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Abstract. We prove that for an expanding postcritically finite branched covering f,
the Julia set is orientedly S!-parametrizable if and only if f” is combinatorially equivalent
to the degenerate mating of two polynomials for some n > 0.

1. Introduction.

In the preceding paper [3], the author introduced the notion of Julia sets for
(probably non-holomorphic) expanding postcritically finite branched coverings on the
2-dimensional sphere. It should be noted that all postcritically finite rational maps are
expanding postcritically finite branched coverings. Moreover, there exists an expanding
postcritically finite branched covering not equivalent to a rational map (see [3], Section
6). We have studied semiconjugacies from symbolic dynamics in [3] The main
purpose of the present paper is to investigate semiconjugacies from the d-fold maps on
the circle.

For a polynomial map f:C — C there often exists a surjective map
¢ : {|z| =1} — Jy such that ¢(z9) = f(¢4(z)), where d is the degree of f and J; is the
Julia set of f. This property will be called S'-parametrizability. Recall that a post-
critically finite polynomial f has this property. In fact, for a simple closed curve y
around the infinity, the inverse image 7, = f~'(y) uniformly converges to a closed curve
in J; as i — oo (see [I]). We will consider the class of postcritically finite branched
coverings with S'-parametrizability. The main result is to give a connection between
S!-parametrizability and mating.

The paper is organized as follows. In Section 2 we recall results of [3] which we
will use. In Section 3 we define S'-parametrizability of Julia sets and show that it is
equivalent to the existence of a closed curve which is homotopically invariant. In
Section 4 we give an example of rational maps with Julia sets not S'-parametrizable.
In Section 5 we introduce a class of branched coverings, called nesting branched
coverings, and give a sufficient condition for a nesting branched covering to be S!-
parametrizable. In Section 6 we show that for a postcritically finite branched covering
f, the Julia set is orientedly S!'-parametrizable if and only if f is equivalent to the
degenerate mating of two polynomials, where we say the Julia set is orientedly S'-
parametrizable if the homotopically invariant closed curve can be perturbed to a simple
closed curve.
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2. Summary of basic facts.
In this section, we recall some results obtained in [3].

DEFINITION 2.1. Suppose f :S? — S? is a topological branched covering. We
say the set C, of critical points is the critical set of f, and

P ={/"(c)[ce Cron> 0
is the postcritical set of f. We say f is postcritically finite if Py 1s a finite set.

Throughout this paper, we suppose that f:S?> — S? is a postcritically finite
branched covering of degree d > 2.

DEerINITION 2.2.  Let f be a postcritically finite branched covering. A point in Py
is a postcritical point. We say a periodic cycle {xi,x2,...,xx} is a critical cycle if it
contains a critical point. A point of a critical cycle is called a critical periodic point.
We divide Py into P/ and Pj.

Pi={xePr|3k > 0, /*(x) is contained in a critical cycle}, Py =Py —Pf.

DEeriNniTION 2.3. A smooth postcritically finite branched covering f is said to be
expanding if there exists a Riemannian metric || - || on S? — Py which satisfies:

1. Any compact piecewise smooth curve inside S* — P{ has finite length.

2. The distance d(-,-) on S? — Py determined by the curve length is complete.

3. For some constants C >0 and 0 < A < 1,

o]l < CA*|ldf*(v)]

for any k >0 and any tangent vector ve T,(S?) if f/*(p) e S* - P;.
Then |/| < CA¥|f¥(1)| for any piecewise smooth curve / with f¥(I) = S% — Pf, where ||
means the length of a curve.

THEOREM 2.4. If f is expanding, then there uniquely exists a non-empty compact
subset J = S? — P} such that 1) =J=r1).

DerFINITION 2.5. The subset in the previous theorem is called the Julia set of f,
and denoted by Jy.

ProrosiTION 2.6. If f is expanding, then the following hold:

I. For xe S*— P{, we have Jy = (., f*(x).

2. For xe S*—Jy, the sequence {f"(x)},-q is attracted to a critical cycle.
3. The Julia set is connected.

3. S!-parametrizability.

We denote by ¢y the N-fold map on the circle T =R/Z, that is, gn(0) =
NO mod1 for 0e[0,1]. We identify T and S' = {|z| =1} by 0 — exp(2ni0).
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DEerINITION 3.1. A dynamical system f:X — X is called S!'-parametrizable if
there exists a continuous surjection ¢ : T — X such that

T 2,7

|

X 7 X
commutes for some N.

