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Abstract. We study the maximal Salem degree of automorphisms of K3

surfaces via elliptic fibrations. In particular, we establish a characterization
of such maximum in terms of elliptic fibrations with infinite automorphism
groups. As an application, we show that any supersingular K3 surface in
odd characteristic has an automorphism the entropy of which is the natural

logarithm of a Salem number of degree 22.

1. Introduction.

Let X be a K3 surface defined over an algebraically closed field k of characteristic

p ≥ 0, that is, X is a smooth projective surface defined over k such that H1(X,OX) = 0

and the dualizing sheaf is trivial : ωX ≃ OX . We denote by NS(X) the Néron–Severi

group of X.

The entropy of an automorphism f : X −→ X is the logarithm of the maximal

absolute value of the eigenvalues of the action f∗ on NS(X) induced by f . This defi-

nition is consistent with the topological entropy of automorphisms of smooth complex

projective surfaces ([ES13]). One knows that the entropy of any automorphism of X

is either 0 or the logarithm of a Salem number, and we define Salem degree of f to be

0 or the degree of the Salem number respectively (see Section 3). The maximal Salem

degree of automorphisms of X is closely related to both complexity and richness of such

automorphisms. Thus, a good understanding of such maximum is of interest. The main

results of this note are Theorems 1.1, 1.2, and 1.3.

As in [Ni14], we say an elliptic fibration on X is an elliptic fibration with infinite

automorphism group if the set of all automorphisms of X which preserve this fibration

is infinite (see Section 2.2). By generalizing [EOY16], we establish a characterization of

the maximal Salem degree of automorphisms of K3 surfaces in terms of elliptic fibrations

with infinite automorphism groups:

Theorem 1.1. Let X be a K3 surface defined over an algebraically closed field of

characteristic p ̸= 2, 3. Suppose rk(L∞(X)) ≥ 2, where the sublattice L∞(X) ⊂ NS(X)

is defined to be generated by the classes of fibers of all the elliptic fibrations with infinite

automorphism groups. Let d = rk(L∞(X)). Then

1) If d is even, max{Salem degree of f | f ∈ Aut(X)} = d;
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2) If d is odd, max{Salem degree of f | f ∈ Aut(X)} = d− 1.

Using Theorem 1.1, we show the following comparison type theorem:

Theorem 1.2. Let X and Y be two K3 surfaces of the same Picard number defined

over two algebraically closed fields k and k′ (char(k), char(k′) ̸= 2, 3). Suppose NS(X) is

isometric to a sublattice of NS(Y ), and suppose Y has at least one elliptic fibration with

infinite automorphism group. Then

max{Salem degree of f | f ∈ Aut(X)} ≥ max{Salem degree of f | f ∈ Aut(Y )}.

Recall that a supersingular K3 surface is a K3 surface with Picard number 22,

the maximal possible value. In many senses, supersingular K3 surfaces are the most

special K3 surfaces. As an interesting application of Theorem 1.2, we shall also prove

the following:

Theorem 1.3. Let p be an odd prime. Let X be a supersingular K3 surface defined

over an algebraically closed field of characteristic p. Then there is an automorphism

f ∈ Aut(X) the entropy of which is the logarithm of a Salem number of degree 22.

In particular, those automorphisms are not geometrically liftable to characteristic 0

(see [EO15], [EOY16]). Many people have studied supersingular K3 surface automor-

phisms of Salem degree 22 in recent years ([BC16], [EO15], [EOY16], [Sh16], [Sch15],

[Br15]). More precisely, we summarize previously known results on such automorphisms

as follows:

Theorem 1.4. Let p be a prime number. Let X be a supersingular K3 surface

defined over an algebraically closed field of characteristic p. Let σ(X) be the Artin in-

variant of X. Then, in the following cases, X has an automorphism the entropy of which

is the logarithm of a Salem number of degree 22:

(1) σ(X) = 1 and p = 2 ([BC16]);

(2) σ(X) = 1 and p = 3 ([EO15]);

(3) σ(X) = 1 and p = 11 or > 13 ([EOY16]);

(4) σ(X) = 1 and p ∈ {5, 7, 13}, or 2 ≤ σ(X) ≤ 9 and 3 ≤ p ≤ 7919, or σ(X) = 10

and 3 ≤ p ≤ 17389 ([Sh16]).

It is known that for any supersingular K3 surfaceX in odd characteristic, the Néron–

Severi group NS(X) is isometric to a sublattice of the Néron–Severi group of a supersin-

gular K3 surface of Artin invariant one in the same characteristic ([RS78], cf. [Li15]).

