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Abstract. The purpose of this paper is to introduce mosaics of log-hyponormal
operators and give a Helton-Howe type trace formula.

1. Introduction.

J. D. Pincus and D. Xia, in [14], studied mosaics and principal functions of
semi-hyponormal operators and gave the trace formula. In [19], Xia announced
trace fomulae for semi-hyponormal operators. In [4], we gave trace formulae of
p-hyponormal operators for 0 < p < 1/2. In particular we proved a Helton-
Howe type trace formula (cf. [13], p. 240, Theorem 2.4). In this paper, we
introduce mosaics and principal functions of log-hyponormal operators and prove
a Helton-Howe type trace formula of it.

Let # be a complex separable Hilbert space and B(s#) be the algebra of
all bounded linear operators on #. An operator T € B(#) is said to be p-
hyponormal if (T*T)" — (TT*)’ >0. If p=1, T is called hyponormal and if
p =1/2, T is called semi-hyponormal. The set of all semi-hyponormal operators
in B(#) is denoted by SH. Let SHU denote the set of all operators in SH with
equal defect and nullity (cf. [19], p. 4). Hence we may assume that the operator
U in the polar decomposition 7 = U|T| is unitary if 7 e SHU. An operator
T € B() is said to be log-hyponormal if T is invertible and log T*T > log TT*.
Since the function log(-) is operator monotone, an operator 7 is log-hyponormal
if T is an invertible p-hyponormal operator. In K. Tanahashi gave a
counter example of log-hyponormal operator which is not p-hyponormal. When
log|T| > 0, he also proved that T’ = Ulog|T| is semi-hyponormal if 7' = U|T| is
log-hyponormal. If T'= U|T| is log-hyponormal, then we can choose a number
¢ >0 such that log((1/c)|T]) = 0. Indeed, it is ¢ =inf{r:rea(|T|)}. Hence
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we have Ulog((1/c)|T|) e SUH. We often use this property and the following
result.

THeEOREM A (Tanahashi [16], Lemma 6). Let T = U|T| be log-hyponormal
with log|T| >0 and T' = Ulog|T|. Then

o(T) = {e"-e? :re” e a(T")}.

Let T={e"”|0<0<2n}, X be the set of all Borel sets in T, m be a
measure on the measurable space (7T,2) such that dm(0) = (1/2n)d0 and 2 be
a separable Hilbert space. The Hilbert space of all vector-valued, strongly-
measurable and square-integrable functions with values in & and with inner
product

(f.9) = j (f(e), g(e™),, dm(0)

T
is denoted by L?(Z); Hardy space is denoted by H?(Z), and the projection from
L*(2) to H*(Z), by 2. If feL*(Z), then
0y _ o i0y~1
(2(f))(e”) = lim —J f(2)(z—=re")" dz.

Let v be a singular measure on (7,2), F € 2 be a set such that v(T\F) =0
and m(F)=0. Putu=m+v. Let R(-) be a standard operator-valued strongly-
measurable function defined on Q = (7,2, ) with values being the projection in
9, L*(2,%) be a Hilbert space of all Z-valued strongly measurable and square-
integrable functions on @ with inner product (f,g) = [,;(f(e”),g(e")), du, and

H=A{f:feL*Q,9),R")f(e") = f(e"), e e T}.

Then H is a subspace of L?(Q,%). The space L*(Z) is identified with a
subspace of L?(Q,%). Hence 2 extends to L*(Q2,%) such that

2f =0 for fel*Q,9)0L*2).
We define an operator %, from L*(Q,%) to % as follows:
2f) = | S dm0).
Then 2, is the projection from L*(Q, %) to & (cf. [19], p. 50). Let a(-) and B(-)

be operator valued, uniformly bounded, and strongly measurable functions on
Q such that a(e”) and B(e™) are linear operators in &, satisfying
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R(e")a(e) = a(e")R(e") = afe”),  R(e")B(e") = Ble)R(e") = e

and B(e) > 0.
Furthermore, suppose that a(e”’) =0 if e’ € F. And we denote (af)(e”) =
a(e?) f(e). An operator U in # is defined by

(Uf)(e") = ef ().
Since B(e) >0 and 2 is a projection on L*(Z), we have
(2(e”) (2 () (") + Ble”) f(e”), f(e"))y = 0.
See details [19]. And the following results hold.

