On Julia sets of postcritically finite branched coverings Part II— S^1 -parametrization of Julia sets

By Atsushi Kameyama

(Received Apr. 27, 2001) (Revised Oct. 29, 2001)

Abstract. We prove that for an expanding postcritically finite branched covering f, the Julia set is orientedly S^1 -parametrizable if and only if f^n is combinatorially equivalent to the degenerate mating of two polynomials for some n > 0.

1. Introduction.

In the preceding paper [3], the author introduced the notion of Julia sets for (probably non-holomorphic) expanding postcritically finite branched coverings on the 2-dimensional sphere. It should be noted that all postcritically finite rational maps are expanding postcritically finite branched coverings. Moreover, there exists an expanding postcritically finite branched covering not equivalent to a rational map (see [3], Section 6). We have studied semiconjugacies from symbolic dynamics in [3]. The main purpose of the present paper is to investigate semiconjugacies from the *d*-fold maps on the circle.

For a polynomial map $f: C \to C$ there often exists a surjective map $\phi: \{|z|=1\} \to J_f$ such that $\phi(z^d)=f(\phi(z))$, where d is the degree of f and J_f is the Julia set of f. This property will be called S^1 -parametrizability. Recall that a post-critically finite polynomial f has this property. In fact, for a simple closed curve γ around the infinity, the inverse image $\gamma_i=f^{-i}(\gamma)$ uniformly converges to a closed curve in J_f as $i\to\infty$ (see [1]). We will consider the class of postcritically finite branched coverings with S^1 -parametrizability. The main result is to give a connection between S^1 -parametrizability and mating.

The paper is organized as follows. In Section 2 we recall results of [3] which we will use. In Section 3 we define S^1 -parametrizability of Julia sets and show that it is equivalent to the existence of a closed curve which is homotopically invariant. In Section 4 we give an example of rational maps with Julia sets not S^1 -parametrizable. In Section 5 we introduce a class of branched coverings, called nesting branched coverings, and give a sufficient condition for a nesting branched covering to be S^1 -parametrizable. In Section 6 we show that for a postcritically finite branched covering f, the Julia set is orientedly S^1 -parametrizable if and only if f is equivalent to the degenerate mating of two polynomials, where we say the Julia set is *orientedly* S^1 -parametrizable if the homotopically invariant closed curve can be perturbed to a simple closed curve.

²⁰⁰⁰ Mathematics Subject Classification. 37F20.

Key Words and Phrases. Julia set, postcritically finite branched covering, S^1 -parametrization, Thurston equivalence, mating.

2. Summary of basic facts.

In this section, we recall some results obtained in [3].

DEFINITION 2.1. Suppose $f: S^2 \to S^2$ is a topological branched covering. We say the set C_f of critical points is the *critical set* of f, and

$$P_f = \overline{\{f^n(c) \mid c \in C_f, n > 0\}}$$

is the postcritical set of f. We say f is postcritically finite if P_f is a finite set.

Throughout this paper, we suppose that $f: S^2 \to S^2$ is a postcritically finite branched covering of degree $d \ge 2$.

DEFINITION 2.2. Let f be a postcritically finite branched covering. A point in P_f is a *postcritical point*. We say a periodic cycle $\{x_1, x_2, \ldots, x_k\}$ is a *critical cycle* if it contains a critical point. A point of a critical cycle is called a critical periodic point. We divide P_f into P_f^a and P_f^r .

$$P_f^a = \{x \in P_f \mid \exists k > 0, f^k(x) \text{ is contained in a critical cycle}\}, \quad P_f^r = P_f - P_f^a.$$

DEFINITION 2.3. A smooth postcritically finite branched covering f is said to be *expanding* if there exists a Riemannian metric $\|\cdot\|$ on $S^2 - P_f$ which satisfies:

- 1. Any compact piecewise smooth curve inside $S^2 P_f^a$ has finite length.
- 2. The distance $d(\cdot,\cdot)$ on $S^2 P_f^a$ determined by the curve length is complete.
- 3. For some constants C > 0 and $0 < \lambda < 1$,

$$||v|| < C\lambda^k ||df^k(v)||$$

for any k>0 and any tangent vector $v\in T_p(S^2)$ if $f^k(p)\in S^2-P_f$. Then $|l|< C\lambda^k|f^k(l)|$ for any piecewise smooth curve l with $f^k(l)\subset S^2-P_f^a$, where $|\cdot|$ means the length of a curve.

Theorem 2.4. If f is expanding, then there uniquely exists a non-empty compact subset $J \subset S^2 - P_f^a$ such that $f^{-1}(J) = J = f(J)$.

DEFINITION 2.5. The subset in the previous theorem is called the *Julia set* of f, and denoted by J_f .

PROPOSITION 2.6. If f is expanding, then the following hold:

- 1. For $x \in S^2 P_f^a$, we have $J_f = \bigcap_{n=1}^{\infty} \overline{\bigcup_{k=n}^{\infty} f^{-k}(x)}$.
- 2. For $x \in S^2 J_f$, the sequence $\{f^n(x)\}_{n>0}$ is attracted to a critical cycle.
- 3. The Julia set is connected.

3. S^1 -parametrizability.

We denote by q_N the N-fold map on the circle T = R/Z, that is, $q_N(\theta) = N\theta \mod 1$ for $\theta \in [0,1]$. We identify T and $S^1 = \{|z| = 1\}$ by $\theta \to \exp(2\pi i\theta)$.

DEFINITION 3.1. A dynamical system $f: X \to X$ is called S^1 -parametrizable if there exists a continuous surjection $\phi: T \to X$ such that

$$egin{array}{cccc} oldsymbol{T} & \stackrel{q_N}{\longrightarrow} & oldsymbol{T} \ \phi & & & \downarrow \phi \ X & \stackrel{f}{\longrightarrow} & X \end{array}$$

commutes for some N.

DEFINITION 3.2. Let f be an expanding postcritically finite branched covering. We say its Julia set J_f is S^1 -parametrizable if the restriction $f|J_f$ is S^1 -parametrizable.