Thus, by combining Theorem 1.2 and Theorem 1.4, we can prove Theorem 1.3. The

author was recently informed that Simon Brandhorst found an alternative proof of The-

orems 1.2 and 1.3 ([Br16]), inspired by the first version of this paper (see also [BG16]

for a relevant work).

In Section 6, following [Ni14], we introduce the notion of the exceptional sublattice

E(NS(X)) ⊂ NS(X). For an elliptic K3 surface X, the exceptional sublattice, the set
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of all the elliptic fibrations with infinitie automorphism groups and the maximal Salem

degree of automorphisms of X are closely related to each other (Theorems 1.1, 6.1, 6.2).

It is hoped that the exploration of such relationships in this note will find interesting

applications in future study of K3 surfaces and other related topics.

Acknowledgements. The author would like to thank Professor Keiji Oguiso for

valuable discussions and comments.

2. K3 surfaces and elliptic fibrations.

In this paper, for the reader’s convenience, we give definitions/explanations of the

notations needed. In this section, we fix notations on K3 surfaces and elliptic fibrations.

2.1. K3 surfaces.

Let X be a K3 surface defined over an algebraically closed field k of characteristic

p ≥ 0. The Néron–Severi group NS(X) of X is a free abelian group of finite rank which

is denoted by ρ(X) and is called the Picard number of X. In characteristic 0, ρ(X) is

at most 20, but, in positive characteristic, the maximal possible value of ρ(X) is 22. We

denote the intersection form on NS(X) by (∗, ∗∗). Note that (NS(X), (∗, ∗∗)) is an even

hyperbolic lattice (by definition, a lattice is a free abelian group of finite rank with a

Z-valued symmetric bilinear form). Since the intersection form (∗, ∗∗) is non-degenerate,
the dual NS(X)∗ := HomZ(NS(X),Z) regarded as a subgroup of NS(X) ⊗ Q contains

NS(X) through this intersection form. The discriminant group of X is defined to be the

quotient NS(X)∗/NS(X).

According to [Ar74], the discriminant group NS(X)∗/NS(X) of a supersingular K3

surface X is, as an abelian group, isomorphic to (Z/p)2σ(X), where σ(X) is an integer

such that 1 ≤ σ(X) ≤ 10. The integer σ(X) is called the Artin invariant of X. In each

positive characteristic p > 0, there is, up to isomorphism, a unique Artin invariant one

supersingular K3 surface X(p) ([Ogu79], [Shi75]).

2.2. Elliptic fibrations on K3 surfaces.

Let X be a K3 surface defined over an algebraically closed field k of characteristic

p ̸= 2, 3. According to Piatetsky-Shapiro and Shafarevich [PS71], elliptic fibrations on

X are in one-to-one correspondence with primitive isotropic nef elements e ∈ NS(X).

That is, e ̸= 0, e2 = 0, e/n ∈ NS(X) only for integers n = ±1, e ·D ≥ 0 for any effective

divisor D on X. For such e ∈ NS(X), the complete linear system |e| is one dimensional

without base points, and it gives an elliptic fibration |e| : X −→ P1, that is, the general

fiber is a curve of genus 1.

For any c ∈ NS(X), we set

Aut(X)c := {f ∈ Aut(X)|f∗(c) = c}.

We introduce some notations related to elliptic fibrations on X:

E(X) := {e ∈ NS(X)|e is primitive, isotropic, and nef };
E∞(X) := {e ∈ E(X)|Aut(X)e is an infinite group}, and we say an elliptic fibration

on X is an elliptic fibration with infinite automorphism group if the corresponding class

of this fibration is in E∞(X);
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The sublattice L∞(X) ⊂ NS(X) is generated by all the elements in E∞(X).

For any nonzero isotropic element c ∈ NS(X), the sublattice (c⊥)(2) ⊂ c⊥ is defined

to be generated by c and by all elements with square (−2) in c⊥, where c⊥ is the

orthogonal complement to c in NS(X). The following lemma gives a test of an elliptic

fibration with infinite automorphism group:

Lemma 2.1. Let e ∈ E(X). Then e ∈ E∞(X) if and only if rk(e⊥)−rk((e⊥)(2)) > 0.

Proof. We use Amp(X) ⊂ NS(X)⊗ R to denote the ample cone of X. Let

A(NS(X)) := {f ∈ O(NS(X))|f(Amp(X)) = Amp(X)}.

