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Abstract. We shall give two criterions of Wiener type which characterize minimally
thin sets and rarefied sets in a cone. We shall also show that a positive superharmonic
function on a cone behaves regularly outside a rarefied set in a cone. These facts are
known for a half space which is a special cone.

1. Introduction.

Let R and R, be the set of all real numbers and all positive real numbers,
respectively. We denote by R" (n > 2) the n-dimensional Euclidean space. A
point in R" is denoted by P = (X, y), X = (x1,x2,...,x,-1). The boundary and
the closure of a set S in R" are denoted by 0S and S, respectively. We introduce
the system of the spherical coordinates (r, @), © = (01,0,,...,0,_1), in R" which
are related to the cartesian coordinates (xj,x,...,X,_1,)) by

x| = r(H;l;ll sindj) (n>2), y=rcosb,
and if n > 3, then
Xntl-k = r(Hj‘;ll sinfj)cosO (2<k<n-1),
where 0 <r < +o0, —(1/2)n <0,y <(3/2)n, and if n>3, then 0<0; <~
(1 <j<n-—2). The unit sphere and the upper half unit sphere are denoted by
S" 1 and Si‘l, respectively. For simplicity, a point (1,0) on $"~!' and the set
{0;(1,0) € 2} for a set Q,Q < 8" ! are often identified with @ and Q, re-
spectively. For two sets 4 < R, and Q < §"!, the set
{(r,@)eR";re 4,(1,0) € Q}

in R" is simply denoted by A x Q. In particular, the half-space

Ry x 8T ={(X,y) eR" y>0}
will be denoted by T,.
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Lelong-Ferrand investigated the regularity of value distribution of a
positive superharmonic function on T,. Let G(P,Q) (PeT,, Qe T,) be the
Green function of T,. The regularized reduced function RF(P) of h(X,y) =y
((X,y) e T,) relative to a bounded set E of T, has a unique positive measure Ag
on T, such that

R (P) = GAg(P)
for any P e T,, where GAig(P) (P e T,) is the Green potential of Ar. By A(E),

we denote the total mass Ag(T,) of 1z which was called charge extérieure de E by
Lelong-Ferrand [15, p. 129]. We denote the (Green) energy

jT (Gig)(P) di(P)

of Ag by y(E), which was originally introduced by Lelong-Ferrand and called
puissance extérieure de E. Let E be a subset of T, and set

E.=ENI,
where
L ={(r,0)eT,;2" <r<21} (k=0,1,2,...).

Lelong-Ferrand said that E is effilé at oo with respect to T, if

o0

(L1) S (BN <+,
k=0

and proved the following fact.

TueoreM A (Lelong-Ferrand [15, THEOREME Ic|). Let v(P) =v(r,0) be a
positive superharmonic function on T, and put
v(P)

c= mnf ——=.
P:(va)eTn Y

Then there is a subset E,E c T, effile at oo with respect to T, such that

Lf) (P=(X.3)=(r.0)cT,)

uniformly converges to ¢ on T,— E as r — +oo0.

Essén and Jackson |7, Remark 3.1] observed that a subset E of T, is effilé at
oo with respect to T, if and only if E is minimally thin at co with respect to T,.
To state the definition of minimally thin sets at co with respect to T,,, which is
based on minimal thinness at a Martin boundary point (Brelot [5, p. 122], Doob
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[6, p. 208]), observe that the Martin boundary of T, is 0T, U{o0} and oo is a
minimal Martin boundary point of T,. Let K(P,Q) (PeT,,Q€dT,) be the
Martin kernel with the reference point (0,0,...,0,1)e T,. Then K(P,o0) =y
forany P = (X,y) e T,. A subset E of T, is said to be minimally thin at co with
respect to T,, if there exists a point P = (X, y) such that

R (P) # ,

where f{,?(,w) is the regularized reduced function of K(P,o0)=1y
(P=(X,y)eT,) relative E.

In connection with Ahlfors and Heins [T}, Hayman [11], Usakova [16] and
Azarin [4], Essén and Jackson [7] introduced the following notion, similar to the
minimal thinness. A subset E of T, is said to be rarefied at oo with respect to
T, if

(1.2) Y AE)2HY < oo

k=0
(Essén and Jackson [7, p. 244]). Since a rarefied set at co with respect to T, is
also a minimally thin set at oo with respect to T, (Essén and Jackson |7, Remark

3.2]), we can expect much stronger conclusion than the conclusion of Theorem A.
In fact, the following theorem was proved.

TaeorREM B (Essén and Jackson [7, Theorem 4.6 and Remark 4.2]). Let
v(P) = v(r,0) be a positive superharmonic function on T, and put

. P
c*(v) = inf M
P=(X,y)eT, ¥
Then there is a rarefied set E at oo with respect to T, such that v(P)r~" uniformly
converges to c¢*(v)cost on T,—E as r — +wo (P=(r,0)€eT,).

There is also another definition of rarefied sets at oo with respect to 7,,. A
subset £ of T, is said to be rarefied at oo with respect to T, if there exists a
positive superharmonic function v in 7, such that

P
inf P
P=(X,y)eT, Y

and
v(P)=r

for any P = (r,0) € E (Essén and Jackson [7, Remark 4.4], Aikawa and Essén [3,
Difinition 12.4, p. 74] and Hayman [12, p. 474]). It was proved that a subset E
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of T, is rarefied at oo with respect to T, according to this definition if and only if
holds (Aikawa and Essén [3, Theorem 13.1]).