DEFINITION 3.3. Let f be a postcritically finite branched covering of degree d. A closed curve $\alpha: S^1 \to S^2 - P_f^a$ is said to be f-invariant up to homotopy if there exists a closed curve $\alpha_1: S^1 \to f^{-1}(\alpha)$ such that there exists a homotopy $h: S^1 \times [0,1] \to S^2 - P_f^a$ from α to α_1 with P_f^r fixed (i.e. if $h(\theta,t) = p \in P_f^r$ for some t, then $h(\theta,t) = p$ for every $t \in [0,1]$) and that $f \circ \alpha_1 = \alpha \circ q_N$ for some $N \ge 2$. If N = d, then we say α is fully f-invariant up to homotopy.

Lemma 3.4. Let α be f-invariant up to homotopy. If $\beta: S^1 \to S^2 - P_f^a$ is homotopic to α with P_f^r fixed, then β is f-invariant up to homotopy. More in detail, if H is a homotopy from α to β with P_f^r fixed, then we have a homotopy H' from α_1 to β_1 ($\alpha_1: S^1 \to f^{-1}(\alpha)$) homotopic to α , and $\beta_1: S^1 \to f^{-1}(\beta)$) with P_f^r fixed such that

$$S^{1} \times [0,1] \xrightarrow{q_{N} \times \mathrm{id}} S^{1} \times [0,1]$$

$$\downarrow^{H'} \qquad \qquad \downarrow^{H}$$

$$S^{2} \xrightarrow{f} S^{2}$$

commutes.

PROOF. The required homotopy H' is the lift of $H \circ (q_N \times \mathrm{id})$ by the branched covering f. The existence of the lift is guaranteed by the existence of α_1 . More precisely, H' is constructed as follows. Let $\theta \in S^1$. If $\alpha q_N(\theta) \in P_f^r$, then set $H'(\theta,t) = \alpha_1(\theta)$ for each $t \in [0,1]$. Otherwise, set $H'(\theta,\cdot):[0,1] \to S^2 - f^{-1}(P_f)$ to be the lift of $H(q_N(\theta),\cdot):[0,1] \to S^2 - P_f$ by the covering $f:S^2 - f^{-1}(P_f) \to S^2 - P_f$ such that $H'(\theta,0) = \alpha_1(\theta)$.

Theorem 3.5. Let f be an expanding postcritically finite branched covering. If there exists a closed curve $\alpha: S^1 \to S^2 - P_f^a$ which is f-invariant up to homotopy, then there exists an invariant subset $K \subset J_f$ such that $f|K:K \to K$ is S^1 -parametrizable. In particular, if α is fully f-invariant up to homotopy, then J_f is S^1 -parametrizable.

PROOF. Let h be a homotopy from α to α_1 as in Definition 3.3. By Lemma 3.4, there exists a homotopy $h_1: S^1 \times [0,1] \to S^2$ such that $h(q_N(\theta),t) = fh_1(\theta,t)$ and

 $h_1(\cdot,0)=\alpha_1$. Similarly, for each k>0 we inductively obtain a homotopy $h_k:$ $S^1\times [0,1]\to S^2$ such that $h_k(q_N(\theta),t)=fh_{k+1}(\theta,t)$ and $h_k(\cdot,1)=h_{k+1}(\cdot,0)$. Write $\alpha_k=h_{k-1}(\cdot,1)$. Then $h_k(\theta,\cdot):[0,1]\to S^2-P_f^a$ is a curve joining $\alpha_k(\theta)$ and $\alpha_{k+1}(\theta)$. By the expandingness of f, we have $|h_k(\theta,\cdot)|\leq C\lambda^k|h(q_N^k(\theta),\cdot)|$, and hence $\alpha_k:S^1\to S^2$ uniformly converges to a curve $\beta:S^1\to S^2$ as $k\to\infty$ such that $f\circ\beta=\beta\circ q_N$. Then $K=\beta(S^1)$ is an invariant set, which is included in the Julia set by Proposition 2.6-1.

Theorem 3.6. Let f be a postcritically finite branched covering. If there exists a closed curve $\alpha: S^1 \to S^2 - P_f^a$ which is f-invariant up to homotopy, then α can be continuously deformed so as to have at most finitely many self-intersections keeping f-invariant up to homotopy.

In particular, if the Julia set of an expanding postcritically finite branched covering f is S^1 -parametrizable, then there exists a closed curve $\alpha: S^1 \to S^2 - P_f^a$ which is fully f-invariant up to homotopy and has at most finitely many self-intersections.

PROOF. Let $\alpha:[0,1]\to S^2-P_f^a$ be f-invariant up to homotopy. Fix $p\in P_f^r$. Assume $\alpha(0)=\alpha(1)\neq p$. We show that α can be deformed to a curve α' with $\#\alpha'^{-1}(p)<\infty$. For $a,b\in\alpha^{-1}(p)$ with a< b, we say that $[a,b]\subset[0,1]$ is *trivial* if the restriction $\alpha:[a,b]\to S^2-P_f^a$ is homotopic to a constant map $t\mapsto p$ relative to $\{a,b\}$ in $S^2-(P_f-\{p\})$. Note that for a trivial interval $J\subset[0,1]$ if we deform α to α' by $\alpha'(t)=\alpha(t)$ if $t\notin J$, $\alpha'(t)=p$ if $t\in J$ then α' is still f-invariant up to homotopy. Let U be a small neighborhood of p. Then for $a,b\in\alpha^{-1}(p)$ with a< b, the interval [a,b] is trivial whenever $\alpha([a,b])\subset U$. Let A be the set of $x\in[0,1]$ such that there exist a< b with $a,b\in\alpha^{-1}(p)$, a< x< b and $\alpha([a,b])\subset U$. Since [0,1] is compact, A is a finite union of open intervals and $\#([0,1]-A)\cap\alpha^{-1}(p)<\infty$. We define α' by $\alpha'(t)=\alpha(t)$ if $t\notin A$, $\alpha'(t)=p$ if $t\in A$. Since $\alpha'^{-1}(p)$ consists of at most finite connected components, we obtain the required curve by modifying α' .

Doing this deformation for all $p \in P_f^r$, we get $\tilde{\alpha}$ a curve f-invariant up to homotopy such that $\#\tilde{\alpha}^{-1}(P_f^r) < \infty$. The curve can be approximated by a piecewise analytic curve with P_f^r fixed. This completes the proof.