DeriNiTION 3.2, Let f be an expanding postcritically finite branched covering.
We say its Julia set J; is S'-parametrizable if the restriction f|J; is S!-parametrizable.

DeriniTION 3.3, Let f be a postceritically finite branched covering of degree d. A
closed curve o : S' — S* — P is said to be f-invariant up to homotopy if there exists a
closed curve o : S' — f~'(a) such that there exists a homotopy /4 : S' x [0,1] — §* — Pf
from o to oy with Py fixed (i.e. if /(0, H=pe P} for some 7, then h(0,t) = p for every
t€[0,1]) and that foa; =aogy for some N >2. If N =d, then we say o is fully f-
invariant up to homotopy.

LemMA 3.4, Let o be f-invariant up to homotopy. If p:S' — S? — P{ is homo-
topic to o with P} fixed, then f is f-invariant up to homotopy. More in detail, if H is
a homotopy from o to [ with P} fixed, then we have a homotopy H " from oy to B,
(o1 : ST — f~1(«) homotopic to o, and B, : S' — f~Y(B)) with P} fixed such that

SUx[0,1] 2% g1 (0, 1]
Hi lH
S? — S?

-

commutes.

ProOF. The required homotopy H' is the lift of H o (¢y x id) by the branched
covering f. The existence of the lift is guaranteed by the existence of o;. More
precisely, H' is constructed as follows. Let e S'. If agy(0) € P7, then set H'(0,1) =
a1 (0) for each te0,1]. Otherwise, set H'(0,-):[0,1] — S? —f~'(P;) to be the lift
of H(gn(0),"):[0,1] — S? — P by the covering f : S? —f~1(P;) — S? — P, such that
H'(0,0) = o1(0). O

THEOREM 3.5. Let f be an expanding postcritically finite branched covering. If
there exists a closed curve o:S' — S? — Py which is f-invariant up to homotopy, then
there exists an invariant subset K < J; such that f|K : K — K is S'-parametrizable. In
particular, if o is fully f-invariant up to homotopy, then Jy is S L_parametrizable.

ProOOF. Let 4 be a homotopy from o to «; as in [Definition 3.3. By
3.4, there exists a homotopy hj : S' x [0,1] — S? such that i(gn(0),t) = fhi1(0,1) and
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hi(-,0) =a;. Similarly, for each k>0 we inductively obtain a homotopy /i :
S! x[0,1] — S? such that h(gn(0),t) = fhiy1(0,t) and hi(-,1) = hiyq(-,0).  Write
o = hx_1(-,1). Then i (0,-):[0,1] — S? — P{ is a curve joining o (6) and oxi1(0).
By the expandingness of f, we have |h(6,-)] < Cxlk|h(qN(0) )|, and hence oy : S — S?
uniformly converges to a curve f:S' — S? as k — oo such that f o =foqy. Then
K = B(S') is an invariant set, which is included in the Julia set by
2.6-1. [

THEOREM 3.6. Let f be a postcritically finite branched covering. If there exists
a closed curve o:S' — S* — P} which is f-invariant up to homotopy, then o can be
continuously deformed so as to have at most finitely many self-intersections keeping f -
invariant up to homotopy.

In particular, if the Julia set of an expanding postcritically finite branched covering f
is S'-parametrizable, then there exists a closed curve o : S' — S? — P} which is fully f-
invariant up to homotopy and has at most finitely many self- zntersecttons

Proor. Let «:[0,1] — S? — P be f-invariant up to homotopy. Fix pe P/
Assume o(0) = a(l) #p. We show that o can be deformed to a curve o with
#o'~1(p) < o0. For a,bea!(p) with a < b, we say that [a,b] = [0,1] is trivial if the
restriction o : [a,b] — S — P# is homotopic to a constant map 7+ p relative to {a,b}
in $? — (Py — {p}). Note that for a trivial interval J < [0, 1] if we deform o to o’ by
a'(t) =a(t) if t¢J, a'(t) = p if t €J then o is still f-invariant up to homotopy. Let U
be a small neighborhood of p. Then for a,b € a~!(p) with a < b, the interval [a,b] is
trivial whenever o([a,b]) = U. Let A be the set of x € [0, 1] such that there exist a < b
with a,bea'(p), a < x < b and «([a,b]) = U. Since [0,1] is compact, 4 is a finite
union of open intervals and #([0,1] — 4) Na~!(p) < co. We define o’ by (1) = a(z) if
t¢ A o'(t)=pif te A. Since o’~!(p) consists of at most finite connected components,
we obtain the required curve by modifying o’