By C,(Q), we denote the set R, x Q in R" with a domain Q on " !(n > 2)
having smooth boundary. We call it a cone. Then T, is the special cone
obtained by putting Q = Sﬁ_l. When we transform T, or C,(€2) into a bounded
domain by a Kelvin transformation, we know that T, is a typical domain having
a smooth boundary at oo, but C,(Q) except T, is an example of domains which
have corners at oo.

In this paper, we shall give two criterions of Wiener type for minimally thin
sets and rarefied sets at co with respect to C,(£2), which extend and
(Theorems 1 and 2). These criterions will be useful to make coverings over these
exceptional sets in C,(Q) by a sequence of disks, which were exemplified in the
case of the half space T, by Essén and Jackson [7] and Essén, Jackson and
Rippon [8]. By using one of them, we shall generalize Theorem B for positive
superharmonic functions on C,(Q) (Theorem 3), while the generalization of
Theorem A can be regarded as the special case of the Fatou boundary limit
theorem for the Martin space (Remark 2). Finally these criterions will give some
connection between both exceptional sets (Theorem 4).

ACKNOWLEDGEMENT. The authors would like to thank the referee for his
useful suggestions.

2. Statement of results.

Let Q be a domain on S"~' (n > 2) with smooth boundary Q. Consider
the Dirichlet problem

(4, +24)f =0 on Q
f =0 on 0Q,

where A, is the spherical part of the Laplace operator 4,

. 2
" 12+a—+r‘2/1n.

Ay
roor or?

We denote the least positive eigenvalue of this boundary value problem by Ao
and the normalized positive eigenfunction corresponding to Ao by fo(0);

J 13(0)dog =1,
Q

where dag is the surface element on S"~!. We denote the solutions of the
equation
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P+n—2t—2g=0

by o, —fo (2o,fo >0) and write dg for ag + fo. If Q= Sfl, then ag =1,
fo=n—1, and

fo(0) = (2ns;1) 2 cos 0,

where s, is the surface area 272"/2{I'(n/2)}"" of "'

In the following, we put the strong assumption relative to 2 on S"': If
n>3, then Q is a C**domain (0 << 1) on $" ! surrounded by a finite
number of mutually disjoint closed hypersurfaces (e.g. see Gilbarg and Trudinger
[10, pp. 88-89] for the definition of C?**-domain).

It is known that the Martin boundary 4 of C,(Q) is the set 0C,(Q)U {0}
and each point of 4 is a minimal Martin boundary point. When we denote the
Martin kernel by K(P,Q) (Pe C,(2),0€ dC,(2)U{c0}) with respect to a ref-
erence point chosen suitably, we know

K(P, ) = r*fo(0), K(P,0)=uxr"efy(0) (PeC\(Q)),

where O denotes the origin of R" and x is a positive constant.

A subset E of C,(Q) is said to be minimally thin at Q € A with respect to
C,(Q) (Brelot [5, p. 122], Doob [6, p. 208]), if there exists a point P € C,(2) such
that

where RE(_7Q) (P) is the regularized reduced function of K(-,(Q) relative to E
(Helms [13, p. 134)).
Let E be a bounded subset of C,(£2). Then ﬁg(.7oo) is bounded on C, ()

and hence the greatest harmonic minorant of R}?(,’OO) is zero (see Yoshida [17,
Corollary 5.1]). When we denote by G(P,Q) (P e C,(Q),0 € C,(2)) the Green
function of C,(€2), we see from the Riesz decomposition theorem that there exists
a unique positive measure ip on C,(Q) such that

RE( .\ (P) = Gig(P)
for any Pe C,(2) and Ag is concentrated on Bg, where
By ={Pe Cy(Q); E is not thin at P}

(see Brelot [S, Theorem VIII, 11] and Doob [6, XI, 14. Theorem (d)]). We
denote the total mass Ag(C,(Q)) of Ag by Ag(E). The (Green) energy y,(E) of
Ag 1s defined by

o(E) =j (Gig) dig
Cn(Q)
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(see Helms [13, p. 223]). Then /o(E) and yo(E) with @ =8""' are simply
denoted by A(E) and y(E), respectively.
Let E be a subset of C,(Q) and Ej = ENI(Q), where

L(Q) = {(r,0) € C,(Q);2F < r < 2K,
THEOREM 1. A subset E of C,(Q) is minimally thin at oo with respect to

Cu(Q) if and only if

(2.1) Y 7o(E)27 < 40,
k=0

When Q = S_”;l, we immediately obtain

CoroLLARY 1 (Aikawa and Essén [3, Theorem 11.3]). A set E,E c T,, is
minimally thin at oo with respect to T, if and only if

o0
Zy Ek 2 kn ~+00.
k=0

A subset E of C,(Q) is said to be rarefied at oo with respect to C,(Q), if
there exists a positive superharmonic function v(P) in C,() such that

e 2P
pec,(@) K(P, 0)

and

EcH,
where
H,={P=(r,0)e C,(Q);v(P) > r*}.

