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Abstract. We prove that for an expanding postcritically finite branched covering f ,

the Julia set is orientedly S1-parametrizable if and only if f n is combinatorially equivalent

to the degenerate mating of two polynomials for some n > 0.

1. Introduction.

In the preceding paper [3], the author introduced the notion of Julia sets for

(probably non-holomorphic) expanding postcritically finite branched coverings on the

2-dimensional sphere. It should be noted that all postcritically finite rational maps are

expanding postcritically finite branched coverings. Moreover, there exists an expanding

postcritically finite branched covering not equivalent to a rational map (see [3], Section

6). We have studied semiconjugacies from symbolic dynamics in [3]. The main

purpose of the present paper is to investigate semiconjugacies from the d-fold maps on

the circle.

For a polynomial map f : C ! C there often exists a surjective map

f : fjzj ¼ 1g ! Jf such that fðzdÞ ¼ f ðfðzÞÞ, where d is the degree of f and Jf is the

Julia set of f . This property will be called S1-parametrizability. Recall that a post-

critically finite polynomial f has this property. In fact, for a simple closed curve g

around the infinity, the inverse image gi ¼ f �iðgÞ uniformly converges to a closed curve

in Jf as i ! y (see [1]). We will consider the class of postcritically finite branched

coverings with S1-parametrizability. The main result is to give a connection between

S1-parametrizability and mating.

The paper is organized as follows. In Section 2 we recall results of [3] which we

will use. In Section 3 we define S1-parametrizability of Julia sets and show that it is

equivalent to the existence of a closed curve which is homotopically invariant. In

Section 4 we give an example of rational maps with Julia sets not S1-parametrizable.

In Section 5 we introduce a class of branched coverings, called nesting branched

coverings, and give a su‰cient condition for a nesting branched covering to be S1-

parametrizable. In Section 6 we show that for a postcritically finite branched covering

f , the Julia set is orientedly S1-parametrizable if and only if f is equivalent to the

degenerate mating of two polynomials, where we say the Julia set is orientedly S1-

parametrizable if the homotopically invariant closed curve can be perturbed to a simple

closed curve.
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2. Summary of basic facts.

In this section, we recall some results obtained in [3].

Definition 2.1. Suppose f : S2 ! S2 is a topological branched covering. We

say the set Cf of critical points is the critical set of f , and

Pf ¼ f f nðcÞ j c A Cf ; n > 0g

is the postcritical set of f . We say f is postcritically finite if Pf is a finite set.

Throughout this paper, we suppose that f : S2 ! S2 is a postcritically finite

branched covering of degree db 2.

Definition 2.2. Let f be a postcritically finite branched covering. A point in Pf

is a postcritical point. We say a periodic cycle fx1; x2; . . . ; xkg is a critical cycle if it

contains a critical point. A point of a critical cycle is called a critical periodic point.

We divide Pf into Pa
f and P r

f .

Pa
f ¼ fx A Pf j bk > 0; f kðxÞ is contained in a critical cycleg; Pr

f ¼ Pf � Pa
f :

Definition 2.3. A smooth postcritically finite branched covering f is said to be

expanding if there exists a Riemannian metric k � k on S2 � Pf which satisfies:

1. Any compact piecewise smooth curve inside S2 � Pa
f has finite length.

2. The distance dð� ; �Þ on S2 � Pa
f determined by the curve length is complete.

3. For some constants C > 0 and 0 < l < 1,

kvk < Cl
kkdf kðvÞk

for any k > 0 and any tangent vector v A TpðS
2Þ if f kðpÞ A S2 � Pf .

Then jlj < Cl
kj f kðlÞj for any piecewise smooth curve l with f kðlÞHS2 � Pa

f , where j � j

means the length of a curve.

Theorem 2.4. If f is expanding, then there uniquely exists a non-empty compact

subset JHS2 � Pa
f such that f �1ðJÞ ¼ J ¼ f ðJÞ.

Definition 2.5. The subset in the previous theorem is called the Julia set of f ,

and denoted by Jf .

Proposition 2.6. If f is expanding, then the following hold:

1. For x A S2 � Pa
f , we have Jf ¼ 7y

n¼1
6y

k¼n
f �kðxÞ.

2. For x A S2 � Jf , the sequence f f nðxÞgn>0 is attracted to a critical cycle.

3. The Julia set is connected.

3. S1-parametrizability.

We denote by qN the N-fold map on the circle T ¼ R=Z, that is, qNðyÞ ¼

Ny mod 1 for y A ½0; 1�. We identify T and S1 ¼ fjzj ¼ 1g by y ! expð2piyÞ.
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Definition 3.1. A dynamical system f : X ! X is called S1-parametrizable if

there exists a continuous surjection f : T ! X such that

T ���!
qN

T

f

?
?
?
y

?
?
?
y
f

X ���!
f

X

commutes for some N.

Definition 3.2. Let f be an expanding postcritically finite branched covering.

We say its Julia set Jf is S1-parametrizable if the restriction f jJf is S1-parametrizable.