Doing this deformation for all p € P, we get & a curve f-invariant up to homotopy
such that #a ! (P’) < oo. The curve can be approximated by a piecewise analytic curve
with Pf fixed. Thls completes the proof. ]

DeriniTION 3.7. Let f be a posteritically finite branched covering. We say a
closed curve o : S' — S2 — P{ with at most finitely many self-intersections is oriented
if o can be deformed to a simple closed curve by a small perturbation (i.e. there is
a continuous map 4 :S' x [0,1] — S — P{ such that i(-,0) = o and A(0,1) # h(0',1)
whenever 0 # 0 € S' and 1€ (0,1)). '

Suppose f is expanding. The Julia set J; is orientedly S I_parametrizable if there
exists an oriented closed curve o : S! — S? — Py which is fully f-invariant up to homo-
topy. Note that the deformed simple closed curve i1s not necessarily f-invariant up to
homotopy.

ExampPLE 3.8. Consider a rational map f(z) = (z2 —2)/z2.  The critical set C; =
{0, 0} and the postcritical set Py = {00, 1,—1}. The dynamics on C;U Py is 0 — o0 —
l - —-1——1. Set
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Then y is oriented and satisfies the condition of for N =2 (see Figures
1.1, 1.2 and 1.3). Thus the Julia set J;, which is the whole sphere, is orientedly S'!-
parametrizable.

REMARK 3.9. A branched covering whose Julia set is S'-parametrizable and not
orientedly S'-parametrizable is unknown.

4. A Julia set which is not S'-parametrizable.

In this section we give one example of rational maps whose Julia sets are not S!-
parametrizable.

We use the notion of branch group which has been introduced in the preceding
paper. See Section 5. Let f be a postcritically finite branched covering of degree
d. Choose a point x € S — P, and a radial r (see [3] Definition 3.2). We denote, by
Gy, the k-th branch group, and denote, by Fj : Gx_1 — Gy, the induced homomorphism
of f. Recall that Gy = 71 (S — P, x)"* x A(W), where Wy, = {1,2,...,d}" is the set
of words of length k& and A(Wj) is the set of permutations on Wy. Let p;: Gy —
1 (S? — Pr,x)"* and py : Gy — A(Wy) be the projections.

DEerINITION 4.1. For a permutation /&, we say (aj,a,...,a,) is an orbit of h if
a; # a; for i #j and if h(a;—) =a; for i=2,...,n and h(a,) = a;. The number n is
the period of the orbit.

A closed curve y:S!— S?— Py is prime if logq, and y are not homotopic in
S? — Py for any closed curve / and any positive integer n.

PROPOSITION 4.2. Let y:S' — S? — P be a closed curve with basepoint y(0) = x.
Let [y] be the element of m(S*— Py, x) with a representative y. The permutation
p2(FjoFj_yo---0Fi([y])) has an orbit of period n if and only if there exists a prime
closed curve l : S — 82— Pr such that f/ol=yogq,.

Proor. In view of Theorem 3.4, we have a mapping W;sw — x, € f7/(x).
For we W;, we denote by w,:[0,1] — S2— Py the curve such that flow, =1y
and ®,(0) =x,. We use the mappings L, and e of Section 5. Write 7=
pi(Fjo---oFi([y])) and h=py(Fjo---0Fi([y])). It follows from the definition of Fj
that

t(aiar - a;) = Lyyaya,([V]),  Maraz---a;) = biby - - - by,

where by = e(Ly,. a0 ([7])sak). Thus h(w) =w’ if and only if w,(1) = x,.
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Let (wh,w? ... ,w"=w" be an orbit of ps(Fjo---0Fi(y)). Then w,i(l)=
,,+(0). Hence ' = w1, -, satisfies /oy’ =7yoq,.

Conversely, if a closed curve [ satisfies f/ ol =yogq,, then | = w1, ---w,» for
some wl,w? ... w"e W, O

Consider the rational map f(z) = (z2 +1)/(z*> — 1). The critical set Cy = {0, 0}
and the posteritical set Py = P = {—1,00,1}. The dynamics on C;U Py is 0+— —1+—
0 — 1+ oo. We show that f/|J; is not S!-parametrizable for every ;.

Assume that f7/|J; is S!-parametrizable. Then there exists y: S! — S? — Py such
that /oy =7yo0q;.