THEOREM 2. A subset E of C,(Q2) is rarefied at oo with respect to C,(Q) if
and only if

Zz—kﬁ%g(Ek) < 400.
k=0

CoroLLARY 2 (Aikawa and Essén [3, Theorem 13.1]). A subset E of T, is
rarefied at oo with respect to T, if and only if

o0
ZZ k(n Ek < +00.
k=0

In the following, we set
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: v(P)
— inf ——/
€(v) Pelgl(g) K(P, )
for a positive superharmonic function v(P) on C,(2). We immediately see that
c(v) < +o0. In fact, let u(P) be a subharmonic function on C,(Q) satisfying

2.2 lim P) <0
( ) PHQ,IanelC,,(Q)u( )_

for any Q€ 0C,(Q) and

u(P)
(2.3) sup < ———F—==1¢<+ow.
P=(r,0)eC(@) T/ (O)
Then we know /7 > —oo (e.g. see Yoshida [17, Lemma 6.1]). If we apply this
fact to u = —v, then we obtain

c(v) < 4o0.

The following theorem 3 which is obtained from [Theorem 2 generalizes
Theorem B.

THEOREM 3. Let v(P) be a positive superharmonic function on C,(R2). Then
there exists a rarefied set E at oo with respect to C,(Q) such that v(P)r*2
uniformly converges to ¢(v)fo(0) on C,(2) —E asr — +0 (P = (r,0) e C,(Q)).

Remark 1. We observe the following fact from the definition of rarefied
sets. Given any rarefied set E at oo with respect to C,(Q), there exists a positive
superharmonic function v(P) on C,(L2) such that v(P)r~** > 1 on E and c(v) = 0.
Hence v(P)r~ does not converge to c(v)fe(@) =0 on E as r — +o0.

Let u(P) be a subharmonic function on C,(Q) satisfying and [2.3).
Then

o(P) = (1r*fa(0) —u(P) (P =(r,0) € C\(LQ)),

is a positive superharmonic function on C,(€2) such that c¢(v) =0. If we apply
to this v(P), then we obtain the following Corollary which is a part of
Azarin’s result [4, Theorem 2|.

CoROLLARY 3. Let u(P) be a subharmonic function on C,(Q) satisfying
(2.2) and (2.3). Then there exists a rarefied set E at oo with respect to C,(Q)
such that u(P)r=*2 uniformly converges to /fo(©) on C,(Q)—FE as r — +w
(P= (l’, @) € Cn(‘Q))

REMARK 2. Without the conical version of theorem A is immediately
obtained by specializing the Fatou boundary limit theorem for the Martin space
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(e.g. see Doob [6, XII, 13. Theorem (a)]): for any positive superharmonic function
o(P),
: v(P)
fl — =
P=(r, @)IEC,1(Ig)1,I‘~>+DO K(P, OO) C(U)7

where “mf limit” means minimal-fine limit i.e. there exists a minimally thin set E
at oo with respect to C,(2) such that v(P)/K(P, o) uniformly converges to ¢(v)
on C,(Q)—Easr— +owo (P=(r,0)c C,(Q2)), and for any minimally thin set £
at oo with respect to C,(Q) there exists a positive superharmonic function v(P)
such that

lim o(P)

— 7 = too.
P=(r,0)eE,r—+w0 K(P, OO) +

A cone C,(Q') is called a subcone of C,(), if Q' = Q (Q' is the closure of
Q" on S”_l). As in T, (Essén and Jackson [7, Remark 3.2]), we have

THEOREM 4. Let E be a subset of C,(Q2). If E is rarefied at oo with respect
to C,(Q), then E is minimally thin at oo with respect to C,(Q). If E is contained
in a subcone of C,(2) and E is minimally thin at oo with respect to C,(Q), then E
is also rarefied at oo with respect to C,(Q).

3. Lemmas.

In the following we denote the sets [a,b) x Q,[a,b) x 02 and (0,b) x 0Q by
Cu(Q2;a,b), S,(2;a,b) and S,(Q;0,b), respectively (0 <a < b <+00). Hence
Sn(2;0,4+00) denoted simply by S,(Q) is dC,(2) — {O}.

First of all, we remark that
(3.1) Cir*et P2 fo(0)fo(P) < G(P, Q) < Cor™t Pof5(0)fo (D)

for any P = (r,0) € C,(Q) and any Q = (t,®) € C,(Q) satisfying 0 < r/t <1/2,
where C; and C, are two positive constants (Azarin [4, Lemma 1], Essén and
Lewis [9, Lemma 2]).

LemMa 1. Let u be a positive measure on C,() such that there is a sequence
of points P; = (r;,0;) € Cy(Q), ri — 400 (i — 400) satisfying

Gu(P) = | G(PLQ)du(t,®) < 4o (i=1,2.3.+50 = (1.0) € C,(@).
Ci(Q)
Then for a positive number ¢,

(3.2) tPofo (@) du(t, ®) < +oo

Jc,,(g;/,Jroc)
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and

(3.3) lim L%

J (79 fo(®) dp(t, @) = 0.
Lo+ C,(Q:0,L)

Proor. Take a positive number / satistying Py = (r1,0;) € C,(Q), r1 <//2.
Then from {3.1), we have

Clr?‘%(@l)J (ofo (@) dult, @) < jc L, OPLOd(0) < .