TuEOREM B (Xia [17], Theorem 6). With the above notations, let T be an
operator in H defined by

(Tf)(e") = e (A1 )(e"),

where (Af)(e) = a(e™)*(2(af ))(e™) + B(e®) f(e). Then T is semi-hyponormal
and the corresponding polar differential operator |T|— U|T|U* is

(T = UITIT") f)(”) = a(e”)" Po(af ).

Tueorem C (Xia [17], Theorem 7). Let T = U|T| be a semi-hyponormal
operator in H such that U is unitary. Then there exist a function space #, and
operators T and U in # which have the forms in Theorem B such that

WIW'=T and WUW™' =1,
where W is a unitary operator from # to #. Moreover a(-) = 0.

T is said to be the singular integral model of T.

2. Mosaic of log-hyponormal operators.

By the singular integral model of a semi-hyponormal operator 7' = U|T|, it
holds the following

Taeorem D (Xia [19], Theorem V.2.5). With the above notations, let T =
U|T| be in SHU and o(-), p(-) be of Theorems B and C of the singular integral
model of T. Then the following statements hold.

(1) There exists a unique B(2)-valued measurable function of two variables,
B(e,r) (e e T,re|0,0)), satisfying

0<B(e" r)<I

such that
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dr.

e i0 4
I+a(e®)(Ble?) — £) " a(e™) = exp Jo B’Ee_ ’/ )

(2) For any bounded Baire function  on o(|T|), the function B(e”,r) has

1

Jw(r)B(eiH, r)dr = a(e”’)J Y (Be”) + k - a(e™)?) dka(e™).

0

Especially, it holds

ol ; o | N ) |
J Bﬁ ‘})dr:a(elo)J (Be") + k- o(e")” =) dkoe").
0

ReMARK 1. The function B(e,r) is defined on [0,c0]. But, following
Theorems V 2.4 and 2.5 of [19], we may assume that B(e ) =0 for <
inf{r:rea(|T|)}.

DerFINITION 1. For T e SHU, the function B(-,:) in Theorem D is said to
be the mosaic of T. We denote the mosaic of T by Br(-,").

DeFiNiTION 2. Let T =U|T| be a log-hyponormal operator and
T'=Ulog|T|. Let c=inf{r:rea(|T])} >0. Since  U(log|T|—logc) =
Ulog((1/¢c)|T|) e SHU, there exists the mosaic  Byiog(i/er(-,-) of
Ulog((1/c)|T|) and by Remark 1 we define

and
. (o0 .
Br(e”,r) ::{BT (e, logr) %f”ZC
0 if r<e.

For a log-hyponormal operator T, we call #¢(-,-) and By/(-,-) the mosaics of
T and T’, respectively.

Let t be t > 0. For an operator 7= U|T| e SHU, since U(|T|+ t) e SHU,
by Theorem D (1) it holds

JOO BU(\T\+¢)(€’H, r)
exp

0 U a(e®)(Be™) + 1t — ) (™)

* BT(eia,r - l)

© B i6
; r—+~¢

g

Hence, by the uniqueness of the mosaic in Theorem D (1) and Remark 1 we have

By(rsn(e?,r) = Byr(e”,r — 1) (%)
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Taeorem 1. Let T =U|T| be a log-hyponormal. For 0<k<c=
inf{r:rea(|T)])}, it holds that

By tog((1/0)1)) (€, 7 — 1og ¢) = Byriog((1/s) 7)) (€, 7 — log k).

Proor. Since U(log((1/k)|T|)) = U(log|T| — logk) is semi-hyponormal, we
have

Bu(tog1 /i) 7)) (¢, — 108K) = Buitog((1/0)7))+iogte/iy (€ 7 — logk)

c

i C
= BU(log((l/c)\TD) (8’0, r— logk — log k> (by (*) and logE > 0)

= Buiog((1/e)17)) (€, r — log ).
Hence the proof is complete. ]

By Mheorem 1, the mosaic #7(e®,r) of a log-hyponormal operator T is inde-
pendent from the choice of By g1 /k)|T|)(ei9,r—logk) (0 <k <c). Therefore,
if a log-hyponormal operator T = U|T| satisfies log|T| > 0, then we may take
c¢=1. From now on, let ¢ =inf{r:rea(|T|)}.

REMARK 2. For a log-hyponormal operator T = U|T| with log|T| > 0, by
(*)
(1) if r>¢, Br(e”,r) = Br(e”,10gr) = Byog1i-logc) (", logr — logc)
= BUlog\T|(€i07 log I”),
(2) if r<c, Br(e”,r) =0=Bygr(e”,logr) (because by Remark 1 and
logr < inf{p: p € a(log|T|)}).
Hence in this case two mosaics of 7/ = Ulog|T| in Definitions 1 and 2 are the
same.