Take a radial r and generators 4, B of n;(S? — Py, x) as Figures 2.1 and 2.2. We
denote by (a; a;) the permutation interchanging a; and a,. Then

(1) p2Fi(4) = (1 2), pFi(B)= (1 2)
and
2) pFRA)(1)=B", pF(A)Q2)=4"", pFRAB)(1)=1, pF(B)(2) =1

Therefore,

P2 Fi(A) = (11 22)(21 12), p. B Fi(B) = (11 12)(21 22).
Since the image of p,F>F) is generated by {(11 22)(21 12), (11 12)(21 22)}, it is

{id, (11 22)(21 12), (11 12)(21 22),(11 21)(12 22)}.

By [Proposition 4.2} for every closed curve y = S* — Py, there is no closed curve y’ such
that f/ oy’ =yoqy, if j > 2.

Suppose there exists a closed curve y such that [y| = A" B™ A" B™ ... 4" B" and
f oy =yogq, for some y’ homotopic to y in S* — P;. By [Proposition 4.2, p,Fi([y]) =
(I 2). Therefore Zf‘zl(ni—i—mi) is odd by (1). Let

PLFL([Y])(1) = A" B™ A" B™ - .- A" B™
and

PIF([y])(2) = A" B™ A™ B™ .. A"k B"¥ |

By (2), X +m{+n/ +m!') is even. Since a~'piFi([y]))()piFi([7])(2)a = [y] for
some o € n(S? — Py, x), this is a contradiction.

5. Nesting branched coverings.

In this section we state a sufficient condition for the Julia set of a nesting expand-
ing postcritically finite branched covering to be orientedly S'-parametrizable.

DEeriNnITION 5.1. A postcritically finite branched covering [ is called nesting if there
exists a topological graph H <= S? satisfying:
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1. f:H — H is a homeomorphism,
2. 7! has d branches defined on S? — f~"(H) for some n (i.e. there exist maps
g1,92,---,94 on S — f~"(H) such that f o g; = id and U,-d:1 gi(S? —f(H)) =
S? —fH(H)).
Recall that a topological graph means a 1-dim finite simplicial complex. We say H is
a cut graph of f.

REMARK 5.2. 1. A postcritically finite polynomial is nesting. Indeed, we can easily
make a cut graph by joining some external rays.

2. If f is expanding and nesting, then f is topologically conjugate to a nesting
rational map in some neighborhoods of their Julia sets ([3] Corollary 6.7).

ProposITION 5.3. Let [ be a nesting expanding postcritically finite branched
covering with cut graph H. Then (1) HNJy is a finite set and (2) f~%(H) is connected
for each k > 0.

PrOOF. Let # be the set of connected components of H — J; which intersect P7.
By the expandingness of f and the injectivity of f|H, we see that H — (), _, L consists
of at most finitely many points. Thus (1) is proved.

Suppose that f~X(H) is not connected for some K >0. Then f~%(H) is not
connected for every k > K. We may assume that f~! has d branches on S — f~X(H).
Since f*(H) < f~*'(H), f~' has d branches on S> — f~*(H) for every k > K. We
say a collection I" of disjoint simple closed curves in S —f~*(H) separates f~*(H) if
each connected component of S* — Uye ;v includes at most one connected component
of f=(H). 1If Iy separates f~X(H), then Ik,; = {a component of f~(y)|ye Ik}
separates f X~/ (H). Then max,. Iy l7] — 0 as j— oo by the expandingness of f.
This contradicts the fact

0< min{ma}( |y| : I’ separates f‘K(H)} < min{ma}g( |y| : I separates f‘K+j(H)},
V€ ye

and hence completes the proof. OJ

COROLLARY 5.4. [If an expanding postcritically finite branched covering f is nesting,
then the following are satisfied:
1. for two points yi,y, € S — Jr, there exists an arc y joining yi and y, such that
#(Jf N y) < 00,
2. for ye Py, there exists a component U of S? —Jy such that ye U.

Proor. Let H be the cut graph. Since f~! has d branches on S? —f~"(H) for
some n, all critical values are contained in f~"(H), and hence Pr — f~"(H). Suppose
yi, 2 € S*—Jr. Let Uy, Us be the components of S* —J; such that y;e Uy, i = 1,2.
Since f*(U;) contains a critical periodic point for some k, U;N f~%(H) # ¢. By the
connectedness of f~(H), we have an arc y joining y; and y, with #(J;Ny) < oo.
Suppose yeJrNPr. Let V' be a small neighborhood of y. Since #(HNJy) < oo,
VNHNJ;, ={p}. Take a component U of S? — Jr which includes a component of
VNH—{p}. []
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REMARK 5.5. The converse of is also true for rational maps, that
1s, a postcritically finite rational map with the two conditions is nesting. The proof
is left to the reader.