Let A(NS(X))e ⊂ A(NS(X)) be the stabilizer subgroup of e. By [LM11, Theorem 6.1],

the natural map Aut(X) −→ A(NS(X)) has finite kernel and cokerel. Then Aut(X)e
and A(NS(X))e are isomorphic up to finite groups. By [Ni83, Corollary 1.5.4] (notice

that the proof of [Ni83, Corollary 1.5.4] works for even hyperbolic lattices, in particular,

NS(X), and is valid in any characteristic), A(NS(X))e is infinite if and only if rk(e⊥)−
rk((e⊥)(2)) > 0. Thus, Aut(X)e is infinite if and only if rk(e⊥)− rk((e⊥)(2)) > 0. □

Let ϕ : Aut(X) −→ O(NS(X)) be the natural map which sends any f ∈ Aut(X) to

the induced isometry f∗ of NS(X). By definition of L∞(X), it is clear that L∞(X) is

an Aut(X)-stable sublattice of NS(X) (i.e., for all f ∈ Aut(X), f∗(L∞(X)) = L∞(X)).

Thus ϕ naturally induces another map

ψ : Aut(X) −→ O(L∞(X))×O(L∞(X)⊥)

such that, for any f ∈ Aut(X), ψ(f) = (f∗|L∞(X), f
∗|L∞(X)⊥). Let

π : O(L∞(X))×O(L∞(X)⊥) −→ O(L∞(X))

be the natural projection map.

Lemma 2.2. Suppose X has at least two different elliptic fibrations with infinite

automorphism groups, i.e., rk(L∞(X)) ≥ 2. Then both Ker(ψ) and Ker(π ◦ψ) are finite

groups.

Proof. Let d = rk(L∞(X)). Since d ≥ 2, it follows that L∞(X) is a hyperbolic

lattice of signature (1, d − 1). Then the orthogonal complement L∞(X)⊥ ⊂ NS(X) of

L∞(X) is a negative definite lattice of rank ρ(X)− d. By [LM11, Theorem 6.1], Ker(ϕ)

is a finite group. Note that L∞(X) ⊕ L∞(X)⊥ is a sublattice of NS(X) of finite index.

Thus, Ker(ψ) is equal to Ker(ϕ) and hence is also a finite group. The group O(L∞(X)⊥)

is finite because L∞(X)⊥ is negative definite. Since the quotient Ker(π ◦ ψ)/Ker(ψ) is

isomorphic to a subgroup of O(L∞(X)⊥), it follows that Ker(π ◦ ψ)/Ker(ψ) is finite.

Then Ker(π ◦ ψ) is also finite. □
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3. Salem numbers and entropy.

Let (L, (∗, ∗∗)) be a hyperbolic lattice, i.e., a pair consisting of a free abelian group

of rank 1 + t and a Z-valued symmetric bilinear form ( , ) on L of signature (1, t) with

t > 0. For any ring K, we use LK to denote the scalar extension of L to K. We fix

some notations (they are the same as in [EOY16], but, for the reader’s convenience, we

repeat here):

O(L) := the orthogonal group of the lattice L;

SO(L) := {g ∈ O(L)| det(g) = 1};
P := {x ∈ LR| (x2) > 0}, notice that P consists of two connected components, say

±C;
O+(LR) := {g ∈ O(L)(R)| g(C) = C};
O+(L) := O(L)(Z) ∩O+(LR);

SO+(L) := O(L)(Z) ∩O+(LR) ∩ SO(L)(R).

Definition 3.1. A Salem number of degree 2d is a real algebraic integer a > 1

whose Galois conjugates consist of 1/a and 2d − 2 complex numbers of modulus 1. A

Salem polynomial is the minimal polynomial of a Salem number.

Salem numbers and isometries of hyperbolic lattices are closely related:

Proposition 3.2 (See [Mc02], [Og10]). Let f ∈ O+(L). We denote the charac-

teristic polynomial of f by p(x). Then one of the following two statements is true:

(1) p(x) is the product of cyclotomic polynomials;

(2) p(x) = c(x)s(x), where c(x) is the product of cyclotomic polynomials and s(x) is a

Salem polynomial.

Definition 3.3. Let f ∈ O+(L). The entropy h(f) of f is defined by

h(f) = log(r(f)) ≥ 0,

where r(f) is the spectral radius of f (i.e., the maximum of the absolute values of the

complex eigenvalues of f acting on L).

The next definition can be viewed as a generalization of the topological entropy of

automorphisms of smooth complex projective surfaces ([ES13]):

Definition 3.4. Let S be a smooth projective surface, and let f ∈ Aut(S). The

entropy h(f) of f is defined by

h(f) = log r(f∗|NS(X)),

where f∗ is the action on NS(X) induced by f .

Definition 3.5. Let X be a K3 surface, and let f ∈ Aut(X). The Salem degree

of f is defined by
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Salem degree of f =

{
0 if the entropy h(f) is 0,

d if the entropy h(f) is log of a Salem number of degree d.