DEFINITION 3.7. Let f be a postcritically finite branched covering. We say a closed curve $\alpha: S^1 \to S^2 - P_f^a$ with at most finitely many self-intersections is *oriented* if α can be deformed to a simple closed curve by a small perturbation (i.e. there is a continuous map $h: S^1 \times [0,1] \to S^2 - P_f^a$ such that $h(\cdot,0) = \alpha$ and $h(\theta,t) \neq h(\theta',t)$ whenever $\theta \neq \theta' \in S^1$ and $t \in (0,1]$).

Suppose f is expanding. The Julia set J_f is *orientedly* S^1 -parametrizable if there exists an oriented closed curve $\alpha: S^1 \to S^2 - P_f^a$ which is fully f-invariant up to homotopy. Note that the deformed simple closed curve is not necessarily f-invariant up to homotopy.

EXAMPLE 3.8. Consider a rational map $f(z) = (z^2 - 2)/z^2$. The critical set $C_f = \{0, \infty\}$ and the postcritical set $P_f = \{\infty, 1, -1\}$. The dynamics on $C_f \cup P_f$ is $0 \to \infty \to 1 \to -1$. Set

$$\gamma(t) = \begin{cases} -1 + \frac{t - 1/4}{t} & \left(0 \le t \le \frac{1}{4}\right) \\ -1 + i\frac{t - 1/4}{t - 1/2} & \left(\frac{1}{4} < t \le \frac{1}{2}\right) \\ 1 - \frac{t - 3/4}{t - 1/2} & \left(\frac{1}{2} < t \le \frac{3}{4}\right) \\ 1 - i\frac{t - 3/4}{t - 1} & \left(\frac{3}{4} < t \le 1\right) \end{cases}$$

Then γ is oriented and satisfies the condition of Theorem 3.5 for N=2 (see Figures 1.1, 1.2 and 1.3). Thus the Julia set J_f , which is the whole sphere, is orientedly S^1 -parametrizable.

REMARK 3.9. A branched covering whose Julia set is S^1 -parametrizable and not orientedly S^1 -parametrizable is unknown.

4. A Julia set which is not S^1 -parametrizable.

In this section we give one example of rational maps whose Julia sets are not S^1 -parametrizable.

We use the notion of *branch group* which has been introduced in the preceding paper. See [3] Section 5. Let f be a postcritically finite branched covering of degree d. Choose a point $x \in S^2 - P_f$ and a radial r (see [3] Definition 3.2). We denote, by G_k , the k-th branch group, and denote, by $F_k : G_{k-1} \to G_k$, the induced homomorphism of f. Recall that $G_k = \pi_1(S^2 - P_f, x)^{W_k} \times \Lambda(W_k)$, where $W_k = \{1, 2, \dots, d\}^k$ is the set of words of length k and $\Lambda(W_k)$ is the set of permutations on W_k . Let $p_1 : G_k \to \pi_1(S^2 - P_f, x)^{W_k}$ and $p_2 : G_k \to \Lambda(W_k)$ be the projections.

DEFINITION 4.1. For a permutation h, we say (a_1, a_2, \ldots, a_n) is an *orbit* of h if $a_i \neq a_j$ for $i \neq j$ and if $h(a_{i-1}) = a_i$ for $i = 2, \ldots, n$ and $h(a_n) = a_1$. The number n is the *period* of the orbit.

A closed curve $\gamma: S^1 \to S^2 - P_f$ is *prime* if $l \circ q_n$ and γ are not homotopic in $S^2 - P_f$ for any closed curve l and any positive integer n.

PROPOSITION 4.2. Let $\gamma: S^1 \to S^2 - P_f$ be a closed curve with basepoint $\gamma(0) = x$. Let $[\gamma]$ be the element of $\pi_1(S^2 - P_f, x)$ with a representative γ . The permutation $p_2(F_j \circ F_{j-1} \circ \cdots \circ F_1([\gamma]))$ has an orbit of period n if and only if there exists a prime closed curve $l: S^1 \to S^2 - P_f$ such that $f^j \circ l = \gamma \circ q_n$.

PROOF. In view of [3] Theorem 3.4, we have a mapping $W_j \ni w \mapsto x_w \in f^{-j}(x)$. For $w \in W_j$, we denote by $\omega_w : [0,1] \to S^2 - P_f$ the curve such that $f^j \circ \omega_w = \gamma$ and $\omega_w(0) = x_w$. We use the mappings \tilde{L}_w and e of [3] Section 5. Write $\tau = p_1(F_j \circ \cdots \circ F_1([\gamma]))$ and $h = p_2(F_j \circ \cdots \circ F_1([\gamma]))$. It follows from the definition of F_k that

$$\tau(a_1a_2\cdots a_j)=\tilde{L}_{a_1a_2\cdots a_j}([\gamma]),\quad h(a_1a_2\cdots a_j)=b_1b_2\cdots b_j,$$

where $b_k = e(\tilde{L}_{a_{k+1}a_{k+2}\cdots a_j}([\gamma]), a_k)$. Thus h(w) = w' if and only if $\omega_w(1) = x_{w'}$.

Let $(w^1, w^2, \dots, w^n = w^0)$ be an orbit of $p_2(F_j \circ \dots \circ F_1(\gamma))$. Then $\omega_{w^i}(1) = \omega_{w^{i+1}}(0)$. Hence $\gamma' = \omega_{w^1}\omega_{w^2}\cdots\omega_{w^n}$ satisfies $f^j \circ \gamma' = \gamma \circ q_n$.

Conversely, if a closed curve l satisfies $f^j \circ l = \gamma \circ q_n$, then $l = \omega_{w^1} \omega_{w^2} \cdots \omega_{w^n}$ for some $w^1, w^2, \dots, w^n \in W_i$.

Consider the rational map $f(z)=(z^2+1)/(z^2-1)$. The critical set $C_f=\{0,\infty\}$ and the postcritical set $P_f=P_f^a=\{-1,\infty,1\}$. The dynamics on $C_f\cup P_f$ is $0\mapsto -1\mapsto\infty\mapsto 1\mapsto\infty$. We show that $f^j|J_f$ is not S^1 -parametrizable for every j.