DEFINITION 3.
(1) If T e SHU, then the determining set D(T) of T is defined by

D(T)=C - |J{G:G is open in C and Br(e",r) =0 for ae. re” e G}.

(2) If T is a log-hyponormal operator, then the determining set D(T) of T
is defined by

D(T)=C~|J{G:G is open in C and Zr(e” r) =0 for ae. re” e G}.

For a log-hyponormal operator T = U|T|, since S = Ulog((1/¢)|T|) e SHU, we
have

D(S) = {(log(r/c)) - € : re' € D(T)}. ()
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An operator T is called completely nonnormal if it has no nontrivial reduc-
ing subspace on which it is normal. We show the following

THEOREM 2. Let T = U|T| be a log-hyponormal operator. Then
D(T) < o(T).
Moreover, if T is completely nonnormal, then D(T) = o(T).

Proor. Let ¢ =inf{r:reo(|T|)}. (1) Let r be 0 <r<ec¢. Then it is well
known re”’ ¢ ¢(T). By the definition we have %r(e”,r) =0. Hence, we have
re” ¢ D(T)Uo(T). (2) Let r be r>c and T’ = Ulog|T|. Since

. . . r
Br(e”,r) = Br(e"”,1ogr) = Byiog((1/e)1) <€l€,10gz),

by (**) we have

D(UlogGm)) - {<10g£> et re? € D(T)}.

Since Ulog((1/¢)|T|) e SHU, by Theorem V.3.2 of we have

o cra(lir)) = o{vre(lr))
a(UG|T|>> :o-(Uexp(log@ﬂ))) _ {erelﬂ : refﬂeo-(mog@ﬂ))}.

Hence if re e D(T), then

. . 1 1
f_eu‘) — plog(r/c) ,i0 ea<Uexp(log(E|T|>>> :E.O-(U|T|),

D(T) < o(T).

[

so that

If T is completely nonnormal, then by of it holds that
Ulog((1/¢)|T|) is completely nonnormal. Since Ulog((1/c)|T|) is semi-
hyponormal, it holds that D(Ulog((1/¢)|T|)) = a(Ulog((1/c)|T|)) by Theorem
V.3.2 of [19]. By the above it holds that

. . 1
re” e D(T) & <10g£) el e D<U10g<E|T|)>



Mosaic and trace formulae of log-hyponormal operators 261

. , 1
re’ e o(T) < <log£> e e a(Ulog<E|T|>>.

Hence we have D(T)=a(T). So the proof is complete. O

and

THEOREM 3. Let T = U|T| be a log-hyponormal operator. Then

1
|log|T| —log| T*||| < —” r~' drdo.
27 D(T)

Proor. Let c¢=inf{r:rea(|T])}. Since Ulog((l/c)|T|) 1is semi-
hyponormal, by Theorem V.3.5 of it holds that

1 1 1
og (1) ~roe (1171 | < - || dpd0.
c ¢ 27} Jo(viog((1/0) 7))

D(Ulog(%|T])> - {eff’- (1og£) :reif’eD(T)}

and |[log((1/¢)|T|) —log((1/c)|T*|)|| = |log|T| — log|T*|||, by the transformation
p =log(r/c), we have

Since

1
|log|T| — log|T*|| < —” r~Ldrd0.
27'[ D(T)

So the proof is complete. O
Hence we have the following corollary.
CorROLLARY 4. Let T be a log-hyponormal operator with my(D(T)) = 0.
Then T is normal, where my(-) is the planar Lebesgue measure.
3. Trace formulae of log-hyponormal operators.

For the trace formula of a log-hyponormal operator 7', we define the prin-
cipal function of T.

DEerFINITION 4. Let Trg(-) be the trace on <.
(1) For T e SHU, the principal function gr(e®,r) of T is defined by

gT(eie, V) = Tr@(BT(em, V))

(2) For a log-hyponormal operator 7' = U|T|, put T'= Ulog|T|. The
principal functions gr(e” r) and gr:(e,r) of T and T’ are defined by
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gr(e”,r) = Tro(Br(e”,r)) and gr/(e”,r) = Try(Br(e”,r))
where %7(-,-) and By/(-,-) are the mosaics of 7 and T’, respectively.
Subscripts will usually be suppressed when clear from the context.