Definition 3.3. Let f be a postcritically finite branched covering of degree d. A

closed curve a : S1 ! S2 � Pa
f is said to be f -invariant up to homotopy if there exists a

closed curve a1 : S
1 ! f �1ðaÞ such that there exists a homotopy h : S1 � ½0; 1� ! S2 � Pa

f

from a to a1 with P r
f fixed (i.e. if hðy; tÞ ¼ p A P r

f for some t, then hðy; tÞ ¼ p for every

t A ½0; 1�) and that f � a1 ¼ a � qN for some Nb 2. If N ¼ d, then we say a is fully f -

invariant up to homotopy.

Lemma 3.4. Let a be f -invariant up to homotopy. If b : S1 ! S2 � Pa
f is homo-

topic to a with Pr
f fixed, then b is f -invariant up to homotopy. More in detail, if H is

a homotopy from a to b with Pr
f fixed, then we have a homotopy H 0 from a1 to b1

(a1 : S
1 ! f �1ðaÞ homotopic to a, and b1 : S

1 ! f �1ðbÞ) with P r
f fixed such that

S1 � ½0; 1� ���!
qN�id

S1 � ½0; 1�

H 0

?
?
?
y

?
?
?
y
H

S2
���!

f
S2

commutes.

Proof. The required homotopy H 0 is the lift of H � ðqN � idÞ by the branched

covering f . The existence of the lift is guaranteed by the existence of a1. More

precisely, H 0 is constructed as follows. Let y A S1. If aqNðyÞ A P r
f , then set H 0ðy; tÞ ¼

a1ðyÞ for each t A ½0; 1�. Otherwise, set H 0ðy; �Þ : ½0; 1� ! S2 � f �1ðPf Þ to be the lift

of HðqNðyÞ; �Þ : ½0; 1� ! S2 � Pf by the covering f : S2 � f �1ðPf Þ ! S2 � Pf such that

H 0ðy; 0Þ ¼ a1ðyÞ. r

Theorem 3.5. Let f be an expanding postcritically finite branched covering. If

there exists a closed curve a : S1 ! S2 � Pa
f which is f -invariant up to homotopy, then

there exists an invariant subset KH Jf such that f jK : K ! K is S1-parametrizable. In

particular, if a is fully f -invariant up to homotopy, then Jf is S1-parametrizable.

Proof. Let h be a homotopy from a to a1 as in Definition 3.3. By Lemma

3.4, there exists a homotopy h1 : S
1 � ½0; 1� ! S2 such that hðqNðyÞ; tÞ ¼ fh1ðy; tÞ and
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h1ð� ; 0Þ ¼ a1. Similarly, for each k > 0 we inductively obtain a homotopy hk :

S1 � ½0; 1� ! S2 such that hkðqNðyÞ; tÞ ¼ f hkþ1ðy; tÞ and hkð� ; 1Þ ¼ hkþ1ð� ; 0Þ. Write

ak ¼ hk�1ð� ; 1Þ. Then hkðy; �Þ : ½0; 1� ! S2 � Pa
f is a curve joining akðyÞ and akþ1ðyÞ.

By the expandingness of f , we have jhkðy; �ÞjaClkjhðqk
NðyÞ; �Þj, and hence ak : S1 ! S2

uniformly converges to a curve b : S1 ! S2 as k ! y such that f � b ¼ b � qN . Then

K ¼ bðS1Þ is an invariant set, which is included in the Julia set by Proposition

2.6-1. r

Theorem 3.6. Let f be a postcritically finite branched covering. If there exists

a closed curve a : S1 ! S2 � Pa
f which is f -invariant up to homotopy, then a can be

continuously deformed so as to have at most finitely many self-intersections keeping f -

invariant up to homotopy.

In particular, if the Julia set of an expanding postcritically finite branched covering f

is S1-parametrizable, then there exists a closed curve a : S1 ! S2 � Pa
f which is fully f -

invariant up to homotopy and has at most finitely many self-intersections.

Proof. Let a : ½0; 1� ! S2 � Pa
f be f -invariant up to homotopy. Fix p A Pr

f .

Assume að0Þ ¼ að1Þ0 p. We show that a can be deformed to a curve a 0 with

#a 0�1ðpÞ < y. For a; b A a�1ðpÞ with a < b, we say that ½a; b�H ½0; 1� is trivial if the

restriction a : ½a; b� ! S2 � Pa
f is homotopic to a constant map t 7! p relative to fa; bg

in S2 � ðPf � fpgÞ. Note that for a trivial interval JH ½0; 1� if we deform a to a 0 by

a 0ðtÞ ¼ aðtÞ if t B J, a 0ðtÞ ¼ p if t A J then a 0 is still f -invariant up to homotopy. Let U

be a small neighborhood of p. Then for a; b A a�1ðpÞ with a < b, the interval ½a; b� is

trivial whenever að½a; b�ÞHU . Let A be the set of x A ½0; 1� such that there exist a < b

with a; b A a�1ðpÞ, a < x < b and að½a; b�ÞHU . Since ½0; 1� is compact, A is a finite

union of open intervals and #ð½0; 1� � AÞV a�1ðpÞ < y. We define a 0 by a 0ðtÞ ¼ aðtÞ if

t B A, a 0ðtÞ ¼ p if t A A. Since a 0�1ðpÞ consists of at most finite connected components,

we obtain the required curve by modifying a 0.