Cu(Q;/,+0)
which gives [3.2]. For any positive number ¢, from we can take a large
number A4 such that

j (o fo () du(t, @) < -
Cn(Q;A7+OO)

If we take a point P; = (r;,0;) € C,(2),r; > 2A, then we have from 3.1

/l

¢ r;ﬁ%(@»j 9 fo(d) dult, @) < jc (P 0)du(0) < +0

Ci(2;0,4)

If L (L> A) is a sufficiently large, then

j (%0 fo(®) dpu(1, )
.Q 0, L

< L7 J *fo(P) du(t, ®) + J (721 fo (D) du(t, )

C,,(.Q;O,A) CH(Q§A7L)

< L7 J 1" fo(®) du(t, @) + J (721 o(P) du(t, @) < ¢

Ci(2;0,4) Cu(Q; 4, +00)

which gives [3.3). O

LeEMMA 2. Let u be a positive measure on C,(Q) for which Gu(P) is defined.
Then for any positive number B the set

{(r,0) € Cu(Q); Gu(r,0) = Br*fo(0)}
is minimally thin at oo with respect to C,(Q).

ProoOF. To the positive superharmonic function Gu, apply a result in Doob
[6, p. 213] which was stated in Remark 2. Then
Gu(P)

. Gu(P)
fl = f =0
P:(r,@gcn(lg)l,rﬂ+oo K(P, OO) Peg”( )K(P, OO) ’
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because the greatest harmonic minorant of Gu is zero. This gives the con-
clusion. ]

The following is essentially due to Azarin [4]. Here we shall give
a simple proof different from Azarin’s proof.

LemMa 3 (Azarin [4, Theorem 1]). Let v(P) be a positive superharmonic
function on C,(Q) and put

, ¢o(v)= inf oP)

. v(P)
(3.4) ¢(v) =  inf PG, @ K(P,0)

rec, (@) K(P, )

Then there are a unique positive measure p on C,(Q) and a unique positive measure
v on S,(Q) such that

o(P) = c(0)K(P, ) + co(0)K (P, 0) + jc , G(P.0)du(0)

°G(P.0)
n Ln@) ot o)

where 0/0ng denotes the differentiation at Q along the inward normal into C,(£).

ProoF. By the Riesz decomposition theorem, we have a unique measure u
on C,(L) such that

(3.5) o(P) = j  GUP.0)du(Q) +h(P) (P& Cl@)

where /4 is the greatest harmonic minorant of v on C,(). Further by the
Martin representation theorem we have another positive measure V' on
0C,(Q) U {0}

h(P) = K(P,Q)dv'(Q)

J(’)C,,(Q)U{oo}

= K(P.0) ({s0}) + K(P.OW({OD) + | L KP.0a(Q) (PeCy@)
We see from that v/({o0}) = ¢(v) and v'({O}) = ¢o(v) (see Yoshida [17, p.
292]). Since

(3.6) kP, Q)= lim oBP)  2GP0) /

P—0,P eC,(2) G(Py, P1) ong

aG(POa Q)
5nQ

(Py is a fixed reference point of the Martin kernel), we also obtain
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h(P) = c(v)K(P, ) + co(v)K(P, O) + JS o %ZQ)dV(Q)

-1
dV(Q)={w} Q) (0eS,(2))

Finally this and give the conclusion of this lemma. O

anQ

\

We remark the following inequality which follows from (3.1}.

) 0
(3.7)  CirrerPerlfy(0) e fo(®) < Gé%f) < Cyr*erPemlf(0) %fg(cp)

(resp. Clt“Q_lr_ﬁQfQ(@)%fQ(gb) < %ILQ) < Gt lefy(0) %fﬁ(@)

for any P = (r,0) € C,(Q2) and Q = (¢, D) € S,(Q) satisfying 0 < r/t < 1/2 (resp.
0 <t/r<1/2), where 0/0ngy denotes the differentiation at @ € 02 along the
inward normal into Q (Azarin [4, Lemma 1]).

LEMMA 4. Let v be a positive measure on S,(Q2) such that there is a sequence
of points P; = (r;,0;) € C,(Q2),r; — 400 (i — +00) satisfying

Su(€)

g dv(Q) < +0o (i=1,2,3,...).

Then for a positive number ¢

J t‘ﬁﬂ‘lifg(qﬁ) dv(t, @) < +o0
S,(2;7,+0) ong
and
0
lim R%J 1~ £ (D) dv(t, ®) = 0.
Rt oo S,(2;0,R) 5nq5f9( Jdv(t, &)

Proor. If we use (3.7) in place of [3.1), we obtain this lemma in the
completely paralleled way to the proof of [Lemma 1. O

LemMA 5. Let E be a bounded subset of C,(2) and u(P) be a positive
superharmonic function on C,(Q) such that u(P) is represented as

0
38) uP)=| GP.OAWQ+| S GPOdO (PeCi)
Gi(Q) Su(@) 19
with two positive measures w, and v, on C,() and S,(Q), respectively, and
satisfies
u(P) >1
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for any Pe E. Then

(3.9) zQ(E)gJ rmfg(q>)dﬂu(z,qs)+J t“Q_I%fQ(q))dvu(t,qﬁ).

Gi(®) Su(Q)
When u(P) = RE(P) (P e C,(Q)), the equality holds in (3.9).