Assume that $f^j|J_f$ is S^1 -parametrizable. Then there exists $\gamma:S^1\to S^2-P_f$ such that $f^j\circ\gamma=\gamma\circ q_{2^j}$.

Take a radial r and generators A, B of $\pi_1(S^2 - P_f, x)$ as Figures 2.1 and 2.2. We denote by $(a_1 \ a_2)$ the permutation interchanging a_1 and a_2 . Then

(1)
$$p_2F_1(A) = (1 \ 2), \quad p_2F_1(B) = (1 \ 2)$$

and

(2)
$$p_1F_1(A)(1) = B^{-1}$$
, $p_1F_1(A)(2) = A^{-1}$, $p_1F_1(B)(1) = 1$, $p_1F_1(B)(2) = 1$.

Therefore,

$$p_2F_2F_1(A) = (11 \ 22)(21 \ 12), \quad p_2F_2F_1(B) = (11 \ 12)(21 \ 22).$$

Since the image of $p_2F_2F_1$ is generated by $\{(11\ 22)(21\ 12), (11\ 12)(21\ 22)\}$, it is

$$\{id, (11 22)(21 12), (11 12)(21 22), (11 21)(12 22)\}.$$

By Proposition 4.2, for every closed curve $\gamma \subset S^2 - P_f$, there is no closed curve γ' such that $f^j \circ \gamma' = \gamma \circ q_{2^j}$ if $j \geq 2$.

Suppose there exists a closed curve γ such that $[\gamma] = A^{n_1}B^{m_1}A^{n_2}B^{m_2}\cdots A^{n_k}B^{m_k}$ and $f\circ\gamma'=\gamma\circ q_2$ for some γ' homotopic to γ in S^2-P_f . By Proposition 4.2, $p_2F_1([\gamma])=(1\ 2)$. Therefore $\sum_{i=1}^k(n_i+m_i)$ is odd by (1). Let

$$p_1F_1([\gamma])(1) = A^{n'_1}B^{m'_1}A^{n'_2}B^{m'_2}\cdots A^{n'_k}B^{m'_k}$$

and

$$p_1F_1([\gamma])(2) = A^{n_1''}B^{m_1''}A^{n_2''}B^{m_2''}\cdots A^{n_k''}B^{m_k''}.$$

By (2), $\sum_{i=1}^k (n_i' + m_i' + n_i'' + m_i'')$ is even. Since $\alpha^{-1}p_1F_1([\gamma])(1)p_1F_1([\gamma])(2)\alpha = [\gamma]$ for some $\alpha \in \pi(S^2 - P_f, x)$, this is a contradiction.

5. Nesting branched coverings.

In this section we state a sufficient condition for the Julia set of a nesting expanding postcritically finite branched covering to be orientedly S^1 -parametrizable.

DEFINITION 5.1. A postcritically finite branched covering f is called *nesting* if there exists a topological graph $H \subset S^2$ satisfying:

- 1. $f: H \to H$ is a homeomorphism,
- 2. f^{-1} has d branches defined on $S^2 f^{-n}(H)$ for some n (i.e. there exist maps g_1, g_2, \ldots, g_d on $S^2 f^{-n}(H)$ such that $f \circ g_k = \operatorname{id}$ and $\bigcup_{i=1}^d g_i(S^2 f^{-n}(H)) = S^2 f^{-n-1}(H)$).

Recall that a topological graph means a 1-dim finite simplicial complex. We say H is a *cut graph* of f.

- REMARK 5.2. 1. A postcritically finite polynomial is nesting. Indeed, we can easily make a cut graph by joining some external rays.
- 2. If f is expanding and nesting, then f is topologically conjugate to a nesting rational map in some neighborhoods of their Julia sets ([3] Corollary 6.7).

PROPOSITION 5.3. Let f be a nesting expanding postcritically finite branched covering with cut graph H. Then (1) $H \cap J_f$ is a finite set and (2) $f^{-k}(H)$ is connected for each $k \geq 0$.

PROOF. Let \mathscr{B} be the set of connected components of $H-J_f$ which intersect P_f^a . By the expandingness of f and the injectivity of f|H, we see that $H-\bigcup_{L\in\mathscr{B}}L$ consists of at most finitely many points. Thus (1) is proved.

Suppose that $f^{-K}(H)$ is not connected for some $K \geq 0$. Then $f^{-k}(H)$ is not connected for every $k \geq K$. We may assume that f^{-1} has d branches on $S^2 - f^{-K}(H)$. Since $f^{-k}(H) \subset f^{-k-1}(H)$, f^{-1} has d branches on $S^2 - f^{-k}(H)$ for every $k \geq K$. We say a collection Γ of disjoint simple closed curves in $S^2 - f^{-k}(H)$ separates $f^{-k}(H)$ if each connected component of $S^2 - \bigcup_{\gamma \in \Gamma} \gamma$ includes at most one connected component of $f^{-k}(H)$. If Γ_K separates $f^{-K}(H)$, then $\Gamma_{K+j} = \{a \text{ component of } f^{-j}(\gamma) \mid \gamma \in \Gamma_K \}$ separates $f^{-K-j}(H)$. Then $\max_{\gamma \in \Gamma_{K+j}} |\gamma| \to 0$ as $j \to \infty$ by the expandingness of f. This contradicts the fact

$$0<\min\biggl\{\max_{\gamma\in\varGamma}|\gamma|:\varGamma\ \text{ separates }\ f^{-K}(H)\biggr\}\leq\min\biggl\{\max_{\gamma\in\varGamma}|\gamma|:\varGamma\ \text{ separates }\ f^{-K+j}(H)\biggr\},$$

and hence completes the proof.

COROLLARY 5.4. If an expanding postcritically finite branched covering f is nesting, then the following are satisfied:

- 1. for two points $y_1, y_2 \in S^2 J_f$, there exists an arc γ joining y_1 and y_2 such that $\#(J_f \cap \gamma) < \infty$,
- 2. for $y \in P_f$, there exists a component U of $S^2 J_f$ such that $y \in \overline{U}$.