RemMArRK 3. For a log-hyponormal operator 7 =U|T|, let c=
inf{r:rea(|T|)}, T'=Ulog|T| and S= Ulog((1/c)|T|). Let gr(e”,r),
gr:(e”,r) and gg(e” r) be the principal functions of 7,7’ and S, respectively.
Then by we have

gT(e’H, r) = gT/(e’H, logr) = gS(eie, logr —logc).

THEOREM 5. Let T = U|T| and S = V|S| be log-hyponormal operators. If
T and S are unitarily equivalent, then

gr(e”.r) = gs(e”,r).

Proor. Let k be 0 <k <inf{r:rea(|T|)Uc(|S])}. By [Theorem 1, we
may consider the principal functions corresponding to the operators 7' =
Ulog((1/k)|T|) and S’= Vlog((1/k)|S|). Since theorem holds for semi-
hyponormal operators by Theorem VIL.2.4 of [19], we may only prove that
T’ and S’ are unitarily equivalent. We assume that W*TW =S for a
unitary operator W. Since W*|T|W =S|, we have W*(log((1/k)|T|))W =
log((1/k)|S]) and

W UW|S|= W UWW?*|T|\W =W*TW =S =V|S|.

Hence W*UWx = Vx for xeran(|S|). Since |S| is invertible, we have
W*UW = V. Therefore, we have

1 1
W T'W = W*U(log(ﬁﬂ)) W= W*UWW*<log<%|T|)) w

-waw(o}s) - () -

So the proof is complete. ]

Hence, the principal function gr(-,-) of T is independent of the concrete
model of T.

Here we denote the trace class of operators by %;. For operators 4 and
B, the commutator AB — BA is denoted by [4, B]. By .o/,, we denote the linear
space of all Laurent polynomials p(x,y) of two variables such that p(x,y) =
ZJZ o ST v aix/y*, where N is an arbitrary positive integer. For an operator
X and an invertible operator Y, we define p(X,Y) by
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— i vk
Y) =) apX/Y*"
Ik

.0
For p(x,y),q(x,y) € o/», we denote the Jacobian xdy 3y ox by J(p,q) and

o)) = () e ()0 = () e (5 e
Then in [4] we proved the following

TaeoreM E (Cho and Huruya [4], Theorem 9). Let T = U|T| e SHU and
gr(-,-) be the principal function of T and [|T|, U] € 6\. Then, for p,qe€ <>,

Tr((p(171 V) al171. V) = [ |00 e g (e, i),
We show two trace foumulae associated with a log-hyponormal operator.

First one 1is

THeOREM 6. Let T = U|T| be a log-hyponormal operator such that
log|T|,Ul € %. Let T'=Ulog|T| and g1 be the principal function of T'.
Then, for p,q € /5,

0

Tr([p(log|T|, U), q(log|T|, U)]) = J (L J(p.q)(r,e")egri(e", ) dM(9)> dr,

logc
where ¢ = 1inf{r:rea(|T|)}.

Proor. Put S = Ulog((1/c¢)|T|). Then S e SHU and [|S|, U] = [log|T|, U]
€%. Put p(x,y) =p(x+logc,y) and g(x,y) =q(x+1logc,y). Then it holds

Tr([p(log| T, U), q(log| T1, U)]) = Tr([p([S], U), q(|S], U)]).

By Theorem E, we have
Te([(IS], U),4(IS], U)]) = Lm J(5,4)(r,e")e"gs(e”, r) drdm(0)

- OO( D) (e dm<e>) dr

= [ (], 200+ togce)egstery o)) ar. )
J0 JT

By the transformation ¢ =r+logec, from Remark 3 we have
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(1) = . ( J(p,q)(l,eie)eiegg(eig,t—logc)dm(0)> dt
loge \JT

_ ( J(p, @)t e)ePgri (e ) dmw)) dr.
logec T

So the proof is complete. O
For the second one, we prepare the following

TaeorREM 7. Let T = U|T| € SHU and gr(-) be the principal function of T.
Let [|T|,U| € %,. Then, for p,qc /s,

Tr([p(exp(|T1), U), q(exp(|T|), U)]) = ”J(P,Q)(new)eng(eie,log r) drdm(0).
Proor. Form=1,2,... and n=+1,+2,..., by Theorem § of [4] we have

(1) Te([|T)™, U") = ijnemerm_]gT(eie,r) drdm(0)

= ” nemai (r™)gr (e, r) drdm(6)
dr
and by the proof of of [4]

(2) Tr(|T|" — U|T|"U ™) = ”mrm_lgT(ew, r) drdm(0)