Doing this deformation for all p A Pr
f , we get ~aa a curve f -invariant up to homotopy

such that #~aa�1ðPr
f Þ < y. The curve can be approximated by a piecewise analytic curve

with Pr
f fixed. This completes the proof. r

Definition 3.7. Let f be a postcritically finite branched covering. We say a

closed curve a : S1 ! S2 � Pa
f with at most finitely many self-intersections is oriented

if a can be deformed to a simple closed curve by a small perturbation (i.e. there is

a continuous map h : S1 � ½0; 1� ! S2 � Pa
f such that hð� ; 0Þ ¼ a and hðy; tÞ0 hðy 0; tÞ

whenever y0 y 0 A S1 and t A ð0; 1�).

Suppose f is expanding. The Julia set Jf is orientedly S1-parametrizable if there

exists an oriented closed curve a : S1 ! S2 � Pa
f which is fully f -invariant up to homo-

topy. Note that the deformed simple closed curve is not necessarily f -invariant up to

homotopy.

Example 3.8. Consider a rational map f ðzÞ ¼ ðz2 � 2Þ=z2. The critical set Cf ¼

f0;yg and the postcritical set Pf ¼ fy; 1;�1g. The dynamics on Cf UPf is 0 ! y !

1 ! �1 ! �1. Set
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:

Then g is oriented and satisfies the condition of Theorem 3.5 for N ¼ 2 (see Figures

1.1, 1.2 and 1.3). Thus the Julia set Jf , which is the whole sphere, is orientedly S1-

parametrizable.

Remark 3.9. A branched covering whose Julia set is S1-parametrizable and not

orientedly S1-parametrizable is unknown.

4. A Julia set which is not S1-parametrizable.

In this section we give one example of rational maps whose Julia sets are not S1-

parametrizable.

We use the notion of branch group which has been introduced in the preceding

paper. See [3] Section 5. Let f be a postcritically finite branched covering of degree

d. Choose a point x A S2 � Pf and a radial r (see [3] Definition 3.2). We denote, by

Gk, the k-th branch group, and denote, by Fk : Gk�1 ! Gk, the induced homomorphism

of f . Recall that Gk ¼ p1ðS
2 � Pf ; xÞ

Wk � LðWkÞ, where Wk ¼ f1; 2; . . . ; dgk is the set

of words of length k and LðWkÞ is the set of permutations on Wk. Let p1 : Gk !

p1ðS
2 � Pf ; xÞ

Wk and p2 : Gk ! LðWkÞ be the projections.

Definition 4.1. For a permutation h, we say ða1; a2; . . . ; anÞ is an orbit of h if

ai 0 aj for i0 j and if hðai�1Þ ¼ ai for i ¼ 2; . . . ; n and hðanÞ ¼ a1. The number n is

the period of the orbit.

A closed curve g : S1 ! S2 � Pf is prime if l � qn and g are not homotopic in

S2 � Pf for any closed curve l and any positive integer n.

Proposition 4.2. Let g : S1 ! S2 � Pf be a closed curve with basepoint gð0Þ ¼ x.

Let ½g� be the element of p1ðS
2 � Pf ; xÞ with a representative g. The permutation

p2ðFj � Fj�1 � � � � � F1ð½g�ÞÞ has an orbit of period n if and only if there exists a prime

closed curve l : S1 ! S2 � Pf such that f j � l ¼ g � qn.

Proof. In view of [3] Theorem 3.4, we have a mapping Wj C w 7! xw A f �jðxÞ.

For w A Wj, we denote by ow : ½0; 1� ! S2 � Pf the curve such that f j � ow ¼ g

and owð0Þ ¼ xw. We use the mappings ~LLw and e of [3] Section 5. Write t ¼

p1ðFj � � � � � F1ð½g�ÞÞ and h ¼ p2ðFj � � � � � F1ð½g�ÞÞ. It follows from the definition of Fk

that

tða1a2 � � � ajÞ ¼ ~LLa1a2���aj ð½g�Þ; hða1a2 � � � ajÞ ¼ b1b2 � � � bj ;

where bk ¼ eð~LLakþ1akþ2���aj ð½g�Þ; akÞ. Thus hðwÞ ¼ w 0 if and only if owð1Þ ¼ xw 0 .
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Let ðw1;w2; . . . ;wn ¼ w0Þ be an orbit of p2ðFj � � � � � F1ðgÞÞ. Then ow ið1Þ ¼

ow iþ1ð0Þ. Hence g
0 ¼ ow1ow2 � � �own satisfies f j � g 0 ¼ g � qn.

Conversely, if a closed curve l satisfies f j � l ¼ g � qn, then l ¼ ow1ow2 � � �own for

some w1;w2; . . . ;wn A Wj . r

Consider the rational map f ðzÞ ¼ ðz2 þ 1Þ=ðz2 � 1Þ. The critical set Cf ¼ f0;yg

and the postcritical set Pf ¼ Pa
f ¼ f�1;y; 1g. The dynamics on Cf UPf is 0 7! �1 7!

y 7! 1 7! y. We show that f j jJf is not S1-parametrizable for every j.

Assume that f jjJf is S1-parametrizable. Then there exists g : S1 ! S2 � Pf such

that f j � g ¼ g � q2 j .