Remark 3.6. In order to study the maximal Salem degree of automorphisms of

any K3 surface X, we will take L to be the sublattice L∞(X) of the Néron–Severi group

NS(X) and C to be the connected component of P the closure of which contains all

elements in E∞(X).

4. A few observations from group theory.

Theorem 4.1 and Theorem 4.4 are generalizations of [EOY16, Theorem 4.1] and

[EOY16, Theorem 4.6]. Proofs are similar. Here, for the reader’s convenience, we give

the proof of Theorem 4.1 ii) and Theorem 4.4 below.

Theorem 4.1. Let L be a hyperbolic lattice of rank d ≥ 2 and G ⊂ SO+(L) be a

subgroup. Assume that G has no non-trivial G-stable R-linear subspace of LR. Then

i) If d is even, then there is an element g ∈ G such that the characteristic polynomial

of g is a Salem polynomial of degree d;

ii) If d is odd, then there is an element g ∈ G such that the characteristic polynomial

of g is (t− 1)s(t), where s(t) is a Salem polynomial of degree d− 1.

The case i) is just [EOY16, Theorem 4.1]. The proof of the case ii) is completely

similar to that of the case i), and we will sketch it below:

Proof. We assume d is odd. Let Pd ⊂ Z[t] be the set of monic polynomials of

degree d. Then Pd is identified with the affine variety Ad defined over Z. The map

char : SO(L) → Pd, h 7→ Φh(t) := det(tId − h)

is a morphism of affine varieties. Let u1(t) := t − 1, u2(t) := t + 1, . . . , uN (t) be the

cyclotomic polynomials in Z[t] of degree ≤ d, where N is the cardinarity of the cyclotomic

polynomials of degree ≤ d. The subsets P1 := {p(t) ∈ Pd(C) | u21(t)|p(t)} and Pi :=

{p(t) ∈ Pd(C) | ui(t)|p(t)} for i ≥ 2 define proper closed algebraic subvarieties of Pd⊗ZQ,

thus so is their finite union Qd := ∪N
i=1Pi ⊂ Pd ⊗Z Q. (Notice that the sets Pi, i ≥ 2,

defined here is the same as those defined in [EOY16]. However, the set P1 here is slightly

different from that in [EOY16]. This is because, when d is odd, for any g ∈ SO(L)(Z),
1 is an eigenvalue of g, and hence t− 1 divides the characteristic polynomial of g.)

Let g ∈ G. Its characteristic polynomial Φg(t) ∈ Z[t] is monic and of degree d. By

Proposition 3.2, Φg(t) is the product of cyclotomic polynomials and of at most one Salem

polynomial counted with multiplicities. Thus, Φg(t) is divided by a Salem polynomial of

degree d−1 if and only if Φg(t) ∈ Pd(C)\Qd. The following lemma completes the proof:

Lemma 4.2. There is an element g ∈ G such that Φg(t) ∈ Pd(C) \Qd.

Proof. See the proof of [EOY16, Lemma 4.5]. □



1157(279)

Elliptic fibrations and maximal Salem degree 1157

This completes the proof of Theorem 4.1. □

Remark 4.3. In order to prove Theorem 1.3, we essentially only need the case i)

of Theorem 4.1. However, we need both two cases of Theorem 4.1 to prove Theorem 1.1

which can apply to other K3 surfaces besides supersingular K3 surfaces.

Theorem 4.4. Let L be a hyperbolic lattice of signature (1, r + 1) with r ≥ 0 and

let e ∈ L be a primitive element such that (e, e) = 0. Let g ∈ SO(L)(Z) be such that

ord(g) = ∞ and g(e) = e. Suppose V is a g-stable R-linear subspace of LR. Then either

V ⊂ e⊥, or e ∈ V (or both).

Proof. Choose a Q-bases of LQ:

⟨e, w1, . . . , wd−2, u⟩,

where wi ∈ e⊥, and (u, e) = 1.

By [Og09, proof of Lemma 3.6] (see also [EOY16, Lemma 4.7]), replacing g by a

suitable power gN (N > 0) if necessary, we may assume

g =

1 at c

0 Ir b

0 0t 1

 ,

with respect to the Q-bases chosen above. Here 1, 0 ∈ Q are the unit and the zero, c is in

Q, Ir is the r × r identity matrix, 0 ∈ Qr is the zero vector, b ∈ Qr is a column vector,

at is the transpose of a column vector a ∈ Qr, and simiarly for 0t.