ExaMPLE 5.6. We again consider the rational map f(z) = (z>2+1)/(z>-1).
Since the interval |1, 00] makes a cut graph, f is nesting.

THEOREM 5.7. Let f be a nesting expanding branched covering of degree d. Let H
be the cut graph. Suppose there exist a subgraph Hy c f~"(H) and A = Py such that
Pr < Hy, Hy— A< f'(Hy—A), f(A) = A, and both of Hy— A and f~'(Hy— A) are
connected and simply connected. Then Jy is orientedly S'-parametrizable.

Proor. Let U be a small neighborhood of 4. Let y be a simple closed curve in

S? — (Hy — U) such that BN Py = A, where B is one disc bounded by 7. Since Hy — 4
is connected and simply connected, y is uniquely determined up to homotopy in S! — P;.
Since f~!(Hy— A) is connected and simply connected, 7’ = f~!(y) consists of only
one connected component, and hence f :y" — y is of degree d. It is easily seen that
y and y’ are homotopic in S?— P;. Thus J; is orientedly S'-parametrizable by
heorem 3.3, []

ExAMPLE 5.8. Consider a rational map f(z) = (z3 —16/27)/z. The critical set
and the postcritical set are

Cf = {_2/37 —(2/3)0), —(2/3)0)2, OO}? Pf = {4/3> (4/3)60’ (4/3)602, OO},

where @ is a cubic root of 1. The dynamics on C/UP, is —2/3 —4/3 — 4/3,
—(2/3)w* — (4/3)w" — (4/3)w*, oo — oo, where (s,7) = (1,2) or (2,1). The Julia set
Jy is homeomorphic to the Sierpinski gasket (see [5], [2]).

Denote by / the interval [4/3,0]. Set H =[/Uw/Uw?/. Then f(H)= H, and
/7! has three branches on C — H. So f is a nesting branched covering with cut graph
H. Since H and 4 = {(4/3)w, (4/3)w?*} satisfy the condition of [Theorem 3.7, J; is

orientedly S'-parametrizable.

6. Mating.

In this section we show that J; is orientedly S'-parametrizable if and only if f”
is equivalent to the degenerate mating of two polynomials for some n > 0. We use
‘equivalence’ in Thurston’s sense. See Definition 4.2.

6.1. Definitions.

A mating of two (topological) polynomials is a branched covering constructed in
a certain way. First we give the definition of formal matings and degenerate matings
for polynomials.

DerFiniTION 6.1, Let f1: Cy — C; and f,: C; — C, be two monic polynomial
maps of degree d, where C; is a copy of the complex plane C. Let R;(7) denote the
external ray of angle ¢ for f; (see [1] for the definition). Adding a circle C; =
{exp(2nv/—11) - o0; |t € T} at infinity such that exp(27zv/—1f)- c0; € C; is an endpoint
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of 1~{,~(t), we can consider f; as a map of the closed disc S; = C;UC; to itself, where

filexp(2nv/—1f) - o0;) = exp(2nv/—1dt) - 0;. Then
S =85S,/ (exp2nv—11) - o0y ~ exp(—2nV—11) - 00y : te T)

is a 2-dimensional sphere. The branched covering F : S — S defined by F|S; = f; is
called the formal mating of f; and f>.

If f; and f, are postcritically finite, then so is F. From now on, we suppose f
and f, are postcritically finite.

For te T, we denote by R;(¢) the closure of external ray of angle ¢ for f;. We
consider that the endpoint of R;(z) on the infinity side is exp(27zv/—17) - c0;.

DEFINITION 6.2. For x,y € S;, we say x ~; y if x and y are contained in R;(¢) for
some ¢. The equivalence relation ~ on § is defined to be the equivalence relation
generated by ~; and ~,. Note that x ~y implies F(x) ~ F(y). The equivalence
class of x € S, which we denote by [x], is a union of external rays. Each connected
component of F~!([x]) is also an equivalence class.