Take a radial r and generators A;B of p1ðS
2 � Pf ; xÞ as Figures 2.1 and 2.2. We

denote by ða1 a2Þ the permutation interchanging a1 and a2. Then

p2F1ðAÞ ¼ ð1 2Þ; p2F1ðBÞ ¼ ð1 2Þð1Þ

and

p1F1ðAÞð1Þ ¼ B�1; p1F1ðAÞð2Þ ¼ A�1; p1F1ðBÞð1Þ ¼ 1; p1F1ðBÞð2Þ ¼ 1:ð2Þ

Therefore,

p2F2F1ðAÞ ¼ ð11 22Þð21 12Þ; p2F2F1ðBÞ ¼ ð11 12Þð21 22Þ:

Since the image of p2F2F1 is generated by fð11 22Þð21 12Þ; ð11 12Þð21 22Þg, it is

fid; ð11 22Þð21 12Þ; ð11 12Þð21 22Þ; ð11 21Þð12 22Þg:

By Proposition 4.2, for every closed curve gHS2 � Pf , there is no closed curve g
0 such

that f j � g 0 ¼ g � q2 j if jb 2.

Suppose there exists a closed curve g such that ½g� ¼ An1Bm1An2Bm2 � � �AnkBmk and

f � g 0 ¼ g � q2 for some g
0 homotopic to g in S2 � Pf . By Proposition 4.2, p2F1ð½g�Þ ¼

ð1 2Þ. Therefore
Pk

i¼1ðni þmiÞ is odd by (1). Let

p1F1ð½g�Þð1Þ ¼ An 0
1Bm 0

1An 0
2Bm 0

2 � � �An 0
kBm 0

k

and

p1F1ð½g�Þð2Þ ¼ An 00
1 Bm 00

1 An 00
2 Bm 00

2 � � �An 00
kBm 00

k :

By (2),
Pk

i¼1ðn
0
i þm 0

i þ n 00
i þm 00

i Þ is even. Since a
�1p1F1ð½g�Þð1Þp1F1ð½g�Þð2Þa ¼ ½g� for

some a A pðS2 � Pf ; xÞ, this is a contradiction.

5. Nesting branched coverings.

In this section we state a su‰cient condition for the Julia set of a nesting expand-

ing postcritically finite branched covering to be orientedly S1-parametrizable.

Definition 5.1. A postcritically finite branched covering f is called nesting if there

exists a topological graph HHS2 satisfying:
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1. f : H ! H is a homeomorphism,

2. f �1 has d branches defined on S2 � f �nðHÞ for some n (i.e. there exist maps

g1; g2; . . . ; gd on S2 � f �nðHÞ such that f � gk ¼ id and 6d

i¼1
giðS

2 � f �nðHÞÞ ¼

S2 � f �n�1ðHÞ).

Recall that a topological graph means a 1-dim finite simplicial complex. We say H is

a cut graph of f .

Remark 5.2. 1. A postcritically finite polynomial is nesting. Indeed, we can easily

make a cut graph by joining some external rays.

2. If f is expanding and nesting, then f is topologically conjugate to a nesting

rational map in some neighborhoods of their Julia sets ([3] Corollary 6.7).

Proposition 5.3. Let f be a nesting expanding postcritically finite branched

covering with cut graph H. Then (1) H V Jf is a finite set and (2) f �kðHÞ is connected

for each kb 0.

Proof. Let B be the set of connected components of H � Jf which intersect Pa
f .

By the expandingness of f and the injectivity of f jH, we see that H �6
L AB

L consists

of at most finitely many points. Thus (1) is proved.

Suppose that f �KðHÞ is not connected for some Kb 0. Then f �kðHÞ is not

connected for every kbK . We may assume that f �1 has d branches on S2 � f �KðHÞ.

Since f �kðHÞH f �k�1ðHÞ, f �1 has d branches on S2 � f �kðHÞ for every kbK. We

say a collection G of disjoint simple closed curves in S2 � f �kðHÞ separates f �kðHÞ if

each connected component of S2 �6
g AG

g includes at most one connected component

of f �kðHÞ. If GK separates f �KðHÞ, then GKþ j ¼ fa component of f �jðgÞ j g A GKg

separates f �K�jðHÞ. Then maxg AGKþ j
jgj ! 0 as j ! y by the expandingness of f .

This contradicts the fact

0 < min max
g AG

jgj : G separates f �KðHÞ

� �

amin max
g AG

jgj : G separates f �KþjðHÞ

� �

;

and hence completes the proof. r

Corollary 5.4. If an expanding postcritically finite branched covering f is nesting,

then the following are satisfied:

1. for two points y1; y2 A S2 � Jf , there exists an arc g joining y1 and y2 such that

#ðJf V gÞ < y,

2. for y A Pf , there exists a component U of S2 � Jf such that y A U .

Proof. Let H be the cut graph. Since f �1 has d branches on S2 � f �nðHÞ for

some n, all critical values are contained in f �nðHÞ, and hence Pf H f �nðHÞ. Suppose

y1; y2 A S2 � Jf . Let U1;U2 be the components of S2 � Jf such that yi A Ui, i ¼ 1; 2.

Since f kðUiÞ contains a critical periodic point for some k, Ui V f �kðHÞ0q. By the

connectedness of f �kðHÞ, we have an arc g joining y1 and y2 with #ðJf V gÞ < y.