PROOF. Let H be the cut graph. Since f^{-1} has d branches on $S^2 - f^{-n}(H)$ for some n, all critical values are contained in $f^{-n}(H)$, and hence $P_f \subset f^{-n}(H)$. Suppose $y_1, y_2 \in S^2 - J_f$. Let U_1, U_2 be the components of $S^2 - J_f$ such that $y_i \in U_i$, i = 1, 2. Since $f^k(U_i)$ contains a critical periodic point for some k, $U_i \cap f^{-k}(H) \neq \emptyset$. By the connectedness of $f^{-k}(H)$, we have an arc γ joining y_1 and y_2 with $\#(J_f \cap \gamma) < \infty$. Suppose $y \in J_f \cap P_f$. Let V be a small neighborhood of y. Since $\#(H \cap J_f) < \infty$, $V \cap H \cap J_f = \{p\}$. Take a component U of $S^2 - J_f$ which includes a component of $V \cap H - \{p\}$.

REMARK 5.5. The converse of Corollary 5.4 is also true for rational maps, that is, a postcritically finite rational map with the two conditions is nesting. The proof is left to the reader.

EXAMPLE 5.6. We again consider the rational map $f(z) = (z^2 + 1)/(z^2 - 1)$. Since the interval $[1, \infty]$ makes a cut graph, f is nesting.

THEOREM 5.7. Let f be a nesting expanding branched covering of degree d. Let H be the cut graph. Suppose there exist a subgraph $H_0 \subset f^{-n}(H)$ and $A \subset P_f$ such that $P_f \subset H_0$, $H_0 - A \subset f^{-1}(H_0 - A)$, $f(A) \subset A$, and both of $H_0 - A$ and $f^{-1}(H_0 - A)$ are connected and simply connected. Then J_f is orientedly S^1 -parametrizable.

PROOF. Let U be a small neighborhood of A. Let γ be a simple closed curve in $S^2-(H_0-U)$ such that $B\cap P_f=A$, where B is one disc bounded by γ . Since H_0-A is connected and simply connected, γ is uniquely determined up to homotopy in S^1-P_f . Since $f^{-1}(H_0-A)$ is connected and simply connected, $\gamma'=f^{-1}(\gamma)$ consists of only one connected component, and hence $f:\gamma'\to\gamma$ is of degree d. It is easily seen that γ and γ' are homotopic in S^2-P_f . Thus J_f is orientedly S^1 -parametrizable by Theorem 3.5.

EXAMPLE 5.8. Consider a rational map $f(z) = (z^3 - 16/27)/z$. The critical set and the postcritical set are

$$C_f = \{-2/3, -(2/3)\omega, -(2/3)\omega^2, \infty\}, P_f = \{4/3, (4/3)\omega, (4/3)\omega^2, \infty\},$$

where ω is a cubic root of 1. The dynamics on $C_f \cup P_f$ is $-2/3 \to 4/3 \to 4/3$, $-(2/3)\omega^s \to (4/3)\omega^t \to (4/3)\omega^s$, $\infty \to \infty$, where (s,t)=(1,2) or (2,1). The Julia set J_f is homeomorphic to the Sierpinski gasket (see [5], [2]).

Denote by l the interval $[4/3, \infty]$. Set $H = l \cup \omega l \cup \omega^2 l$. Then f(H) = H, and f^{-1} has three branches on C - H. So f is a nesting branched covering with cut graph H. Since H and $A = \{(4/3)\omega, (4/3)\omega^2\}$ satisfy the condition of Theorem 5.7, J_f is orientedly S^1 -parametrizable.

6. Mating.

In this section we show that J_f is orientedly S^1 -parametrizable if and only if f^n is equivalent to the degenerate mating of two polynomials for some n > 0. We use 'equivalence' in Thurston's sense. See [3] Definition 4.2.

6.1. Definitions.

A mating of two (topological) polynomials is a branched covering constructed in a certain way. First we give the definition of formal matings and degenerate matings for polynomials.

DEFINITION 6.1. Let $f_1: C_1 \to C_1$ and $f_2: C_2 \to C_2$ be two monic polynomial maps of degree d, where C_i is a copy of the complex plane C. Let $\tilde{R}_i(t)$ denote the external ray of angle t for f_i (see [1] for the definition). Adding a circle $C_i = \{\exp(2\pi\sqrt{-1}t) \cdot \infty_i \mid t \in T\}$ at infinity such that $\exp(2\pi\sqrt{-1}t) \cdot \infty_i \in C_i$ is an endpoint

of $\tilde{R}_i(t)$, we can consider f_i as a map of the closed disc $S_i = C_i \cup C_i$ to itself, where $f_i(\exp(2\pi\sqrt{-1}t)\cdot \infty_i) = \exp(2\pi\sqrt{-1}dt)\cdot \infty_i$. Then

$$S = S_1 \sqcup S_2 / (\exp(2\pi\sqrt{-1}t) \cdot \infty_1 \sim \exp(-2\pi\sqrt{-1}t) \cdot \infty_2 : t \in \mathbf{T})$$

is a 2-dimensional sphere. The branched covering $F: S \to S$ defined by $F|S_i = f_i$ is called the *formal mating* of f_1 and f_2 .

If f_1 and f_2 are postcritically finite, then so is F. From now on, we suppose f_1 and f_2 are postcritically finite.

For $t \in T$, we denote by $R_i(t)$ the closure of external ray of angle t for f_i . We consider that the endpoint of $R_i(t)$ on the infinity side is $\exp(2\pi\sqrt{-1}t) \cdot \infty_i$.

DEFINITION 6.2. For $x, y \in S_i$, we say $x \sim_i y$ if x and y are contained in $R_i(t)$ for some t. The equivalence relation \sim on S is defined to be the equivalence relation generated by \sim_1 and \sim_2 . Note that $x \sim y$ implies $F(x) \sim F(y)$. The equivalence class of $x \in S$, which we denote by [x], is a union of external rays. Each connected component of $F^{-1}([x])$ is also an equivalence class.

