, (similarly for fiaoron for, f122f2”f2”)7
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fizon frazar = " frozar fizier,  (similarly for fioo fizoior, fiazr fiazan),
Jr2om frorom = frarar froor,  (similarly for fioor fi2or, fioor fi2r2r),
fiiooran frozr = g7 fro frageren,  (similarly for fiigorar fiogn, fiisenan fizver)

fiafiizoror = ¢ fiizaron f12,  (similarly for fior fiiaor, fior fiia2rar),
fi2e fiz = fiafi2rs (similarly for fior f1o/, f12v f12)7
f1f12 = q_lflgfl, (smnlarly fOI' fl f12/,f1f12//).

By using those relations, we obtain

fifizor = froan f1 — (q - qfl)f12/f12”7 (similarly for fi fi2or, f1f122’)~

Also we can compute

fi(fafor forr) = frozor + q(for froor + for froon + fofroiar)
+ @ (fo for fr2 + fofor fizr + fafor fran) + @° fofor for fi.

It follows that
fi(fofor for) = frooron + @3 fofo for fi mod J.

By multiplying f; from the left on both sides of (3.5.5), we have

Fi(fafo for) = fifrazar + @ f1(fofor for f1)
= fifiozor + qg(f122/2~ + q3f2f2’f2”f1)f1
= fifiz22r + @ froo00 f1 + ¢° fafor for f1,

b

(3.5.5)

where we again used (3.5.5) in the second identity. On the other hand, we can compute

f1fia2r00 = qfr22020 f1 — (I(q - q_l){f12/2”f12 + fi2ov f1or + f122'f12”}
+ (g7 = 2q) fi122r27
= qfiooo f1 + (@ +q ") fiizo2r mod J.

Hence we have
F(fafor far) = (a+ @°) frozor fr + (a + a7 1) frazzror + ¢° fa for fon f7.
Next by multiplying f; from the left on both sides of (3.5.7), we have
FL(fofor for) = (q+ @) frfrozor fr + (g + a7 1) fufinzorer + ¢ frfafor for f7.
Here we can compute

fifiizarer = g frizeron fr + (@ — ¢ 1) fiafrz fron.

Thus by applying (3.5.6), (3.5.9) and (3.5.5) to (3.5.8), we have

(3.5.6)

(3.5.7)

(3.5.8)

(3.5.9)
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fE(faforfor) = (° + ¢* + @) frozor f1 + (¢ +26° + 2+ ¢ 2) frio2r20 f1
+(¢° +2¢+ 207" +q7%) frafro fror + @ fofor for f1. (3.5.10)

Here we note that

f1f12f12’f12” = q_3f12f12’f12”f1- (3'5'11)

Then by multiplying f; from the left on both sides of (3.5.10), and by applying
(3.5.6), (3.5.9), (3.5.11) and (3.5.5), we have
FH(fafo for) = (@ + 4"+ 8 + @) frozor 7 + (07 +26° + 247" + 4 7%) frazzan 7
+(¢°+2¢° +2¢7 2+ ¢ °) fafro fron fr + 4" fafor far f1. - (3.5.12)

Now (3.5.1) can be verified easily by (3.5.5), (3.5.7), (3.5.10) and (3.5.12). Thus
(3.4.2) is verified, and (3.1.3) holds for the case X is of type G2. This completes the
proof of Proposition 1.10. O

REMARK 3.6. In the case where X is of type Ba, the equality (3.3.7) holds in U .
This is also true for the case of type G2. In fact, a more precise computation shows that
(3.5.1) holds in U, without appealing modulo J nor modulo 3.

4. The proof of Lemma 1.13.

4.1. We consider the Cartan matrix as in 3.1. Since X has rank 2, w, has two
reduced expressions h = (n1,...,7,) and h’ = (1},...,7,). Let = be the anti-algebra
automorphism of U~ and of U, . It is known that

(Im o 'Ink—l (ink))* = Iﬂi - 'In,i,,k (in/szﬂ)’

and the following formula is obtained from the corresponding formula for U,

(Rﬂl e Rﬁkfl (fm»))* - Rni o R"lz*’“ (fn;*’“*l) )

Thus we may verify (1.13.1) for a fixed h.
In the case where X has type A; X Ay, there is nothing to prove.