ProOOF. Since Ag is concentrated on Br and u(P) > 1 for any P € B, we see
from (3.8) that

(3.10) Jo(E)

dip < J u(P) dip(P)
(@)

RE. ) (0)du,(0)

_|_J (J aiG(P, Q) dﬂ,E(P)> qu(Q)
s.(@ \Jc,(@) ong

Now we have

(3.11)  RE. )(0Q) <K(Q,0) =1"fo(®@) (Q=(1,®) € Ci(Q)).

Since

1
J 0GP, 0) dip(P) < li_m—J G(P, P,) djs(P)
c,(@) 0ng —0 P Jc, @)

for any Q € S,(2) (B, = (r,,0,) = O+ png € C,(Q), ng is the inward normal unit
vector at Q) and
I, oGP B &is(P) = R ) (B) < KU, o0) = 17200(6)),

we have

J oo—1 i
(3.12) J@(Q) g OLP Q) d25(P) = P70 @)

for any Q = (1,®) € S,(2). Thus from [3.10}, (3.11) and we obtain (3.9).

When u(P) = RE(P), u(P) has the expression (3.8) by [Lemma 3, because
RE(P) is bounded on C,(2). Then we easily have the equalities only in (3.10),
because RE(P) =1 for any P e By (see Brelot [5, p. 61] and Doob [6, p. 169)).
Hence if we can see that

(3.13) 1,({P e Ci(Q); RE ) (P) < K(P,0)}) =0
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and
(3.14)
w({o=tores@) Lﬂ(g)%m 0)dix(P) < 171 ful@) ) =0,

then we can prove the equality in (3.9).
To see (3.13), we remark that

{Pe Cu(Q); RE(. ,\(P) < K(P,0)} = C\(Q) — B
and
1, (Ca(Q) = Bg) =0

(see Brelot [5, Theorem VIII, 11] and Doob [6, XI, 14. Theorem (d)]).
To prove (3.14), we set

(3.15) B ={Q € S,(Q); E is not minimally thin at Q}

and e = {P € E; IA{,‘?(.W)(P) < K(P,0)}. Then e is a polar set (see Doob [6, VI,
3. (b)]) and hence for any Q € S,(Q)

Ri(.0) = Rl
(see Doob [6, VI, 3. (c)]). Thus at any Q € By, E — e is not also minimally thin
at Q and hence

616 | KPQaP = lm | KPP dn(P)
Co(Q) P'—Q,P'eE—eJ)C,(Q)

for any positive measure # on C,(Q), where

G(P, P')

K2 =Gy )

(Pe Cy(R),P' € Cy(Q))

(see Brelot [5, Theorem XV, 6]). Now, take # = Ag in (3.16). Since

K(P7 OO) O(Q—l i

li =1t 0y
P—0, })I?cn(g) G(Po, P) an¢f9( ) {

0G(Py, Q)
anQ

1
} (0= (1) € S,(2))

(for the existence of the limit in the left side, see Jerison and Kenig [14, (7.9) in p.
87]), we obtain from

/l

G(P, 0) ny . J G(P, P')
——dlg(P) = """ —fo (P lim ———=dAg(P
JC Q) al/lQ E( ) 8n¢fg( ) P'—Q,P'eE—e JC,(Q) K(P,7 OO) E( )
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for any Q = (¢,®) € B;.. Since

G(P, P') L
GPP) Py = — L RE (=1
JCn@)K(P’,OO) £(P) = RGP, o) R0 ()

for any P’ € E — e, we have

aG(PaQ) oao—1 0
L2 p(P) = 107 fo (D
[, i P = 0 S o)

for any Q = (¢,®) € By, which shows

(3.17)

iG(P, Q)dig(P) < el 8]’9(@)} < Sy(Q) - BJ’E.
() 0N ong

{Q—mae&my[

Let /1 be the greatest harmonic minorant of u(P) = RE(P) and v/ be the Martin
representing measure of 4. If we can prove that

(3.18) RE =h

on C,(2), then v)(S,(2) — By) =0 (see Essén and Jackson [7, pp. 240-241],
Brelot [5, Theorem XV, 11] and, Aikawa and Essén [3, Part II, p. 188]). Since

0

dv,(Q) = %G(Po, Q) dv(Q) (QeSi(Q))

from [3.6), we also have v,(S,(2) — B;) =0, which gives (3.14) from (3.17).
To prove [3.18), set u* = RF —h. Then

u' +h=RF=RE , <RE +Rf

(see Brelot [5, VI, 10. d)] and Helms [13, THEOREM 7.12 (iv)]), and hence
RE —h>u"—RE >0, O
from which 3.18) follows.

4. Proof of Theorem 1.

Apply the Riesz decomposition theorem to the superharmonic function

ﬁg( on C,(Q). Then we have a positive measure u on C,(€) satisfying

. OO)
Gu(P) < oo

for any P e C,(Q2) and a non-negative greatest harmonic minorant H of ﬁ,’g(
such that

.700)
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We remark that K(P,0) (Pe C,(Q)) is a minimal function at oo. If E is
minimally thin at oo with respect to C,(€), then f{}g( ) is a potential (see Doob
[6, p. 208]) and hence H =0 on C,(Q2). Since

-, 00

(4.2) RE () (P) = K(P,0)

for any P e Bg (Brelot [5, p. 61] and Doob [6, p. 169]), we see from (4.1)

(4.3) Gu(P) = K(P, )

for any P € Bg.
Take a sufficiently large L from such that

1
2% % J *fo(®) du(t, @) < 7.
Ca(Q;0,L)

Then from

1
G(2;0,L)

for any P= (r,0) € C,(Q), r > 2L, and hence from

/l

(44) G(P. Q) du(0) = K (P, )

JC,AQ;L,+OO)

for any P=(r,0) € Bg, r >2L. Now, divide Gu into three parts:

(4.5) Gu(P) = A (P) + 4 (P) + AL (P) (Pe Cu(@)),

where

A§k><P>=j G(P, ) du(0), A§k><P>=j G(P, ) du(Q)
C(Q; 251 2K+2) Ca(£2;0,25-1)

AP (P) = G(P, Q) du(Q).