We claim that b ̸= 0. Suppose otherwise. Then g(u) = u+ ce, it follows that

(u, u) = (g(u), g(u)) = (u+ ce, u+ ce) = (u, u) + 2c(u, e) = (u, u) + 2c,

which implies c = 0. Then for all 1 ≤ i ≤ r

(u,wi) = (g(u), g(wi)) = (u,wi + aie) = (u,wi) + ai, where ai = at · ei.

Therefore, ai = 0 for all i. So g = Id, a contradiction to ord(g) = ∞. Therefore, b ̸= 0.

Without loss of generality, from now on, we may assume b = er.

We claim that ar ̸= 0. Suppose otherwise. Then for all k ≥ 1,

gk(u) = u+ kwr + kce.

Since gk preserves intersection form, it follows that

(u, u) = (gk(u), gk(u)) = (u, u) + k2(wr, wr) + 2k(u,wr) + 2kc

whence

(wr, wr)k
2 + (2(u,wr) + 2c)k = 0

for all positive integers k, a contradiction to (wr, wr) < 0. Therefore, ar ̸= 0.



1158(280)

1158 X. Yu

If V ⊂ e⊥, then we are done.

From now on, we assume V is not contained in e⊥. Then there exists 0 ̸= v ∈ V of

the following form

v = u+ αe+
r∑

i=1

βiwi,

where α, βi ∈ R. Then g(v) = u+wr + (c+ α)e+
∑r

i=1 βi(wi + aie) whence g(v)− v =

wr + ce +
∑r

i=1 βiaie. Then g(g(v) − v) − (g(v) − v) = are ∈ V since V is g-stable. It

follows that e ∈ V by ar ̸= 0. □

5. Proofs of Theorems 1.1, 1.2 and 1.3.

We need the following result to prove Theorem 1.1:

Theorem 5.1. Let X be a K3 surface defined over an algebraically closed field k of

characteristic p ̸= 2, 3. Suppose rk(L∞(X)) ≥ 2, where the sublattice L∞(X) ⊂ NS(X)

is generated by all the elliptic fibrations with infinite automorphism groups. To simplify

the notation, we set L := L∞(X). Then there exists a subgroup G ⊂ Aut(X) such that

1) G′ ⊂ SO+(L), where G′ := (π ◦ ψ)(G) (see Section 2.2 for definition of π and ψ),

and

2) Any G′-stable R-linear subspace of LR is either {0} or LR.

Proof. In order to construct G, we need the following:

Lemma 5.2. For any e ∈ E∞(X), there exists ge ∈ Aut(X)e such that (π◦ψ)(ge) ∈
SO(L) and ord((π ◦ ψ)(ge)) = ∞.

Proof. By definition of E∞(X), Aut(X)e is an infinite subgroup of Aut(X).

Since, by Lemma 2.2, Ker(π ◦ ψ) ∩ Aut(X)e is finite, the image (π ◦ ψ)(Aut(X)e)

is an infinite subgroup of O(L). Since e ∈ L, by [Og07, Proposition 2.9], ev-

ery element of (π ◦ ψ)(Aut(X)e) ∩ SO(L) is of null-entropy. Thus, there exists h ∈
(π ◦ ψ)(Aut(X)e) ∩ SO(L) such that ord(h) = ∞ by [Og07, Proposition 2.2 (3)] (notice

that the proof of [Og07, Proposition 2.2 (3)] is based on even hyperbolic lattices, and is

valid in any characteristic). Choose any ge ∈ (π ◦ψ)−1(h). Then order ord(ge) = ∞ and

(π ◦ ψ)(ge) ∈ SO(L). □

Now, for any e ∈ E∞(X), by Lemma 5.2, we can choose some ge ∈ Aut(X)e such

that (π ◦ ψ)(ge) ∈ SO(L) and ord((π ◦ ψ)(ge)) = ∞. We set G := the subgroup of

Aut(X) generated by {ge|e ∈ E∞(X)}. Let G′ := (π ◦ ψ)(G). Then G′ ⊂ SO(L). Since

G′(E∞(X)) = E∞(X), it follows that G′ ⊂ SO+(L), which is the statement 1).

Next we prove the statement 2). Let V be a non-zero G′-stable R-linear subspace

of LR. We may assume V ̸= LR (otherwise, we are done). Then there exists e0 ∈ E∞(X)

such that e0 /∈ V . Since V is G′-stable, it follows that V is also (π ◦ ψ)(ge0)-stable.
Then by Theorem 4.4, we have that V ⊂ e⊥0 . For any e′ ∈ E∞(X) such that e′ ̸= e0,

by Hodge-index Theorem, we have that (e0, e
′) > 0, which implies e′ /∈ V . Then by
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Theorem 4.4 again, V ⊂ e′⊥. Therefore, V ⊂ ∩e∈E∞(X)e
⊥. But R⟨E∞(X)⟩ = LR and L

is a non-degenerate lattice. Thus V = 0. This completes the proof of Theorem 5.1. □

Proof of Theorem 1.1. We prove the case 1) and the proof for the case 2) is

similar.