Let $[x_1], [x_2], \ldots, [x_m]$ be the equivalence classes containing at least two postcritical points. Let $[y_1], [y_2], \ldots, [y_n]$ be the equivalence classes such that $F^k([y_j]) = [x_i]$ for some i and for some $k \ge 0$ and that $[y_j]$ contains a point of $P_F \cup C_F$. Suppose that each $[y_j]$ is simply connected. Then $S' = S/\cong$ is a 2-dimensional sphere, where $x \cong y$ if $x, y \in [y_j]$ for some j. We define a branched covering $F': S' \to S'$ as follows (see [4] §5). Let U_1, U_2, \ldots, U_n be disjoint topological open discs such that $[y_j] \subset U_j$. Then $U'_j = U_j/\cong$ is also a topological open disc. Let V_1, V_2, \ldots, V_l be the connected components of $F^{-1}(\bigcup_{j=1}^n U_j)$ such that $V_i \cap \bigcup_{j=1}^n [y_j] = \emptyset$. Set F'(x) = F(x) if $x \in S - (\bigcup_{j=1}^l [y_j] \cup \bigcup_{i=1}^l V_i)$, $F'([y_j]) = F([y_j])$ for $j = 1, 2, \ldots, n$, and $F'|V_i$ to be homeomorphic. Since $F'|V_i$ is arbitrary, F' is not unique. However, it is uniquely determined up to the Thurston equivalence. We call F' the degenerate mating of f_1 and f_2 .

Now we define matings for topological polynomials.

DEFINITION 6.3. A branched covering f is called a *topological polynomial* if there exists a distinguished point $\infty \in S^2$ such that $f^{-1}(\infty) = \{\infty\}$.

DEFINITION 6.4. Let f_1 and f_2 be two postcritically finite topological polynomials of degree d. Then there exist simple closed curves γ_i (i=1,2) encircling ∞ such that $f_i^{-1}(\gamma_i)$ is connected and isotopic to γ_i . We modify f_i in the neighborhood of ∞ so that $f_i^{-1}(\gamma_i) = \gamma_i$ and $f_i : \gamma_i \to \gamma_i$ is conjugate to $q_d : T \to T$. Let U_i be the simply connected domain bounded by γ_i which does not contain ∞ . Then

$$S = \overline{U_1} \sqcup \overline{U_2}/(\phi_1(t) \sim \phi_2(-t) : t \in \mathbf{T})$$

is a 2-dimensional sphere, where $\phi_i: T \to \gamma_i$ is a conjugacy between q_d and $f|\gamma_i$. Define a branched covering $F: S \to S$ such that $F|U_i = f_i$. Then F is postcritically finite and $P_F \cap U_i = P_{f_i} - \{\infty\}$ and the circle $\gamma = [\gamma_i] \subset S$ is F-invariant. We say F is a formal mating of f and g. Note that F depends on the choice of the conjugacies ϕ_1 and ϕ_2 .

DEFINITION 6.5. Suppose $F: S \to S$ is a formal mating of postcritically finite topological polynomials f_1 and f_2 . We define a *degeneration* of F as follows.

We say a topological tree T in $S - P_F^a$ is an equivalence tree if $\#T \cap P_F^r \ge 2$, $F^k(T) = T$ for some $k, F^k : T \to T$ is a homeomorphism, and $T \cap \bigcup_{i=1}^{k-1} F^i(T) = \emptyset$.

Let T_1, T_2, \ldots, T_m be a collection of disjoint equivalence trees. Let S_1, S_2, \ldots, S_n be the components of $\bigcup_{j=0}^{\infty} F^{-j}(\bigcup_{i=1}^m T_i)$ which contain a point of $P_F \cup C_F$. Suppose each S_j is simply connected. Then the quotient space $S' = S/\infty$ is a 2-dimensional sphere, where $x \simeq y$ if $x, y \in S_j$ for some j. We define a branched covering $\tilde{F}: S' \to S'$ by the same construction as in Definition 6.2. Then we say \tilde{F} is a degeneration of F with respect to T_1, T_2, \ldots, T_m . For convenience, we consider F itself as a degeneration of F with respect to the empty tree.

PROPOSITION 6.6. Let $F: S \to S$ be a formal mating of postcritically finite topological polynomials, and $\tilde{F}: S' \to S'$ a degeneration of F. Then there exists an oriented closed curve which is fully \tilde{F} -invariant up to homotopy.

Moreover, if an expanding postcritically finite branched covering f is equivalent to $\tilde{F}: S' \to S'$, then J_f is orientedly S^1 -parametrizable.

PROOF. Let γ be the closed curve defined in Definition 6.4, and let $\gamma' = \gamma/\simeq \subset S'$. Since $F^{-1}(\gamma) = \gamma$, we have γ' is fully \tilde{F} -invariant up to homotopy. It is easily seen that γ' is oriented. The second assertion is verified by Theorem 3.5.

6.2. Statement and proof of the main theorem.

Let γ be an oriented closed curve, and $p \in \gamma$ a self-intersection point of γ . We construct an 'unlacing' of γ at p as follows.

Take a small open disc U centered at p so that $U \cap \gamma$ is homeomorphic to a tree with only one branch point. Then each connected component C_i of $U \setminus \gamma$ is considered as a sector bounded by two radii $H_i^+, H_i^- \subset \gamma$ and an arc $I_i \subset \partial U$. Since γ is oriented, there exists at least one sector C_i such that $\gamma^{-1}(H_i^+ \cup H_i^-)$ is connected. Thus we can construct a homotopy $h': S^2 \times [0,1] \to S^2$ such that h'(x,t) = x for $x \in S^2 - C_i$, $h'(\cdot,0)$ is the identity, $h'(\cdot,t): S^2 \to S^2$ is a homeomorphism for $0 \le t < 1$, and $h'(I_i',1) = H_i^+ \cup H_i^-$, where I_i' is a simple curve in C_i homotopic to I_i keeping the endpoints fixed. Doing this operation finite times, we obtain a homotopy $h: S^2 \times [0,1] \to S^2$ such that h(x,t) = x for $x \in S^2 - U$, $h(\cdot,0)$ is the identity, and $h(\gamma',1) = \gamma$, where γ' is an oriented closed curve which has no self-intersection in U. We can modify h so that $h(\cdot,t): S^2 \to S^2$ is a homeomorphism for $0 \le t < 1$ and $h(\cdot,1): S^2 - (\gamma' \cup T_p) \to S^2 - \gamma$ is a homeomorphism, where $T_p = h(\cdot,1)^{-1}(p)$ is homeomorphic to the tree T defined below. We say T_p is the *tree of self-intersection* at p. See Figures 3.1, 3.2 and 3.3.