JCH(Q;zkﬂ,ﬂc)

Then we shall show that there exists an integer N such that

(4.6)  BpNI(Q) < {P = (r,0) € C,(Q); 4" (P) > %r“gfg(@)} (k> N).

Take any P = (r,0) € L,(2)N C,(2). When by we choose a
sufficiently large integer N; such that
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1
24 | 9 fo(@) du(t, ®) < 7 (k= N)
Ca(€2;0,25°1) 4G

and

tPefo (@) du(t, @) < 1 (k= Ny),

JCH(Q,2"+2,+OO) 4C,

we have from that

(4.7) AP(P) < 1rofa(0) (k= M)
and
(4.8) AP (p) < %r“%(@) (k > Ny)
Put

If P=(r,0)e BeNI(Q2) (k> N), then we have from (4.4), (4.5), [4.7) and [4.8)
that

G(P.0)du(Q) — AV (P) — 4V (P) > Loy (6),

A(k)P>
1 (P) >

which shows (4.6).
Since the measure Ap, is concentrated on By, and Bg, < Bp NI (Q2), we
finally obtain by (4.6) that

(Ghg,)dig, < J

Bp,

rf(0) i, (r, 0) < 4J A (P) dig, (P)

B,

va(Ex) = J

Gi(Q)

_4 {j G(P, Q)diEk(P)}du(Q)
JC,(2;2k1 2k+2) | J G, (@)

<4 (2 fo(®) du(t, ®) (k= N)
J CH(Q;2k71’2/(+2)

and hence

o0 o0

Z yQ(Ek)z—kég < 41+5Q z

j (79709 fo (@) (1, D)
=N =N Cn(Q;Zk*1,2/‘+2)

< 12 x 4% J tPofo (@) du(t, d) < +oo
Co(2;28-1 +0)

from Cemma 1. This gives [2.1).
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Next we shall prove “if” part. Since
for any Q€ B, as in [4.2], we have

o) = |

Bg,

K(Q,OO)diEk(Q)ZZk“QJ fol®) dig, (1.8) (0= (1,®) € C,())

Br,
and hence from

(49) R¢ \(P) < CzV“QfQ(@)J tPofo(D) dig, (1, ®) < Cor™fo(0)272y,(Ex)

("OO) By
k

for any P = (r,0) e C,(Q) and any integer k satisfying 2¥ > 2r. If we define a
measure u on C,(Q) by

Yieo d26,(Q)  (Q € Gi(Q:1,+0))

du(Q) = {0 (Q e Cu(2;0,1)),

then from and (4.9)

is a finite-valued superharmonic function on C,(2) and

Gu(P)= | P 0)din (0) = R, ) (P) = r/o(6)
for any P = (r,0) € Bg,, and from
Gu(P) = C'rofo()

for any P = (r,0) € C,(2;0,1), where
C'= CIJ (e fo(®) du(t, D).
Cn(Q§27+OO)
If we set

E'={)Bg, Ei=ENC,(2;0,1) and C=min(C',1),
k=0

then
E'< {P = (r,0) € Cu(2); Gu(P) = Cr'*/u(6)}.

Hence by [Lemma 2, E’ is minimally thin at co with respect to C,(Q) i.e. there is
a point P’ € C,(Q) such that
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ﬁlgé~,oo)(Pl) 7 K(Pla OO)

Since E’ is equal to E except a polar set (see Brelot [5, p. 57] and Doob [6,
p. 177]), we know that

!/

RE( ) (P) = Rg( (P)
for any Pe C,(2) (see Helms [13, CoroLLARY 8.37]) and hence
ng(oo)(Pl) a K(Pla OO)

This shows that E is minimally thin at co with respect to C,(Q). ]

5. Proof of Theorem 2.

Let E be a rarefied set at oo with respect to C,(Q). Then there exists a
positive superharmonic function v(P) on C,(L) such that ¢(v) =0 and

(5.1) EcH,.

By [Lemma 3, we can find two positive measures u on C,(2) and v on S,(Q)
such that
dv(Q) (P eCy(Q)).

v(P) = co(v)K(P, 0) +J G(P,Q)du(Q) +J 9G(P,0)

C(Q) 5,(Q) GnQ

Now we write

(52) o(P) = ¢o(v)K(P, 0) + B\ (P) + BY(P) + B (P),
where
0G(P
Bw=] eroawo+| D)
(20,26 1) Su(2;0,21)  ONQ
oG (P
B - | 6(P,Q)du(0) + | e
C(Q;2k=1 2K+2) S, (Q;2k=1 2k+2) nQ
and
B - | G(P, 0) du(0)
Co(Q: 2542, 1)