Suppose y A Jf VPf . Let V be a small neighborhood of y. Since #ðH V Jf Þ < y,

V VH V Jf ¼ fpg. Take a component U of S2 � Jf which includes a component of

V VH � fpg. r
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Remark 5.5. The converse of Corollary 5.4 is also true for rational maps, that

is, a postcritically finite rational map with the two conditions is nesting. The proof

is left to the reader.

Example 5.6. We again consider the rational map f ðzÞ ¼ ðz2 þ 1Þ=ðz2 � 1Þ.
Since the interval ½1;y� makes a cut graph, f is nesting.

Theorem 5.7. Let f be a nesting expanding branched covering of degree d. Let H

be the cut graph. Suppose there exist a subgraph H0 H f �nðHÞ and AHPf such that

Pf HH0, H0 � AH f �1ðH0 � AÞ, f ðAÞHA, and both of H0 � A and f �1ðH0 � AÞ are

connected and simply connected. Then Jf is orientedly S1-parametrizable.

Proof. Let U be a small neighborhood of A. Let g be a simple closed curve in

S2 � ðH0 �UÞ such that BVPf ¼ A, where B is one disc bounded by g. Since H0 � A

is connected and simply connected, g is uniquely determined up to homotopy in S1 � Pf .

Since f �1ðH0 � AÞ is connected and simply connected, g
0 ¼ f �1ðgÞ consists of only

one connected component, and hence f : g
0 ! g is of degree d. It is easily seen that

g and g
0 are homotopic in S2 � Pf . Thus Jf is orientedly S1-parametrizable by

Theorem 3.5. r

Example 5.8. Consider a rational map f ðzÞ ¼ ðz3 � 16=27Þ=z. The critical set

and the postcritical set are

Cf ¼ f�2=3;�ð2=3Þo;�ð2=3Þo2;yg; Pf ¼ f4=3; ð4=3Þo; ð4=3Þo2;yg;

where o is a cubic root of 1. The dynamics on Cf UPf is �2=3 ! 4=3 ! 4=3,

�ð2=3Þos ! ð4=3Þo t ! ð4=3Þos, y ! y, where ðs; tÞ ¼ ð1; 2Þ or ð2; 1Þ. The Julia set

Jf is homeomorphic to the Sierpinski gasket (see [5], [2]).

Denote by l the interval ½4=3;y�. Set H ¼ l Uol Uo
2l. Then f ðHÞ ¼ H, and

f �1 has three branches on C �H. So f is a nesting branched covering with cut graph

H. Since H and A ¼ fð4=3Þo; ð4=3Þo2g satisfy the condition of Theorem 5.7, Jf is

orientedly S1-parametrizable.

6. Mating.

In this section we show that Jf is orientedly S1-parametrizable if and only if f n

is equivalent to the degenerate mating of two polynomials for some n > 0. We use

‘equivalence’ in Thurston’s sense. See [3] Definition 4.2.

6.1. Definitions.

A mating of two (topological) polynomials is a branched covering constructed in

a certain way. First we give the definition of formal matings and degenerate matings

for polynomials.

Definition 6.1. Let f1 : C1 ! C1 and f2 : C2 ! C2 be two monic polynomial

maps of degree d, where C i is a copy of the complex plane C . Let ~RRiðtÞ denote the

external ray of angle t for fi (see [1] for the definition). Adding a circle Ci ¼
fexpð2p

ffiffiffiffiffiffiffi

�1
p

tÞ �yi j t A Tg at infinity such that expð2p
ffiffiffiffiffiffiffi

�1
p

tÞ �yi A Ci is an endpoint
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of ~RRiðtÞ, we can consider fi as a map of the closed disc Si ¼ C i UCi to itself, where

fiðexpð2p
ffiffiffiffiffiffiffi

�1
p

tÞ �yiÞ ¼ expð2p
ffiffiffiffiffiffiffi

�1
p

dtÞ �yi. Then

S ¼ S1 t S2=ðexpð2p
ffiffiffiffiffiffiffi

�1
p

tÞ �y1 @ expð�2p
ffiffiffiffiffiffiffi

�1
p

tÞ �y2 : t A TÞ

is a 2-dimensional sphere. The branched covering F : S ! S defined by F jSi ¼ fi is

called the formal mating of f1 and f2.

If f1 and f2 are postcritically finite, then so is F. From now on, we suppose f1
and f2 are postcritically finite.

For t A T, we denote by RiðtÞ the closure of external ray of angle t for fi. We

consider that the endpoint of RiðtÞ on the infinity side is expð2p
ffiffiffiffiffiffiffi

�1
p

tÞ �yi.

Definition 6.2. For x; y A Si, we say x@i y if x and y are contained in RiðtÞ for

some t. The equivalence relation @ on S is defined to be the equivalence relation

generated by @1 and @2. Note that x@ y implies FðxÞ@F ðyÞ. The equivalence

class of x A S, which we denote by ½x�, is a union of external rays. Each connected

component of F�1ð½x�Þ is also an equivalence class.