Suppose d is even. Let L = L∞(X). Since d ≥ 2, it follows that the orthogonal

complement L⊥ of L in NS(X) is negative definite. Note that, for any f ∈ Aut(X), we

have f∗(L) = L and f∗(L⊥) = L⊥. So the Salem degree of any automorphism of X is

an even integer ≤ d. Thus, max{Salem degree of f | f ∈ Aut(X)} ≤ d. On the other

hand, by Theorem 4.1 and Theorem 5.1, X has an automorphism the entropy of which

is a Salem number of degree d, which implies max{Salem degree of f | f ∈ Aut(X)} ≥ d.

Therefore, max{Salem degree of f | f ∈ Aut(X)} = d. □

Proof of Theorem 1.2. If Y has exactly one elliptic fibration with infinite au-

tomorphism group (i.e., rk(L∞(Y )) = 1), then every automorphism of Y must preserve

this elliptic fibration. Then, by [Og07, Proposition 2.9] (again the proof of [Og07,

Proposition 2.9] is valid in any characteristic), the entropy of any automorphism of Y

must be zero, which implies max{Salem degree of f | f ∈ Aut(Y )} = 0 (thus the conclu-

sion of Theorem 1.2 is true).

Therefore, we may assume Y has at least two elliptic fibrations with infinite auto-

morphism groups. Then by Theorem 1.1, it suffices to prove rk(L∞(X)) ≥ rk(L∞(Y )).

Fix an isometric embedding ι : NS(X) ↪→ NS(Y ). Let d = rk(L∞(Y )). Then we can

choose e1, . . . , ed ∈ E∞(Y ) such that ⟨e1, . . . , ed⟩ forms a Q-basis of L∞(Y )⊗Q.

Let hY ∈ Amp(Y ) ∩ NS(Y ) be an ample class. For any c ∈ NS(Y ) of square −2,

by Riemann–Roch Theorem, either c or −c is effective. Thus, the intersection pairing

between hY and any class in NS(Y ) of square −2 is not zero. Since ι(NS(X)) is a

sublattice of NS(Y ) of finite index, there exists a sufficiently large integer N > 0, such

that Ne1, . . . , Ned, NhY ∈ ι(NS(X)). Note that the intersection pairing between NhY
and any class in ι(NS(X)) of square −2 is not zero. Since the ample cone Amp(X) of X

is a standard fundamental domain for the Weyl group W (NS(X)), it follows that there

exists α ∈ W (NS(X)) such that α(ι−1(NhY )) ∈ Amp(X) ∩ NS(X). Then we claim the

following:

Lemma 5.3. α(ι−1(Ne1)), . . . , α(ι
−1(Ned)) ∈ Nef(X) ∩ NS(X), where Nef(X) is

the nef cone of X.

Proof. Let C ⊂ X be a smooth rational curve. Then (α(ι−1(NhY )), [C]) >

0 by ampleness of α(ι−1(NhY )), where [C] denotes the class of C in NS(X). Then

(NhY , ι(α
−1([C]))) > 0. Since ι(α−1([C])) of square −2, by Riemann–Roch Theorem,

ι(α−1([C])) is an effective class in NS(Y ). Then (Nei, ι(α
−1([C]))) ≥ 0, for all i. Thus,

(α(ι−1(Nei)), [C]) ≥ 0. So α(ι−1(Nei)) is a nef class in NS(X). □

For any 1 ≤ i ≤ d, let e′i be the primitive class in NS(X) such that R>0e′i =

R>0α(ι−1(Nei)). Then e′i ∈ E(X) according to Piatetsky-Shapiro and Shafarevich

[PS71].

Lemma 5.4. e′i ∈ E∞(X) for all i.
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Proof. Since ei ∈ E∞(Y ), by Lemma 2.1, rk(e⊥i ) − rk((e⊥i )
(2)) > 0. Since

rk(NS(X)) = rk(NS(Y )), it follows that rk(e⊥i ) = rk(e′⊥i ). Since NS(X) is isometric

to a sublattice of NS(Y ), it follows that (e′⊥i )(2) is isometric to a sublattice of (e⊥i )
(2).

Then rk((e′⊥i )(2)) ≤ rk((e⊥i )
(2)). Thus, rk(e′⊥i )− rk((e′⊥i )(2)) ≥ rk(e⊥i )− rk((e⊥i )

(2)) > 0.