+J WGP.9) o) (PeCy@)k=1,23,..)
S, (Q;2k+2 +o0) 0nQ

First we shall show the existence of an integer N such that

(5.3) H,NIL(Q) c {P = (r,0) € Ik(.Q);ng)(P) > %rm}
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for any integer k,k > N. Since v(P) is finite almost everywhere on C,(£), from
Lemmas 1 and 4 applied to

oG(P, Q)

dv
si(@ Ong (©)

Jc,,@ G(P,Q)du(Q) and |

respectively, we can take an integer N such that for any k,k > N,

1
5.4 2"59J 1" fo (D) du(t, ) < :
54) (30,251 fa(®) dult, @) 12GhJq
5.5 Pefo (D) du(t, ) < :
53) Jcn(g;2/c+2,oo) Jo(®) dult, @) 12C,J 0
0
5.6 2"‘59J 177N £ (D) dv(t, D) <
5:6) 510,251 an¢f9( ) dv(t, ®) 12CyJq
and
(5.7) J ot O (®) dv(1, @) < o
. 8, (2;2k+2 o0) al’lq) @ ’ - 12C2JQ,
where
Jo = sup fo(0).
Pe

Then for any P = (r,0) € [,(Q2) (k> N), we have

BY(P) < Codar e | (4 o(@) dult, @)

C,(Q:0,251)
_[g do—1 5
+ CyJor re 1 —fg(@)dv(l,@)
S,(2;0,25-1) ong

1 |
_,,.O(Q _I__},OCQ :_rcxg

<
12 12 6
from (3.1), (3.7), (5.4) and (5.6), and

BO(P) < chQr“QJ o fo() duu(t, ®)
C(2;2542, 00)
o —fo—1 J
+ CyJor*® tre —fg(@) dv(t, @)
8, (Q;2k+2 o) 01’1@
1 o l o, 1 (04
< == =

T 12 12 6
from (3.1), (3.7), (5.5) and (5.7). Further we can assume that
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6rcco(v)Jo < 1o

for any P=(r,0)el;(Q2) (k> N), hence if P=(r,0)e[(2)NH, (k=>N),
then we obtain

1 1 1 1
ng) (P) >r* — gr“‘? - gr‘m - gr“‘? = ir“‘?

from [[5.2), which gives [5.3).
Now we observe from (5.1) and [5.3) that

BM(P) > 2% (k> N)
for any P e E;. If we define a function u;(P) on C,(Q2) by
u (P) = 2'F B (P),

then
uk(P) > 1 (PEEk,k = N)

and

_ °G(P, 0
wp)=| o+ | o

with two measures

4 (0) = {2”‘“9 du(Q) (Q e C,(@;24),2542))
= 0 (0 € Cy(2: 0,25 1)U Co(2; 252, o0))
and
217a dy(Q)  (Q € S,(Q2;257!2K2))
dvi(Q) = k-1 k42
0 (0 € 8,(2: 0,25 1)U S,(Q; 22, o).
Hence by applying to ui(P), we obtain
a(E) < 21-’“9{ | ol @) dp1, )
Cn(9;2k’1,2k+2)

-I-J I“Q_lifg(é) dv(t, @)}
Sn(g;zk—l’zkﬁ) 6nq>

(k > N). Finally we have

o0

200 (Er) <6 459{ J tPefo(@) du(t, )

k=N Ca(2;2N1 4 o0)

0
+J et L po (@) dv(s, ds)}.
Su(2:281 4o0) 0ng
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If we take a sufficiently large N, then the integrals of the right side are finite from
Lemmas 1 and 4.
Suppose that a subset E of C,(Q) satisfies

ZzikﬁQAQ(Ek) < +o00.
k=0

Then from the second part of Lemma 5 applied to Ej, we have

(5.8) g 2—’%{ J@(

+J t°‘9‘1i (D) dv(t, QB)} < 0,
S,(Q) ong

(% fo(B) dus (1, D)
Q)

where g and v; are two positive measures on C,(Q) and S,(L), respectively,
such that

R . 0 .
59 RAP=| 6P0@w©@+| o cr.oao)
Ci(Q) S,(@) o

Consider a function vy(P) on C,(€2) defined by

o0

w(P)= ) 2RRE(P) (PeGi(Q),

k=1

where

E | =EN{P=(r0)eC(Q);0<r<l1}.

Then vy(P) is a superharmonic function on C,(Q) or identically +c0 on C,(Q).
Take any positive integer ky and represent vy(P) by

vo(P) = v1(P) + 0a(P) (P e Gy(Q)),

where
ko+1 . 0 X
Ul(P) _ Z 2(k+1)0!gRlEk(P), UZ(P) — Z 2(k+1)fng{5k(P)‘
k=—1 k=ko+2

Since y; and v; are concentrated on By, < E; N C,(2) and By < E;NS,(Q) (see
(3.15) for the notation By, ), respectively (Brelot [6, Theorem XV, 11]), we have
from (3.1) and (3.7) that

2 | 6P Q) dui(Q) < 2N fa(8) | ¢ fa() di(1,)

Gi(Q) C.(Q)

< C2 () a(O'2 e | Pefa(@) dui (1,0
Ci(Q)
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and

0
(k+1)ag Y / *
[ eGP0 (0

< Ol ()7 (9/) %L(Q) fg< ) dvi (¢, )

for a point P’ = (r',0') € C,(Q), r' < 2%*! and any integer k > ko +2. Hence
we know

o0

(510)  w(P) < G2 (") (€)Y 2‘%{JC o CSo(@) (1)

k=ko+2

o[ e L >dv;;<r,q>>}.
Su(2)