Let \mathscr{P} be the set of connected component of $U \cap \gamma'$ and \mathscr{Q} be the set of connected component of $U - \gamma'$. If $a = (A, B) \in \mathscr{P} \times \mathscr{Q}$ satisfy $A \subset \partial B$, then we define I_a to be an arc with endpoints s_a and t_a . Then we set $\tilde{T} = (\bigsqcup_{a=(A,B):A\subset\partial B}I_a)/\sim$, where for a = (A,B) and a' = (A',B') we set $s_a \sim s_{a'}$ if A = A', and $t_a \sim t_{a'}$ if B = B'.

DEFINITION 6.7. Let γ be an oriented closed curve, and $P \subset \gamma$ a collection of self-intersection points of γ . Take a small neighborhood U of P. By the above method, there exist an oriented closed curve γ' which has no self-intersection in U and a

homotopy $h: S^2 \times [0,1] \to S^2$ such that h(x,t) = x for $x \in S^2 - U$, $h(\cdot,0)$ is the identity, and $h(\gamma',1) = \gamma$. Moreover, we can assume that $h(\cdot,t): S^2 \to S^2$ is a homeomorphism for $0 \le t < 1$ and $h(\cdot,1): S^2 - (\gamma' \cup \bigcup_{p \in P} T_p) \to S^2 - \gamma$ is a homeomorphism. We say γ' is an *unlacing* of γ with respect to P.

Theorem 6.8. Let f be a postcritically finite branched covering of degree d. Suppose there exists an oriented curve γ in $S^2 - P_f^a$ which is fully f-invariant up to homotopy. Then there exist two topological polynomials f_1 , f_2 and an integer n such that f^n is equivalent to a degeneration of a formal mating of f_1 and f_2 .

PROOF. We can assume that $\gamma:S^1\to S^2-P_f^a$ has no self-intersection except in P_f^r . Let $\gamma_k:S^1\to S^2-P_f^a$, $k=1,2,\ldots$ be the oriented closed curve homotopic to γ with P_f^r fixed such that $f^k\circ\gamma_k=\gamma\circ q_{d^k}$. Then γ_k has no self-intersection except in $f^{-k}(P_f^r)$. We write $P=\gamma\cap P_f^r$. Note that $f(P)\subset P$. Let γ_k' be an unlacing of γ_k with respect to $f^{-k}(P)-P$. Then γ_k' are all homotopic to one another with P_f^r fixed. Hence there exist $1\leq t< t'$ such that γ_t' is carried to γ_t' by an ambient isotopy in $S^2-P_f^a$ keeping P_f^r fixed. Indeed, it is easily checked that the set of oriented closed curves without self-intersections except in P_f^r that are homotopic to γ with P_f^r fixed are divided into finite classes up to ambient isotopy in $S^2-P_f^a$ keeping P_f^r fixed. Now adopting γ_t' instead of γ as the starting curve (and renaming $\gamma=\gamma_t'$), we see that γ is carried to γ_n' by an ambient isotopy in $S^2-P_f^a$ keeping P_f^r fixed, where $\gamma_t'=\gamma_t'$ by replacing $\gamma_t'=\gamma_t'$ with an equivalent branched covering. For simplicity, we consider $\gamma_t'=\gamma_t'$

Let $\tilde{\gamma}$ be an unlacing of γ with respect to P. Connecting the homotopy which carries $\tilde{\gamma}$ to γ and the homotopy which carries γ to γ_1 , we have a homotopy $h: S^2 \times [0,1] \to S^2$ which satisfies the following: Let U_1 and U_2 be small neighborhoods of P and $f^{-1}(P) - P$ respectively. We denote by T_p the tree of self-intersection at p; $h(\cdot,0)$ is the identity, $h(\tilde{\gamma},1/2) = \gamma$, $h(\tilde{\gamma},1) = \gamma_1$, h(x,t) = x for $x \in S^2 - (U_1 \cup U_2)$ and $0 \le t \le 1$, h(x,t) = h(x,1/2) for $x \in S^2 - U_2$ and $1/2 \le t \le 1$, $h(\cdot,t): S^2 \to S^2$ is a homeomorphism for $0 \le t < 1/2$, $h(\cdot,t): S^2 - (\tilde{\gamma} \cup \bigcup_{p \in P} T_p) \to S^2 - h(\tilde{\gamma},t)$ is a homeomorphism for $1/2 \le t < 1$, and $h(\cdot,1): S^2 - (\tilde{\gamma} \cup \bigcup_{p \in F^{-1}(P)} T_p) \to S^2 - \gamma_1$ is a homeomorphism.

Write $\phi_1 = h(\cdot, 1/2): S^2 \to S^2$ and $\phi_2 = h(\cdot, 1): S^2 \to S^2$. Let D be one of the connected components of $S^2 - \tilde{\gamma}$. We define a branched covering $f_1: \overline{D} \to \overline{D}$ as follows. For $x \in \overline{D} - (\bigcup_{p \in f^{-1}(P)} T_p \cup f^{-2}(P))$, set $f_1(x) = \phi_1^{-1} \circ f \circ \phi_2(x)$. Then $f_1: \overline{D} - (\bigcup_{p \in f^{-1}(P)} T_p \cup f^{-2}(P)) \to \overline{D} - \bigcup_{p \in f^{-1}(P)} T_p$ is a branched covering with critical points in $C_f - P$. By modifying f_1 near $f^{-2}(P) - f^{-1}(P)$, we have a branched covering $f_1: \overline{D} - \bigcup_{p \in f^{-1}(P)} T_p \to \overline{D} - \bigcup_{p \in P} T_p$ with critical points in $C_f - P$. Varying f_1 continuously in a neighborhood of $\bigcup_{p \in f^{-1}(P)} T_p$, we can extend f_1 to a branched covering on \overline{D} such that its restriction to $\overline{D} - \bigcup_{p \in f^{-1}(P)} T_p$ is still a branched covering with critical points in $C_f - P$. Note that each connected component of $T_p \cap D$ contains at most one point of P_{f_1} . We will use this fact in the proof of Theorem 6.9.