4.2. Assume that X has type Ay. We write I = {1,1’,2,2'} with I = {1,2},
where 1 = {1,1'}, 2= {2,2'}. Put h = (2,1,2). Then AT = {2,12,1}. We have

Iz(fl) = iliz - q2i2il7 IZIl(iz) = il'

We have

Ry(f1) = ToTo (fif1r) = To(f1) T (frr)
= (fif2 — afaf1)(f1 for — afor f1r)
= fifv fafe + & fafo frfr — 42, (4.2.1)
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with

Z = fifafo frr + fafifu for
= (fie + afofr) for fro + fofi(fro + afe frr)
= fiafor f1r + frro fof1 + 2qf2f1for fro,

where fio = T3(f1) = fife — afefr and fro = To(fv) = fvfo — qfo frr. Since
o(fi2) = fra, we see that Z € J. Thus 7(Ra2(f1)) = 9192 — ngggl and (1.13.1) holds
for T (f,). Moreover,
RyRy(f2) = ToTo Ty Ty (fofar)
=TT (fo)To Ty (for)
= fifv. (4.2.2)

Hence TF(RgRl(JE)) = g1, and (1.13.1) holds for T',T(f,). The lemma holds for X of

type As.

4.3. Next assume that X has type Bz, and X has type As. We write [ =
{2,1,2'} and I = {1,2}, where 1 = {1},2 = {2,2'}. Put h = (2,2/,1,2,2,1) and
At ={2,2/,122/,12/,12,1}. Then h = (2,1,2,1) and A" = {2,12,112,1}. We define
root vectors and PBW-bases of Uq’ and Q; similarly to the case of G5 in 3.5. Then we
have

ig = I,(il) = iﬁig - q2i7iy (4.3.1)
i@ - Ing(ig) =(g+ qil)il(iiiliiiliii)’
I =TT\ Ty( 1)
We compute
Ry(f1) = ToTw (f1) = To(fife — afor f1)
= (fifa —afofi)fo —afo(fif2a —afaf1)
= fifafo + @ fofo fr — a(fafifor + fo f1f2). (4.3.2)
Hence 7(Ra(f1)) = 9192 — ¢2gag1 and (1.13.1) holds for £, Also
RoRy Ry(f1) = To(Te Ty To ) Ta(f1)
=To(ThToT1)T2(f1)
=TT Ty (f2)
=TT (f2) = f1- (4.3.3)

Hence 7(RoRiRa(f1)) = g1, and (1.13.1) holds for £ .
Finally consider -
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RERL(J?;) = T2T2'T1(f2f21)
= To (ToT1(f2))To(Tor T1(f2r))
=T (f1)To(f1)
= fiz fr2. (4.3.4)

Put

Zyis = filfifafo — @ fofo 1) — (fifofe — @ fofo f1) 1
= fifafe — (@ + V) fifafo 1 + @ fafo fT. (4.3.5)

Clearly Z115 € U7, and 7(Z112) = (¢ + q*1)<I>(LlQ) by (4.3.1). We express Zi12 in
terms of PBW-basis of U_". By using (3.2.3) for f2f2 and f2for, we have

fifafr =@+ a Vfifafife — (@+a ) fofifo i + fafo fT. (4.3.6)
fifafifor = (afafi + fr2)(af2 f1 + fi2r)
=@ fofifo fr + afiofo i + afofifiz + frafiz
= fofo [T+ afroo f1 + fafro f1 + frafio + @ (fofro 1+ fo frafr),
fafifo fr = afofo [T+ fofi2 f1.

Here we have used the formula f; fior = ¢~ fio/ f1. Moreover, by using fisfor = qfor f1o+
f122/, we have

fifafo fir = P fafo fi + a(fofro fr + for fi2f1) + froo fi. (4.3.7)

Substituting these formulas into (4.3.5), we see that

Zns = (¢+¢ ) frizfrz (4.3.8)

Combining this with (4.3.4), (4.3.5), we obtain ®(f

f115) = m(R2R1)(f1). Thus the lemma
holds for X of type Bs.

4.4. Finally assume that X has type G3. We follow the notation in 3.5. Put

iQ:I2(i1) :iliz_qgigiy (4.4.1)

First consider the case f . By using (4.3.2), we have
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Ry(f1) = TaTo Tor (f1)
=Tor(frfofo + @ fofo fr — a(fofife + fo f1f2))
= fifofo for) — @ (fofor for) o
—q(fafifo for + for fifor f2 + far fifafor)
+ @ (fofor frfor + for for frfo + for fafifor).

Hence F(Rg(fl)) = g192 — ¢*9201 and (1.13.1) holds for f

Next consider the case f LETPY Put

£12°

Z1s = fi(fofor for) — @ (fofor for) 1,

12 = fiZ12 — qZ12 f1.