This and show that v,(P’) is finite and hence vy(P) is a positive super-
harmonic function on C,(2). To see

. vo(P)
(5.11) cvo) = 30l X(P. )

=0,
consider the representations of vy(P),v;(P) and vp(P)

w0(P) = c(u)K(P, ) + eo(u)K(P, 0) + jc (P 0)dtg (0

+j WGP.0O) 4y (0),
Su(Q)

51’ZQ

01(P) = c(v)K(P, 52) + eo(0))K(P, 0) + JC 6P/ (0)

06(P.0)
+js . v (0),

8nQ

and

02(P) = c(02)K (P, 0) + co(02)K(P, 0) + JC P00

o[ e,
5,(Q)

g dv2)(0Q)

by Lemma 3. It is evident from that ¢(v;) =0 for any ko. Since
c(vg) = ¢(vy) and
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. v (P v2(P)
= inf <
e(v2) Pelg,(Q)K(P, w0) ~ K(P,0)

sy 2 | )i, )
C,(Q

ko+2
oao—1 a *
+ 17 —fo(D)dvi(t,®@) p — 0 (ko — +0)
S,(@Q) Ong

from and (5.10), we know c(vp) = 0, which is (5.11).
Since ﬁlEk =1 on Bg,Bg, < E,NC,(Q) (Brelot [5, p. 61] and Doob [6,
p. 169]), we see

Uo(P) > 2(k+1)ag > roe
for any P=(r,0) € Bg, (k=-1,0,1,2,...). If we set E' = U;O:,lBEw then
(5.12) E' < H,.

Since E’ is equal to E except a polar set S, we can take another positive su-
perharmonic function v3 on C,() such that v; = Gy with a positive measure 7
on C,(Q) and vs is identically +00 on S (see Doob [6, p. 58]). Finally, define a
positive superharmonic function v on C,(Q2) by

v =1+ 3.

Since ¢(v3) =0, it is easy to see from (5.11) that ¢(v) =0. Also we see from
(5.12) that £ < H,. Thus we complete to prove that E is a rarefied set at oo
with respect to C,(Q). L]

6. Proofs of Theorems 3 and 4.
PrOOF OF THEOREM 3. By we have

G(P.0)du(0) +| W6L.0) 4 )

v(P) = ¢(v)K(P, ) + co(v)K(P, O) +J s@ g

Ci(R)

for two positive measures u and v on C,(2) and S,(€), respectively. Then
v1(P) = v(P) — c(v)K(P,0) — cy(v)K(P,0) (P=(r,0)e C,(RQ))

also is a positive superharmonic function on C,(2) such that

inf n(P)

=0.
P=(r,0)e C,(Q) K(P7 OO)
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We shall prove the existence of a rarefied set E at oo with respect to C,(Q2)
such that

vi(P)yr* (P=(r,0)e Cy(Q))

uniformly converges to 0 on C,(2) — E as r — +o0. Let {¢} be a sequence of
positive numbers ¢; satisfying ¢ — 0 (i — +o00). Put

={P=(r,0)e C)(Q);v1(P) = er™} (i=1,2,3,...).
Then E; (i=1,2,3,...) is rarefied at oo with respect to C,(2) and hence

szﬁezg )<+ (i=1,2,3,...)

by Mheorem 2. Take a sequence {¢;} such that

szﬁazg — (i=1,2,3,..))
21
k=q;
and set
E= U (El)k
i=1 k=q;
Then
o0 o0
Q(En) <33 io(EiNLNL) (m=1,2,3,..),
i=1 k:q,'

because Aq is a countably sub-additive set function as in Aikawa [2, Lemma 2.4
(iii)] and Essén and Jackson [7, p. 241]. Since

0 0

ho(Eq)2 e < Z f: f: Ao(Ei NI N 1,)2 Pe
1

m= i=1 k=q; m=1

=33 allEn < Y =,

we know by [Theorem 2 that FE is a rarefied set at oo with respect to C,(Q).
It is easy to see that

vi(P)yr* (P=(r,0)e Cy(Q))

uniformly converges to 0 on C,(Q) — E as r — +oo. ]
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Proor OF THEOREM 4. Since Ag, 1s concentrated on By, < E. N Ci(Q), we
see

vo(Ex) :J R¢. . (P)dig (P) < J K(P, 0)dig, (P) < Jo2*tD% )0 (Ey)
Ci(2) ’ Ci(Q)

and hence

o0

2Ry 0 (Er) < Jg2% ) " 27Me)g(Ey),
k=0 k=0

which gives the conclusion in the first part from Theorems 1 and 2.
To prove the second part, put J, =min,_5;fo(6). Since

K(P,0) = r*fo(0) = Jor*e > J,2" (P = (r,0) € E),
and

Rg: ) (P) = K(P, )

for any P € Bg,, we have

vo(Ex) :j ( )Rg@’w)(m dlg (P) = J5252 )0 (Ey).
Cy (2

Since

0 0
Ty > 27ag(Er) < > 27%(Ex) < 400
k=0 k=0

from Theorem 1, it follows from Theorem 2 that E is rarefied at co with respect
to C,(Q). [
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