Let [x1], [x2], ..., [xn] be the equivalence classes containing at least two postcritical
points. Let [y1],[y2],---,[ys] be the equivalence classes such that F*([y;]) = [x;] for
some i and for some k >0 and that [y;] contains a point of PrUCr. Suppose that
each [y;] is simply connected. Then S’ =S/~ is a 2-dimensional sphere, where x ~ y
if x,ye[y] for some j. We define a branched covering F’:S" — S’ as follows (see
(4] §5). Let Uy, Us,...,U, be disjoint topological open discs such that [y;] < U;.
Then Uj’ = U;/~ is also a topological open disc. Let Vi, V3,...,V; be the connected
components of F~'(|JL,Uj) such that ViN{J. [y]=&. Set F'(x)=F(x) if xe
S— (U VU V). F'(Iyj]) = F([y))) for j=1,2,....n, and F'|V; to be homeo-
morphic. Since F’|V; is arbitrary, F’ is not unique. However, it is uniquely deter-
mined up to the Thurston equivalence. We call F’' the degenerate mating of f
and f;.

Now we define matings for topological polynomials.

DEerINITION 6.3. A branched covering f is called a topological polynomial if there
exists a distinguished point oo € S? such that f~!'(c0) = {o0}.

DerFINITION 6.4. Let f; and f; be two postcritically finite topological polynomials
of degree d. Then there exist simple closed curves y;, (i =1,2) encircling oo such that
f71(y;) is connected and isotopic to y;. We modify f; in the neighborhood of oo so that
fi7Y(y,) = y; and f; : y; — 7, is conjugate to q; : T — T. Let U; be the simply connected
domain bounded by p; which does not contain co. Then

S=TUiUU/((1) ~gs(—1) : 1 T)

is a 2-dimensional sphere, where ¢, : T — y; is a conjugacy between g, and f|y,. Define
a branched covering F:S — S such that F|U; = f;. Then F is postcritically finite
and PrNU; = P; — {0} and the circle y = [y;] = S is F-invariant. We say F is a
formal mating of f and g. Note that F depends on the choice of the conjugacies
¢, and ¢,.
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DEerFINITION 6.5. Suppose F:S — S is a formal mating of postcritically finite
topological polynomials fi and f,. We define a degeneration of F as follows.

We say a topological tree T in S — P§ 1s an equivalence tree if #T NPy > 2,
FX(T) =T for some k, F¥: T — T is a homeomorphism, and 7 N U;:]lFi(T) = .

Let T,T>,...,T,, be a collection of disjoint equivalence trees. Let S1,5,,...,S,
be the components of Uﬁo F7(|J", T;) which contain a point of PrUCp. Suppose
each S; is simply connected. Then the quotient space S’ =S/~ is a 2-dimensional
sphere, where x ~ y if x, y € S; for some j. We define a branched covering F : S’ — S’
by the same construction as in Definition 6.2. Then we say F is a degeneration of F
with respect to T4, T»,...,T,. For convenience, we consider F itself as a degeneration
of F with respect to the empty tree.

PrOPOSITION 6.6. Let F: S — S be a formal mating of postcritically finite topo-
logical polynomials, and F : S' — S’ a degeneration of F. Then there exists an oriented
closed curve which is fully F-invariant up to homotopy.

Moreover, if an expanding postcritically finite branched covering f is equivalent to
F:S' — S’ then J; is orientedly S'-parametrizable.

ProoF. Let y be the closed curve defined in Definition 6.4, and let ' = y/~ = §'.
Since F~!(y) =y, we have y’ is fully F-invariant up to homotopy. It is easily seen that
y" is oriented. The second assertion is verified by [Theorem 3.3. O

6.2. Statement and proof of the main theorem.

Let y be an oriented closed curve, and p ey a self-intersection point of y. We
construct an ‘unlacing’ of y at p as follows.

Take a small open disc U centered at p so that UMy is homeomorphic to a tree
with only one branch point. Then each connected component C; of U\y is considered
as a sector bounded by two radii H;", H; <y and an arc I; = 0U. Since y is oriented,
there exists at least one sector C; such that y~!(H;"UH;) is connected. Thus we can
construct a homotopy 4’ : $? x [0,1] — S? such that h’(x,¢) = x for x e S* — C;, h'(-,0)
is the identity, 4'(-,7): S* — S* is a homeomorphism for 0 <7< 1, and A'(I/,1) =
HYMUH;, where I' is a simple curve in C; homotopic to I; keeping the endpoints
fixed. Doing this operation finite times, we obtain a homotopy /% : S? x [0, 1] — S? such
that A(x,7) = x for xe S — U, h(-,0) is the identity, and h(y’,1) =y, where 7’ is an
oriented closed curve which has no self-intersection in U. We can modify 4 so that
h(-,1) : S — S? is a homeomorphism for 0 <7< 1 and A(-,1): $? — () UT,) — S? —y
is a homeomorphism, where T, = A(-, 1)"'(p) is homeomorphic to the tree 7 defined
below. We say T, is the tree of self-intersection at p. See Figures 3.1, 3.2 and
3.3.