Then, again by Lemma 2.1, e′i ∈ E∞(X). □

Since dimQ(Q⟨e1, . . . , ed⟩) = d, it follows that dimQ(Q⟨e′1, . . . , e′d⟩) = d. Thus,

rk(L∞(X)) ≥ d = rk(L∞(Y )). Then by Theorem 1.1,

max{Salem degree of f | f ∈ Aut(X)} ≥ max{Salem degree of f | f ∈ Aut(Y )}.

This completes the proof of Theorem 1.2. □

Proof of Theorem 1.3. First we consider the cases p = 11 or > 13. It is

known that the supersingular K3 surface X(p) of Artin invariant one is isomorphic to

Km(E ×Fp E) for any supersingular elliptic curve E over Fp ([Ogu79], [Shi75]). The

two natural projections from E ×Fp E to the two factors induce two elliptic fibrations

on X(p) with Mordell–Weil rank 4, by the formula of Mordell–Weil rank [Shi90]. Hence

rk(L∞(X(p))) ≥ 2. By Theorem 1.4, max{Salem degree of f | f ∈ Aut(X(p))} = 22. By

[RS78], the Artin invariant σ(X) of X determines NS(X) up to isometry. Moreover, by

explicit classification of the lattices NS(X) and NS(X(p)) in [RS78], NS(X) is isometric

to a sublattice of NS(X(p)) (cf. [Li15, proof of Proposition 3.9]). Then by Theorem 1.2,

max{Salem degree of f | f ∈ Aut(X)} ≥ max{Salem degree of f | f ∈ Aut(X(p))} = 22.

Then the maximal Salem degree of automorphisms of X is 22 since the Picard number

of X is 22. Thus, when p = 11 or > 13, there exists f ∈ Aut(X) the entropy of which is

the logarithm of a Salem number of degree 22. The case p = 3 is proved by [EO15] and

[Sh16]. The cases p = 5, 7, 13 are proved by [Sh16] (the case p = 7 is also covered by

[Br15]). This completes the proof of Theorem 1.3. □

6. The exceptional sublattice, elliptic fibrations and Salem numbers.

In this section, we discuss some relationships among the exceptional sublattice, el-

liptic fibration and the maximal Salem degree of automorphisms of K3 surfaces.

Following [Ni14], for a K3 surface X, we define the exceptional sublattice of the

Néron–Severi group NS(X) by

E(NS(X)) := {x ∈ NS(X)| the orbit Aut(X)(x) of x in NS(X) is finite}.

Clearly, E(NS(X)) is a primitive sublattice of NS(X). For a sublattice F ⊂ NS(X) we

denote by Fpr the primitive sublattice Fpr = NS(X) ∩ (F ⊗Q) ⊂ NS(X)⊗Q generated

by F .

Theorem 6.1 ([Ni14, Theorem 4.1]). Let X be a K3 surface defined over an

algebraically closed field k of characteristic p ̸= 2, 3. Suppose X has at least two elliptic

fibrations with infinite automorphism groups. Then
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E(NS(X)) =
∩

e∈E∞(X)

(e⊥)(2)pr = L∞(X)⊥.

Proof. Since X has at least two elliptic fibrations with infinite automorphism

groups, it follows that the sublattice L∞(X)⊥ ⊂ NS(X) is negative definite. Then

L∞(X)⊥ ⊂ E(NS(X)) since L∞(X)⊥ is Aut(X)-stable and O(L∞(X)⊥) is a finite group.

On the other hand, by [Ni14, Theorem 4.1], E(NS(X)) =
∩

e∈E∞(X)(e
⊥)

(2)
pr ⊂ L∞(X)⊥.

Thus, E(NS(X)) =
∩

e∈E∞(X)(e
⊥)

(2)
pr = L∞(X)⊥. □

For a K3 surface with even Picard number, we collect various methods to check

whether it has an automorphism of maximal possible Salem degree:

Theorem 6.2. Let X be a K3 surface defined over an algebraically closed field k

of characteristic p ̸= 2, 3. Suppose X has even Picard number ρ(X) ≥ 4, and suppose X

has at least one elliptic fibration with infinite automorphism group. Then the following

statements are equivalent to each other :

1) Any Aut(X)-stable R-linear subspace of NS(X)⊗ R is either {0} or NS(X)⊗ R;

2) Any Aut(X)-stable Q-linear subspace of NS(X)⊗Q is either {0} or NS(X)⊗Q;

3) Q⟨E∞(X)⟩ = NS(X)⊗Q;

4) There exists f ∈ Aut(X) such that the Salem degree of f is ρ(X);

5)
∩

e∈E∞(X)(e
⊥)

(2)
pr = {0};

6) E(NS(X)) = {0}.