— || 6marte.rydrdino)

For an operator S, we denote the trace norm of S by |[/S]|;. Since

(7", U = T T, U+ 7" 20T U T+ -+ (T 0| )

and
7" - ulT"ut = (17", UjU,
we have
1™, ol < ml| T 0T UL
and

71" = UlT" U=y < ml T U

Since %) is complete, in %, we have
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/ m
. 1 .,
}LI?CKZHT ) -

= [(exp(IT))", U"]

h=0
and
. / 1 . m / 1 . m B . _—
lim & (ST = US| U = (exp(T1)" - Ulexp(IT))" U
h=0 " h=0""
Since |Tr(D)| < ||DJ|, for D e %, by (1) we obtain
/ m
m n : inf d 1 h i0
Tr([(exp(|T1))", U"]) = lim [} ne™ . —| » —r" | gr(e®,r)drdm(0)
{— 0 dr h:Oh!

= JJ ne™ . me™ gr (e, r) drdm(0)
and similarly by (2)
Tr(((exp(IT1))" — Ulexp(|T])" U~)) = ” me™ g, ) drdm(6)

Putting e" = s, we have

(3) Tr([(exp(|T))™, U"]) = JJ ne™ . ms" L gr(e” logs) dsdm(0)

4)  Tr((exp(|T])" = U(exp|T)"U ") = ”msm_lgT(eig,logs) dsdm(0).

Define a bilinear form (-,-) on .o/, by

(p,q) = Tr([p(exp(|T]), U), g(exp(|T]), U)])

for p,q € /. Let pa(x,y) =p. Then by the proof of of [4] we can
define a linear functional / on .o/, by, for g € .o/;,

((5) = o

Then by the similar way of the proof of Theorem E we have

(5) (p,q) =—£(J(p,q))

Next we define a linear functional 7, on .o/ by, for p € .o/,
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to(p) = “p(r, eegr (e logr) drdm(0).
Since (3) and (4) hold, by the similar way of the proof of Theroem E we have
(6) lo=~L.
Therefore, by (5) and (6) we have

Tr([p(exp(|T1), U),q(exp(|T1), U)]) = (p,q) = 0(J(p,q))
= JJ J(p,q)(r, eig)eiegT(em, logr) drdm(0)

for p,qe o/,. So the proof is complete. O
Hence, we have the following

THeOREM 8. Let T = U|T| be a log-hyponormal operator with log|T| >0
and gr(-,-) be the principal function of T. Assume that [log|T|, U] € 6,. Then,
for any p,q € of>, it holds that

Te((p(T), U),4( T, U))) = “m 0)(r,e)egr (", ) drdm(0).

Proor. Let T' = Ulog|T| and g7/ be the principal function of 7'. Since
T' e SHU, by we have

Tr([p(exp(IT"]), U), q(exp(|T"]), U)]) = ”J(p,fi)(l”aeie)eiegr/(eie,log r) drdm(0).

Since g7:(e logr) = gr(e®,r) and exp(|T’|) = |T|, we have

Te([p( 7). V). 4(T). U))) = “J<p, 0)(r,e")egr (e r) drdm(0).

So the proof is complete. O
Finally, we show the following main result.

THEOREM 9. Let T = U|T| be a log-hyponormal operator and gr(-,-) be the
principal function of T. Assume that [log|T|, U] € €,. Then, for any p,q € </,
it holds that

Te((p(T), V). q(|T). U))) = “m 0)(r, e gr(e”, ) drdm(6).

Proor. For c=inf{r:rea(|T])}, let R=U((1/c)|T|). Put p(r,z)=
p(c-r,z) and g(r,z) = ¢q(c-r,z). Then we have
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Tr([p(IT], U), q(IT1, U)]) = Tr([p(IR], U), 4(IR], U)]).
og(

Since R is log-hyponormal with log|R| = log((1/¢)|T|) >0, by we

have

Tr([5(R], U),4(IR|, U)]) = j j J(5,@)(t, ") gr(e™, 1) didm(0)

— JJC.](p,q)(c.[,eie)eiegR(eie,t) dtdm(0).  (11)

By the transformation r = c¢- ¢, we have

1) = | [ 10001 gn (e, 2) aramto

”J(p 0)(r, ) gr (e, r) drdm(),

because gr(e”,r) = Tr(Byiog(1 /011 (€”,10g(r/))) = gr(e”, (r/c)) by
and Remark 3. So the proof is complete. ]
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