Similarly, we have a branched covering $f_2: \overline{E} \to \overline{E}$, where E is the other connected component of $S^2 - \tilde{\gamma}$. Thus we get a postcritically finite branched covering $F: S^2 \to S^2$ such that $F|\overline{D} = f_1$, $F|\overline{E} = f_2$. From f_1 and f_2 , we obtain two topological polynomials

 $\tilde{f_1}$ and $\tilde{f_2}$ on 2-dimensional sphere by collapsing $\tilde{\gamma}$ to one point. It is easily seen that F is a formal mating of $\tilde{f_1}$ and $\tilde{f_2}$, and f is a degeneration of F.

Theorem 6.9. Let f be an expanding postcritically finite branched covering. If J_f is orientedly S^1 -parameterized, then f^n is equivalent to the degenerate mating of polynomials for some n > 0.

PROOF. Since there exists an oriented closed curve γ without self-intersection except in P_f which is fully f-invariant up to homotopy, by Theorem 6.8 we see that f^n is equivalent to a degeneration of a formal mating of topological polynomials for some n. Let $f_1: \overline{D} \to \overline{D}$ and $f_2: \overline{E} \to \overline{E}$ be branched coverings constructed in Theorem 6.8. We denote by T the union of the trees of self-intersection. Let $\pi: S^2 \to S^2$ be the projection that collapses each component of T into one point. For simplicity, we assume n = 1. Note that we can assume the following: Let $p \in P_f^r \cap \gamma$, and let $\alpha: [s,t] \to S^2$ be a part of γ such that $\alpha(s) = \alpha(t) = p$. Then α is not homotopic to a trivial curve relative to $\{s,t\}$ in $S^2 - (P_f - \{p\})$.

It is sufficient to show that f_1 and f_2 have no Levy cycle ([3] Definition 6.2). Indeed, a topological polynomial is equivalent to a polynomial if and only if there is no Levy cycle ([3] Fact 6.5).

Suppose that f_1 has a Levy cycle $\{\alpha_1, \alpha_2, \ldots, \alpha_n = \alpha_0\}$, that is, there exists a component α'_{i-1} of $f_1^{-1}(\alpha_i)$ which is homotopic to α_{i-1} in $D-P_{f_1}$ such that $f_1:\alpha'_{i-1}\to\alpha_i$ is one-to-one, and the simply connected domain C_i bounded by α_i includes at least two points of P_{f_1} . It is easy to see that $C_i\cap P_{f_1}$ consists of periodic points in $P_{f_1}^r$.

Let β_1 be an arc in C_1 joining two points of $C_1 \cap P_{f_1}$. Then there exists a component β_0 of $f_1^{-1}(\beta_1)$ such that β_0 joins two points of $C_n \cap P_{f_1}$ and $f_1: \beta_0 \to \beta_1$ is one-to-one. Thus for $j=0,-1,-2,\ldots$, there exists an arc β_j such that β_j joins two points of $C_k \cap P_{f_1}$, $f_1^{1-j}: \beta_j \to \beta_1$ is one-to-one, where $k=j \mod n$.

Write $\beta'_i = \pi(\beta_i)$. If for every i, either $\beta'_i \cap P_f$ consists of more than one point or β'_i is not homotopic to a trivial curve with P_f fixed, then we have a contradiction for f is expanding.

Suppose that $\beta_i' \cap P_f$ is one point and β_i' is homotopic to a trivial curve with P_f fixed for some i. Let a and b be the endpoints of β_i . Then $\pi(a) = \pi(b) = p$ is a periodic point in P_f and β_i' is a closed curve such that a domain bounded by β_i' contains no point of P_f . Let S_1 and S_2 be the components of $T \cap D$ containing a and b respectively. As mentioned in the proof of Theorem 6.8, we have $S_1 \neq S_2$. Therefore there exists $\alpha: [s,t] \to S^2$ which is a part of γ such that $\alpha(s) = \alpha(t) = p$ and α is homotopic to a trivial curve with P_f fixed. This is a contradiction to the assumption. Thus f_1 has no Levy cycle.

EXAMPLE 6.10. (1) The rational map $f(z)=(z^2-2)/z^2$ is equivalent to the degenerate mating of $P(z)=z^2-2$ and $Q(z)=z^2+c$, and is also equivalent to that of P(z) and $\overline{Q}(z)=z^2+\overline{c}$, where c is the root of $c^3+2c^2+2c+2=0$ in the upper half plane. There are two resolutions because $f^{-1}(\gamma)$ has two parametrizations, where γ is the closed curve in Example 3.8. (2) The rational map $f(z)=(z^3-16/27)/z$ is equivalent to the formal mating of $P(z)=z^3+3z$ and $Q(z)=z^3+(3/2)z^2$. We need not take the degenerate mating because the closed curve constructed in Theorem 5.7 has no self-intersection.

Figure 1.1. The oriented closed curve γ .

Figure 1.2. The inverse image of γ .

Figure 1.3. There are two ways of parametrization of $f^{-1}(\gamma)$ by which we obtain S^1 -parametrization of the Julia sets. Here is the 'unlacing' of one parametrization near the origin.

Figure 2.1. The radial r.

Figure 3.1. Here is a self-intersection point p.

Figure 2.2. The generators A, B.

Figure 3.2. An unlacing with respect to p.

Figure 3.3. The thick tree is the tree of self-intersection at p.

References

- [1] A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes, Publ. Math. Orsay, 1984–1985.
- [2] A. Kameyama, Julia sets of postcritically finite rational maps and topological self-similar sets, Nonlinearity, 13 (2000), 165–188.
- [3] A. Kameyama, On Julia sets of postcritically finite branched coverings Part I—coding of Julia sets, J. Math. Sci. Japan, 55 (2003), 439–454.
- [4] L. Tan, Mating of quadratic polynomials, Ergodic Theory Dynam. Systems, 12 (1992), 589-620.
- [5] S. Ushiki, Julia sets with polynomial symmetries, Proceedings of the International Conference on Dynamical Systems and Related Topics, (ed. K. Shiraiwa), Adv. Ser. Dynam. Systems, Vol. 9, World Scientific, 1991.

Atsushi Kameyama

Department of Informatics and Mathematical Science Graduate School of Engineering Science Osaka University Machikaneyama-cho 1-3 Toyonaka, Osaka 560-8531 Japan

E-mail: kameyama@sigmath.es.osaka-u.ac.jp