Proof. 1) =⇒ 2) =⇒ 3): Trivial.

3) =⇒ 1): By Theorem 5.1.

3) =⇒ 4): By Theorem 1.1.

4) =⇒ 3): Suppose X has an automorphism f ∈ Aut(X) whose entropy is the log-

arithm of a Salem number of degree ρ(X). Then NS(X)⊗Q has no non-trivial f -stable

Q-subspace (cf. [Mc02, Proof of Theorem 3.4]). On the other hand, Q⟨E∞(X)⟩ is clearly
f -stable. Therefore, Q⟨E∞(X)⟩ = NS(X)⊗Q.

5) ⇐⇒ 6): By Theorem 6.1.

2) =⇒ 6): By definition, E(NS(X)) ⊗ Q is clearly an Aut(X)-stable Q-linear sub-

space of NS(X) ⊗ Q. Then either E(NS(X)) = {0} or NS(X). If E(NS(X)) = NS(X),

then Aut(X) must be a finite group, a contradiction to the assumption E∞(X) ̸= ∅.
Therefore, E(NS(X)) = {0}.

6) =⇒ 3): Since E(NS(X)) = {0}, it follows that E∞(X) is an infinite set. Then the

sublattice L∞(X)⊥ ⊂ NS(X) is negative definite and O(L∞(X)⊥) is a finite group.

Obviously, L∞(X)⊥ is Aut(X)-stable. Then L∞(X)⊥ ⊂ E(NS(X)) = {0}. Thus,

Q⟨E∞(X)⟩ = NS(X)⊗Q. □

Remark 6.3. i) By Theroems 1.3 and 6.2, E(NS(X)) = {0} for any supersin-

gular K3 surface X in odd characteristic.
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ii) Let X be the Kummer surface of the Jacobian of a very general curve C of genus

2 over an algebraically closed field of characteristic 0. Then X is a K3 surface of

Picard number 17. Elliptic fibrations with a section on X are completely classified

in [Ku14]. Using elliptic fibrations explicitly given in the table on [Ku14, pp. 609–

610], one can easily show that rk(L∞(X)) = 17. Thus, by Theorem 1.1, X has

an automorphism the entropy of which is the logarithm of a Salem number of

degree 16.

iii) Let X be the Kummer surface Km(E × F ), where complex elliptic curves E

and F are not isogenous. Then X is a complex K3 surface with Picard num-

ber 18. Thanks to complete classification of elliptic fibrations with a section

on X ([Og89]), one can show that rk(L∞(X)) ≥ 10. Thus, by Theorem 1.1,

max{Salem degree of f | f ∈ Aut(X)} ≥ 10. (See [Og16] for a higher dimensional

application.) On the other hand, the exceptional lattice E(NS(X)) is negative

definite and, by [Og89, Lemma 1.4], contains a sublattice of rank 8. Then the

Salem degree of any automorphism of X must be ≤ 18 − 8 = 10. Therefore, we

conclude that max{Salem degree of f | f ∈ Aut(X)} = 10. Note that NS(X) is a

2-elementary lattice (for similar examples of K3 surfaces Y with E(NS(Y )) ̸= {0},
see [Ni99, Section 3]).

Remark 6.4. Let SEK3′ be the set of all even hyperbolic lattices S of rk(S) ≥ 3

with the following property: There exists a K3 surface X defined over an algebraically

closed field of characteristic ̸= 2, 3 such that S is isometric to NS(X), and E(NS(X)) ̸=
{0}. By [Ni14, Theorem 4.4] and [LM11, Theorem 6.1], the set SEK3′ is finite (note

that SEK3′ defined here is a subset of the set SEK3 defined by [Ni14, Definition 4.5]).

A consequence of finiteness of SEK3′ is the following: There are only finitely many

singular K3 surfaces X (i.e., complex K3 surfaces with Picard number 20) such that

max{Salem degree of f | f ∈ Aut(X)} ≤ 18. It would be interesting to find the finite set

of Néron–Severi groups SEK3′ (or even SEK3) of K3 surfaces.
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64 (1979), 3–86.

[Ogu83] A. Ogus, A crystalline Torelli theorem for supersingular K3 surfaces, Progr. Math., 36 (1983),

361–394.

[PS71] I. I. Piatetsky-Shapiro and I. R. Shafarevich, A Torelli theorem for algebraic surfaces of type

K3, Math. USSR-Izv., 5 (1971), 547–588.

[RS78] A. N. Rudakov and I. R. Shafarevich, Supersingular K3 surfaces over fields of characteristic

2, Izv. Akad. Nauk SSSR, 42 (1978), 848–869, Math. USSR-Izv., 13 (1979), 147–165.
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