Let 2 be the set of connected component of UNy’ and 2 be the set of connected
component of U —y'. If a=(A4,B) e ? x 2 satisfy A < 0B, then we define I, to be
an arc with endpoints s, and #,. Then we set T = (a4, By aconla)/~, where for
a=(A,B) and a' = (A',B’) we set s, ~s, if A=A', and t, ~t, if B=PB'.

DEerINITION 6.7. Let y be an oriented closed curve, and P < y a collection of self-
intersection points of y. Take a small neighborhood U of P. By the above method,
there exist an oriented closed curve y’ which has no self-intersection in U and a
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homotopy /4 : §% x [0,1] — S? such that h(x,t) = x for x e S — U, h(-,0) is the identity,
and h(y’,1) =y. Moreover, we can assume that /(-, ) : S> — S? is a homeomorphism
for 0 <t<1and h(-,1): 8% - (y'U Upep T,) — S* — y is a homeomorphism. We say
y" is an unlacing of y with respect to P.

THEOREM 6.8. Let [ be a postcritically finite branched covering of degree d.
Suppose there exists an oriented curve y in S* — P{ which is fully f-invariant up to
homotopy. Then there exist two topological polynomials fi, f> and an integer n such that
" is equivalent to a degeneration of a formal mating of fi and f,.

ProOF. We can assume that y:S' — S§? — P{ has no self-intersection except in
Pr. Let y; - Sl — 82 — Py, k=1,2,... be the orlented closed curve homotopic to y
with P; fixed such that f ko9, =yoqu. Then y, has no self-intersection except in
f- (Pr) We write P=yNP;. Note that f(P) = P. Let 7. be an unlacing of y,
with respect to f~%(P) — P. Then 7, are all homotopic to one another with P} fixed.
Hence there exist 1 <t < ¢ such that y; is carried to y; by an ambient 1sotopy in
S? — P} keeping Py fixed. Indeed, it is easily checked that the set of oriented closed
curves w1th0ut self-lntersectlons except in P; that are homotopic to y with Pf fixed are
divided into finite classes up to ambient 1sotopy in S$? — P} keeping Pf ﬁxed Now
adopting y; instead of y as the starting curve (and renamlng Y =9, we see that y is
carried to y, by an ambient isotopy in S? — P keeping P; fixed, where n = t'—t. We
can assume y, =y by replacing f” with an equivalent branched covering. For sim-
plicity, we consider n = 1.

Let 7 be an unlacing of y with respect to P. Connecting the homotopy which
carries 7 to y and the homotopy which carries y to yp,, we have a homotopy
h:S?x[0,1] — S? which satisfies the following: Let U; and U, be small neighbor-
hoods of P and f~!(P) — P respectively. We denote by 7, the tree of self-intersection
at p; h(-,0) is the identity, A(7,1/2) =y, h(§,1) =y, h(x,t) = x for x e S* — (U U U)
and 0 <t <1, h(x,f) = h(x,1/2) for xe S>— Uy and 1/2 <t <1, h(-,1):S* — S?isa
homeomorphism for 0 << 1/2, h(-,1): S* = (FUJ, ., T)) — S* = h(7,7) is a homeo-
morphism for 1/2<t< 1, and h(-,1):S? — (U Upef ) Tp) = S? — 7, is a homeo-
morphism.

Write ¢, = h(-,1/2): 8> — S? and ¢, = h(-,1): S* — S2. Let D be one of the
connected components of S? —7. We define a branched covering f; : D — D as fol-
lows. For x€D — (U, ;1p TyUSf2(P)), set fi(x )=¢, ' of ody(x). Then f;:D —
(Upe ey Ip U f *Z(P)) — D Upe ey Ip is a branched covering with critical points
in Cy — P. By modifying f; near f 2(P) ~1(P), we have a branched covering
fi:D— Upe e Iy — D — U , with cr1t1ca1 points in Cy — P. Varying f; con-

tinuously in a neighborhood of U T », we can extend fi to a branched covering

pef!
on D such that its restriction to D — Upe = )T » 1s still a branched covering with
critical points in Cr — P. Note that each connected component of 7, N D contains at
most one point of P;. We will use this fact in the proof of [Theorem 6.9.
Similarly, we have a branched covering f> : E — E, where E is the other connected
component of S — 7. Thus we get a postcritically finite branched covering F : > — S?