Let ½x1�; ½x2�; . . . ; ½xm� be the equivalence classes containing at least two postcritical

points. Let ½y1�; ½y2�; . . . ; ½yn� be the equivalence classes such that F kð½yj�Þ ¼ ½xi� for

some i and for some kb 0 and that ½yj � contains a point of PF UCF . Suppose that

each ½yj� is simply connected. Then S 0 ¼ S=F is a 2-dimensional sphere, where xF y

if x; y A ½yj� for some j. We define a branched covering F 0
: S 0 ! S 0 as follows (see

[4] §5). Let U1;U2; . . . ;Un be disjoint topological open discs such that ½yj�HUj .

Then U 0
j ¼ Uj=F is also a topological open disc. Let V1;V2; . . . ;Vl be the connected

components of F�1ð6n

j¼1
UjÞ such that Vi V6n

j¼1
½yj � ¼ q. Set F 0ðxÞ ¼ FðxÞ if x A

S � ð6 l

j¼1
½yj�U6 l

i¼1
ViÞ, F 0ð½yj�Þ ¼ F ð½yj�Þ for j ¼ 1; 2; . . . ; n, and F 0jVi to be homeo-

morphic. Since F 0jVi is arbitrary, F 0 is not unique. However, it is uniquely deter-

mined up to the Thurston equivalence. We call F 0 the degenerate mating of f1
and f2.

Now we define matings for topological polynomials.

Definition 6.3. A branched covering f is called a topological polynomial if there

exists a distinguished point y A S2 such that f �1ðyÞ ¼ fyg.

Definition 6.4. Let f1 and f2 be two postcritically finite topological polynomials

of degree d. Then there exist simple closed curves gi ði ¼ 1; 2Þ encircling y such that

f �1
i ðgiÞ is connected and isotopic to gi. We modify fi in the neighborhood of y so that

f �1
i ðgiÞ ¼ gi and fi : gi ! gi is conjugate to qd : T ! T. Let Ui be the simply connected

domain bounded by gi which does not contain y. Then

S ¼ U1 tU2=ðf1ðtÞ@ f2ð�tÞ : t A TÞ

is a 2-dimensional sphere, where fi : T ! gi is a conjugacy between qd and f jgi. Define

a branched covering F : S ! S such that F jUi ¼ fi. Then F is postcritically finite

and PF VUi ¼ Pfi � fyg and the circle g ¼ ½gi�HS is F-invariant. We say F is a

formal mating of f and g. Note that F depends on the choice of the conjugacies

f1 and f2.
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Definition 6.5. Suppose F : S ! S is a formal mating of postcritically finite

topological polynomials f1 and f2. We define a degeneration of F as follows.

We say a topological tree T in S � Pa
F is an equivalence tree if #T VPr

Fb 2,

F kðTÞ ¼ T for some k, F k
: T ! T is a homeomorphism, and T V6k�1

i¼1
F iðTÞ ¼ q.

Let T1;T2; . . . ;Tm be a collection of disjoint equivalence trees. Let S1;S2; . . . ;Sn

be the components of 6y

j¼0
F�jð6m

i¼1
TiÞ which contain a point of PF UCF . Suppose

each Sj is simply connected. Then the quotient space S 0 ¼ S=F is a 2-dimensional

sphere, where xF y if x; y A Sj for some j. We define a branched covering ~FF : S 0 ! S 0

by the same construction as in Definition 6.2. Then we say ~FF is a degeneration of F

with respect to T1;T2; . . . ;Tm. For convenience, we consider F itself as a degeneration

of F with respect to the empty tree.

Proposition 6.6. Let F : S ! S be a formal mating of postcritically finite topo-

logical polynomials, and ~FF : S 0 ! S 0 a degeneration of F. Then there exists an oriented

closed curve which is fully ~FF -invariant up to homotopy.

Moreover, if an expanding postcritically finite branched covering f is equivalent to
~FF : S 0 ! S 0, then Jf is orientedly S1-parametrizable.

Proof. Let g be the closed curve defined in Definition 6.4, and let g 0 ¼ g=FHS 0.

Since F�1ðgÞ ¼ g, we have g 0 is fully ~FF -invariant up to homotopy. It is easily seen that

g 0 is oriented. The second assertion is verified by Theorem 3.5. r

6.2. Statement and proof of the main theorem.

Let g be an oriented closed curve, and p A g a self-intersection point of g. We

construct an ‘unlacing’ of g at p as follows.

Take a small open disc U centered at p so that U V g is homeomorphic to a tree

with only one branch point. Then each connected component Ci of Ung is considered

as a sector bounded by two radii Hþ
i ;H

�
i H g and an arc Ii H qU . Since g is oriented,

there exists at least one sector Ci such that g�1ðHþ
i UH�

i Þ is connected. Thus we can

construct a homotopy h 0
: S2 � ½0; 1� ! S2 such that h 0ðx; tÞ ¼ x for x A S2 � Ci, h

0ð� ; 0Þ

is the identity, h 0ð� ; tÞ : S2 ! S2 is a homeomorphism for 0a t < 1, and h 0ðI 0i ; 1Þ ¼

Hþ
i UH�

i , where I 0i is a simple curve in Ci homotopic to Ii keeping the endpoints

fixed. Doing this operation finite times, we obtain a homotopy h : S2 � ½0; 1� ! S2 such

that hðx; tÞ ¼ x for x A S2 �U , hð� ; 0Þ is the identity, and hðg 0; 1Þ ¼ g, where g 0 is an

oriented closed curve which has no self-intersection in U. We can modify h so that

hð� ; tÞ : S2 ! S2 is a homeomorphism for 0a t < 1 and hð� ; 1Þ : S2 � ðg 0 UTpÞ ! S2 � g

is a homeomorphism, where Tp ¼ hð� ; 1Þ�1ðpÞ is homeomorphic to the tree ~TT defined

below. We say Tp is the tree of self-intersection at p. See Figures 3.1, 3.2 and

3.3.