Then we have

= f12f2f2'f2” - (q3 +q) fifofor for f1 + q4f2f2/f2”f12~ (4.4.2)

Clearly Z115 € U7, and we have

m(Zu2) = (@ +q l)é(il) (4.4.3)

by (4.4.1). We express each term of Zj15 in terms of PBW-basis. By (3.5.5), we have

fi (f2f2/f2“)f1 fioor0m f1 + q fzfz/fz//fl mod J. (4.4.4)

By (3.5.7), we have

F(fafor for) = (g + @) frooran f1 + (@ + ¢ 1) friozar + @8 fofor for f7 mod J. (4.4.5)

Substituting these formulas into (4.4.2), we have Z112 = (¢+¢ ') fi122r2» mod J, which
implies that

m(Zu2) = (q+ ¢ )7 (frrzzrzn). (4.4.6)
Note that by (3.5.2) and (3.5.3), we have
RyR1 Ry (f1) = ToTo Ton Ty ToTo Ton (f1) = fii22r20-
By comparing (4.4.3) and (4.4.6), we obtain

W(RgRle(fl)) = (I)(iu ) (447)

Thus (1.13.1) holds for f112

Next consider the case of f 119" Put

Zine = fiZue — ¢ 1 Zuafi
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It follows from the computation of Zj;o in (4.4.2), we have

Ze = [P fafo for = (@ + q+ D) [T fafo for fr
+ (¢ + ¢ + V) frfafo for T — @ fafor for f1. (4.4.8)

Clearly Z1112 € U7, and we have
m(Ziz) = 2181 ®( f,,,,) (4.4.9)
By (3.5.10), we have
f(fafo for) = (@° + 4" + @) frazan f7 + (" +2¢° + 24+ ¢72) frazoan fo
+ (0 420" + 207" + 07 frafre Fror + ¢ fafor for 1

By this formula together with (3.5.7) and (3.5.5), we have Z1112 = [2]1[3]1 f12./12" f12~
mod J, which implies that.

m(Z1112) = 211817 (frz frz fr2v). (4.4.10)

Note that by (3.5.2) and (3.5.3), we have

= f12f12/f12”~

By comparing (4.4.9) and (4.4.10), we obtain

W(RleRle(J?g)) = ®(fi112)-

Thus (1.13.2) holds for f ..

Finally consider the case of i11122' Put

Zhi12e = friozar fizorer — @' 2200 friooar .
By (3.5.2) and (3.5.3), we have
Ry(f1) = ToToTon (f1) = fiazran.

Hence, by the previous computation, we know that m(fi2207) = @(iu). On the other
hand, by (4.4.7), we have 7(fi120r27) = ®(f,,)- It follows, by (4.4.1), that

W(ZM) == [3]1@(i11122). (4411)

We note, by (3.5.2) and (3.5.3), that
RgR;(iz) = ToTo TonTi(fao for forr) = frarom fiaor fi22r.

Thus in order to prove (1.13.1) for f .., it is enough to see that
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Z11122 = [3]1f12/2//f122//f122/ mod J (4412)

We shall express Z11122 in terms of the PBW-basis of Uq_. In the computation below,
in addition to the formulas in 3.5, we need to use the following commutation relations,
which are deduced from the formula of Levendorskii and Soibelman [LS] applied for the
subalgebra of type As.

frafe=q " fafra, (4.4.13)
fro20 f2 = ¢ fafra20,
fraz f2 = ¢ fafraz,
fr2fraz = a7 fraz f12,
fr2fr220 = ¢ froom f12,

and the formulas (two for each) by applying the operation o on both sides. By using
these relations, we have

fiafi2ror = froorom f12 + (qfl - Q)f122~f122', (4-4-14)
frizor2m fo = fafri22r20 + (q_l - Q)f122"f122',

and the formulas (two for each) by applying the operation o on both sides.
Now we can compute (note that the second formula in (4.4.14) is not used in this
computation)

fr122r2 fro0r2n = (q2 -2+ q72)f12/2~f122“f122/ + q71f122/2“f1122/2~-

Hence

Zi1122 = frizerar frazer — @ fizarar fiizoron
=(¢* — 2+ q %) frrar fr2or froo
= [3]1 fizror f1227 f122r  mod J.

Thus (4.4.12) holds, and (1.13.1) is proved for f The lemma holds for X of type

11122°
Gs.
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