such that F|D = f}, F|E = f>. From f; and f;, we obtain two topological polynomials
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fl and fz on 2-dimensional sphere by collapsing  to one point. It is easily seen that F
1s a formal mating of f; and f,, and f is a degeneration of F. ]

THEOREM 6.9. Let f be an expanding postcritically finite branched covering. If Jr
is orientedly S'-parameterized, then f" is equivalent to the degenerate mating of poly-
nomials for some n > 0.

ProOOF. Since there exists an oriented closed curve y without self-intersection except
in Py which is fully f-invariant up to homotopy, by Theorem 6.8 we see that f” is
equivalent to a degeneration of a formal mating of topological polynomials for some
n. Let fi:D— D and f,:E — E be branched coverings constructed in
6.8. We denote by T the union of the trees of self-intersection. Let 7:S% — S? be
the projection that collapses each component of 7 into one point. For simplicity,
we assume n = 1. Note that we can assume the following: Let pe P;My, and let
o:[s,f] — S? be a part of y such that «(s) = «(f) = p. Then « is not homotopic to a
trivial curve relative to {s,7} in S* — (Py — {p}).

It is sufficient to show that f; and f; have no Levy cycle ([3] Definition 6.2).
Indeed, a topological polynomial is equivalent to a polynomial if and only if there is
no Levy cycle Fact 6.5).

Suppose that f; has a Levy cycle {aj,o,...,0, =ap}, that is, there exists a
component o/ ; of f;!(o;) which is homotopic to o;_; in D — Py, such that fj : o | — o;
is one-to-one, and the simply connected domain C; bounded by o; includes at least two
points of Py. It is easy to see that C;N Py, consists of periodic points in Pj.

Let f; be an arc in C; joining two points of C;NP;. Then there exists a
component f, of f;7!(B,) such that 8, joins two points of C,NP; and f; : By — B is
one-to-one. Thus for J=0,—-1,-2,..., there exists an arc f8; such that f; joins two
points of Ci NPy, fll_] : B; — Py 1s one-to-one, where k =j modn.

Write f; = =(f;). If for every i, either 8 N P, consists of more than one point or
B is not homotopic to a trivial curve with P, fixed, then we have a contradiction for f
is expanding.

Suppose that ;N P, is one point and f is homotopic to a trivial curve with Py
fixed for some i. Let ¢ and b be the endpoints of ;. Then n(a) ==n(b)=p is a
periodic point in Py and f; is a closed curve such that a domain bounded by f3; contains
no point of Pr. Let S; and S, be the components of 77ND containing a and b
respectively. As mentioned in the proof of [Theorem 6.8, we have S| # S,. There-
fore there exists « : [s, 7] — S? which is a part of y such that «(s) = a(¢) = p and o is
homotopic to a trivial curve with P, fixed. This is a contradiction to the assumption.
Thus f; has no Levy cycle. O

EXAMPLE 6.10. (1) The rational map f(z) = (z> — 2)/z? is equivalent to the degen-

erate mating of P(z) = z2 —2 and Q(z) = z* + ¢, and is also equivalent to that of P(z)
and Q(z) = z? + ¢, where ¢ is the root of ¢ +2¢? 4+ 2¢+2 = 0 in the upper half plane.
There are two resolutions because f~'(y) has two parametrizations, where y is the
closed curve in Example 3.8. (2) The rational map f(z) = (z* — 16/27)/z is equivalent
to the formal mating of P(z) = z3 + 3z and Q(z) = z° + (3/2)z2. We need not take
the degenerate mating because the closed curve constructed in has no self-
intersection.
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Figure 1.1. The oriented closed curve y. Figure 1.2. The inverse image of y.

Figure 2.1. The radial r.

Figure 1.3. There are two ways of parametrization

of f~'(y) by which we obtain S'-parametrization
of the Julia sets. Here is the ‘unlacing’ of one
parametrization near the origin.
m >
B A

Figure 3.1. Here is a self-intersection point p.

=<

Figure 3.3. The thick tree is the tree of self-
Figure 3.2. An unlacing with respect to p. intersection at p.

Figure 2.2. The generators A, B.
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