Let P be the set of connected component of U V g 0 and Q be the set of connected

component of U � g 0. If a ¼ ðA;BÞ A P� Q satisfy AH qB, then we define Ia to be

an arc with endpoints sa and ta. Then we set ~TT ¼ ð
F

a¼ðA;BÞ:AHqB IaÞ=@, where for

a ¼ ðA;BÞ and a 0 ¼ ðA 0;B 0Þ we set sa @ sa 0 if A ¼ A 0, and ta @ ta 0 if B ¼ B 0.

Definition 6.7. Let g be an oriented closed curve, and PH g a collection of self-

intersection points of g. Take a small neighborhood U of P. By the above method,

there exist an oriented closed curve g 0 which has no self-intersection in U and a
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homotopy h : S2 � ½0; 1� ! S2 such that hðx; tÞ ¼ x for x A S2 �U , hð� ; 0Þ is the identity,

and hðg 0; 1Þ ¼ g. Moreover, we can assume that hð� ; tÞ : S2 ! S2 is a homeomorphism

for 0a t < 1 and hð� ; 1Þ : S2 � ðg 0 U6
p AP

TpÞ ! S2 � g is a homeomorphism. We say

g 0 is an unlacing of g with respect to P.

Theorem 6.8. Let f be a postcritically finite branched covering of degree d.

Suppose there exists an oriented curve g in S2 � Pa
f which is fully f -invariant up to

homotopy. Then there exist two topological polynomials f1; f2 and an integer n such that

f n is equivalent to a degeneration of a formal mating of f1 and f2.

Proof. We can assume that g : S1 ! S2 � Pa
f has no self-intersection except in

P r
f . Let gk : S1 ! S2 � Pa

f , k ¼ 1; 2; . . . be the oriented closed curve homotopic to g

with P r
f fixed such that f k � gk ¼ g � qd k . Then gk has no self-intersection except in

f �kðP r
f Þ. We write P ¼ gVP r

f . Note that f ðPÞHP. Let g 0k be an unlacing of gk
with respect to f �kðPÞ � P. Then g 0k are all homotopic to one another with P r

f fixed.

Hence there exist 1a t < t 0 such that g 0t is carried to g 0t 0 by an ambient isotopy in

S2 � Pa
f keeping P r

f fixed. Indeed, it is easily checked that the set of oriented closed

curves without self-intersections except in Pr
f that are homotopic to g with P r

f fixed are

divided into finite classes up to ambient isotopy in S2 � Pa
f keeping P r

f fixed. Now

adopting g 0t instead of g as the starting curve (and renaming g ¼ g 0t), we see that g is

carried to g 0n by an ambient isotopy in S2 � Pa
f keeping Pr

f fixed, where n ¼ t 0 � t. We

can assume g 0n ¼ g by replacing f n with an equivalent branched covering. For sim-

plicity, we consider n ¼ 1.

Let ~gg be an unlacing of g with respect to P. Connecting the homotopy which

carries ~gg to g and the homotopy which carries g to g1, we have a homotopy

h : S2 � ½0; 1� ! S2 which satisfies the following: Let U1 and U2 be small neighbor-

hoods of P and f �1ðPÞ � P respectively. We denote by Tp the tree of self-intersection

at p; hð� ; 0Þ is the identity, hð~gg; 1=2Þ ¼ g, hð~gg; 1Þ ¼ g1, hðx; tÞ ¼ x for x A S2 � ðU1 UU2Þ

and 0a ta 1, hðx; tÞ ¼ hðx; 1=2Þ for x A S2 �U2 and 1=2a ta 1, hð� ; tÞ : S2 ! S2 is a

homeomorphism for 0a t < 1=2, hð� ; tÞ : S2 � ð~ggU6
p AP

TpÞ ! S2 � hð~gg; tÞ is a homeo-

morphism for 1=2a t < 1, and hð� ; 1Þ : S2 � ð~ggU6
p A f �1ðPÞ TpÞ ! S2 � g1 is a homeo-

morphism.

Write f1 ¼ hð� ; 1=2Þ : S2 ! S2 and f2 ¼ hð� ; 1Þ : S2 ! S2. Let D be one of the

connected components of S2 � ~gg. We define a branched covering f1 : D ! D as fol-

lows. For x A D� ð6
p A f �1ðPÞ Tp U f �2ðPÞÞ, set f1ðxÞ ¼ f�1

1 � f � f2ðxÞ. Then f1 : D �

ð6
p A f �1ðPÞ Tp U f �2ðPÞÞ ! D�6

p A f �1ðPÞ Tp is a branched covering with critical points

in Cf � P. By modifying f1 near f �2ðPÞ � f �1ðPÞ, we have a branched covering

f1 : D�6
p A f �1ðPÞ Tp ! D�6

p AP
Tp with critical points in Cf � P. Varying f1 con-

tinuously in a neighborhood of 6
p A f �1ðPÞ Tp, we can extend f1 to a branched covering

on D such that its restriction to D�6
p A f �1ðPÞ Tp is still a branched covering with

critical points in Cf � P. Note that each connected component of Tp VD contains at

most one point of Pf1 . We will use this fact in the proof of Theorem 6.9.

Similarly, we have a branched covering f2 : E ! E, where E is the other connected

component of S2 � ~gg. Thus we get a postcritically finite branched covering F : S2 ! S2

such that F jD ¼ f1, F jE ¼ f2. From f1 and f2, we obtain two topological polynomials
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~ff1 and ~ff2 on 2-dimensional sphere by collapsing ~gg to one point. It is easily seen that F

is a formal mating of ~ff1 and ~ff2, and f is a degeneration of F. r

Theorem 6.9. Let f be an expanding postcritically finite branched covering. If Jf
is orientedly S1-parameterized, then f n is equivalent to the degenerate mating of poly-

nomials for some n > 0.

Proof. Since there exists an oriented closed curve g without self-intersection except

in Pf which is fully f -invariant up to homotopy, by Theorem 6.8 we see that f n is

equivalent to a degeneration of a formal mating of topological polynomials for some

n. Let f1 : D ! D and f2 : E ! E be branched coverings constructed in Theorem

6.8. We denote by T the union of the trees of self-intersection. Let p : S2 ! S2 be

the projection that collapses each component of T into one point. For simplicity,

we assume n ¼ 1. Note that we can assume the following: Let p A Pr
f V g, and let

a : ½s; t� ! S2 be a part of g such that aðsÞ ¼ aðtÞ ¼ p. Then a is not homotopic to a

trivial curve relative to fs; tg in S2 � ðPf � fpgÞ.

It is su‰cient to show that f1 and f2 have no Levy cycle ([3] Definition 6.2).

Indeed, a topological polynomial is equivalent to a polynomial if and only if there is

no Levy cycle ([3] Fact 6.5).

Suppose that f1 has a Levy cycle fa1; a2; . . . ; an ¼ a0g, that is, there exists a

component a 0
i�1 of f �1

1 ðaiÞ which is homotopic to ai�1 in D� Pf1 such that f1 : a
0
i�1 ! ai

is one-to-one, and the simply connected domain Ci bounded by ai includes at least two

points of Pf1 . It is easy to see that Ci VPf1 consists of periodic points in Pr
f1
.

Let b1 be an arc in C1 joining two points of C1 VPf1 . Then there exists a

component b0 of f �1
1 ðb1Þ such that b0 joins two points of Cn VPf1 and f1 : b0 ! b1 is

one-to-one. Thus for j ¼ 0;�1;�2; . . . ; there exists an arc bj such that bj joins two

points of Ck VPf1 , f
1�j
1 : bj ! b1 is one-to-one, where k ¼ j mod n.

Write b 0
i ¼ pðbiÞ. If for every i, either b 0

i VPf consists of more than one point or

b 0
i is not homotopic to a trivial curve with Pf fixed, then we have a contradiction for f

is expanding.

Suppose that b 0
i VPf is one point and b 0

i is homotopic to a trivial curve with Pf

fixed for some i. Let a and b be the endpoints of bi. Then pðaÞ ¼ pðbÞ ¼ p is a

periodic point in Pf and b 0
i is a closed curve such that a domain bounded by b 0

i contains

no point of Pf . Let S1 and S2 be the components of T VD containing a and b

respectively. As mentioned in the proof of Theorem 6.8, we have S1 0S2. There-

fore there exists a : ½s; t� ! S2 which is a part of g such that aðsÞ ¼ aðtÞ ¼ p and a is

homotopic to a trivial curve with Pf fixed. This is a contradiction to the assumption.

Thus f1 has no Levy cycle. r

Example 6.10. (1) The rational map f ðzÞ ¼ ðz2 � 2Þ=z2 is equivalent to the degen-

erate mating of PðzÞ ¼ z2 � 2 and QðzÞ ¼ z2 þ c, and is also equivalent to that of PðzÞ

and QðzÞ ¼ z2 þ c, where c is the root of c3 þ 2c2 þ 2cþ 2 ¼ 0 in the upper half plane.

There are two resolutions because f �1ðgÞ has two parametrizations, where g is the

closed curve in Example 3.8. (2) The rational map f ðzÞ ¼ ðz3 � 16=27Þ=z is equivalent

to the formal mating of PðzÞ ¼ z3 þ 3z and QðzÞ ¼ z3 þ ð3=2Þz2. We need not take

the degenerate mating because the closed curve constructed in Theorem 5.7 has no self-

intersection.
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Figure 1.1. The oriented closed curve g.

Figure 1.3. There are two ways of parametrization

of f �1ðgÞ by which we obtain S1-parametrization

of the Julia sets. Here is the ‘unlacing’ of one

parametrization near the origin.

Figure 2.2. The generators A;B.

Figure 3.2. An unlacing with respect to p.

Figure 1.2. The inverse image of g.

Figure 2.1. The radial r.

Figure 3.1. Here is a self-intersection point p.

Figure 3.3. The thick tree is the tree of self-

intersection at p.
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