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Abstract. The validity of Freedman’s disk theorem is known to depend only
on the fundamental group. It was conjectured that it fails for nonabelian free funda-
mental groups. If this were true then surgery theory would work in dimension four.
Recently, Krushkal and Lee proved a surprising result that surgery theory works for a
large special class of 4-manifolds with free nonabelian fundamental groups. The goal
of this paper is to show that this also holds for other fundamental groups which are
not known to be good, and that it is best understood using controlled surgery theory
of Pedersen-Quinn-Ranicki. We consider some examples of 4-manifolds which have
the fundamental group either of a closed aspherical surface or of a 3-dimensional knot
space. A more general theorem is stated in the appendix.

1. Introduction.

The purpose of this paper is to study 4-dimensional surgery problems by means
of controlled surgery. The usual higher dimensional surgery procedure breaks down in
dimension four since framed 2-spheres can generically only be immersed in a 4-manifold
(whereas for surgery on them one would require embeddings). To get an embedding
one uses the Whitney trick. Its basic ingredient is the existence of Whitney disks along
which pairs of intersection points with opposite algebraic intersection number can be
cancelled. If one finds these Whitney disks, surgery can be completed provided that the
Wall obstruction vanishes. The celebrated Disk Theorem of Freedman asserts that (see
[Fr]):

(1) The existence of Whitney disks in a 4-manifold M4 depends only on the fun-
damental group of M4. If they exist then π1(M4) is called a good fundamental
group.

(2) The (large) class of good fundamental groups includes the trivial group and Z.
(see also [Fr-Qu], [Fr-Tei], [Kru-Qu]).

It has been conjectured that nonabelian free groups are not good. Nevertheless, the
following surprising result was proved by Krushkal and Lee ([Kru-Lee]):

Theorem 1.1. Let X be a 4-dimensional Poincaré complex with a free nonabelian
fundamental group, and assume that the intersection form on X is extended from the
integers. Let f : M → X be a degree one normal map, where M is a closed 4-manifold.
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Then the vanishing of the Wall obstruction implies that f is normally bordant to a ho-
motopy equivalence f ′ : M ′ → X.

Whenever the intersection form is extended from the integers, it follows that X is
homotopy equivalent to the connected sum P#M ′, where M ′ is simply connected and

P can be assumed to be a finite sum
r

#
1

S1 × S3 (see [He-Re-Sp]). Recall that there

exist Poincaré 4-complexes with free fundamental group and intersection form which is
not extended from Z (see [Ham-Tei], [He-Pic]).

By means of this example we see that surgery can be completed for a large class of
4-manifolds (or Poincaré complexes) with fundamental group π, which is not good. This
paper will confirm this fact for other fundamental groups. For instance we shall prove:

Theorem 1.2. Let X be a spin Poincaré 4-complex and suppose that it has the
fundamental group of a closed oriented aspherical surface and that the intersection form
is extended from Z. Then any degree one normal map f : M → X with vanishing Wall
obstruction is normally bordant to a homotopy equivalence.

We shall also give other examples, e.g. 4-manifolds having the fundamental group
isomorphic to some special knot group. Moreover, we shall also recover Theorem 1.1.

The reason why this can happen is that one can divide the global surgery problem into
smaller pieces for which the local fundamental groups are good, i.e. {1} or Z. One gets
several local surgery obstructions which assemble to give the global surgery obstruction.
This subdivision has to be done in such a way that the global surgery obstruction already
determines the local ones. More precisely, the assembly map should be injective.

The subdivision is made according to a control map p : X → B, where B is a
finite-dimensional compact metric ANR. The map p must satisfy the following three
conditions:

(i) p is a UV 1-map;
(ii) if X is a Poincaré complex then X must be a δ-controlled Poincaré complex over

B, where δ > 0 is smaller than some ε0 > 0 which depends only on B; and
(iii) the assembly map A : H4(B,L) → L4(π1(B)) is injective.

Definitions and more explanations will be given in Section 2. Once we have such a control
map we can apply controlled surgery theory to obtain our results. Note that the extreme
cases, i.e. when

(a) either p = Id : X → X = B;
(b) or p = const : X → {∗} = B,

generically do not work since the case (a) does not satisfy condition (iii) whereas the case
(b) does not satisfy condition (i) above. It is also obvious that p : X → B depends not
only on π1(X) but also on the topology of X, so one gets solution of the surgery problem
in individual cases.

Remark. The condition (i) can be weakened to:

(i’) UV 1(δ), for every 0 < δ < ε0.
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Another example of a 4-manifold with a knot group fundamental group is stated in
Theorem 3.2 below.

2. Controlled surgery theory.

To reach our goal we shall need to use the ε–δ surgery sequence and to compare
it with the non-controlled one. Let L denote the 4-periodic simply connected surgery
spectrum (see [Qu1] and [Ni] for geometric and [Ra] for algebraic definitions). For a
space B we then have L-homology (resp. cohomology) groups denoted by Hp(B,L) (resp.
Hp(B,L)). There is a well defined assembly map A : Hp(B,L) → Lp(π1(B)), where
Lp(π1(B)) denotes the Wall group of obstructions to simple homotopy equivalences.

We shall only consider the oriented situation. Let X be an n-dimensional simple
Poincaré complex. We suppose that X admits a degree one normal map f0 : M0 → X,
so fixing this we have an identification of all degree one normal maps into X, modulo a
normal cobordism, with the homotopy set [X, G/TOP ] (see [Wa]).

There is a well defined map

Θ : [X, G/TOP ] → Hn(X, L),

which associates to a given degree one normal map into X its local surgery problems
according to a small dissection of X (see [Ra]). Composition with the assembly map

σ : A ◦Θ : [X, G/TOP ] → Ln(π1(X))

yields the classical surgery obstruction map of Wall.
The topological structure set of X consists of simple homotopy equivalences f :

Mn → X, where Mn is a closed manifold. Two such homotopy equivalences f : M → X,
f ′ : M ′ → X are equivalent if there is a homeomorphism g : M → M ′ such that the
diagram

M
g //

f ÃÃA
AA

AA
AA

A M ′

f ′}}||
||

||
||

X

homotopy commutes. The set of equivalence classes will be denoted by S (X) and will
be called the topological structure set of X.

Any homotopy equivalence determines a degree one normal map inducing S (X) →
[X, G/TOP ]. For n ≥ 5 and X a simple Poincaré complex, there is an exact ordinary
surgery sequence

S (X) → [X, G/TOP ] → Ln(π1(X)).

This sequence can be extended to the left by the Wall realization of obstructions

Ln+1(π1(X)) → S (X).
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For this one has to fix a simple homotopy equivalence f0 : M0 → X, where M0 is a
topological manifold and dimX ≥ 6. In the controlled concept there is a realization of
elements in Hn+1(B,L) giving a four–term exact sequence which also holds for n = 4. In
this paper we do not consider this part of the sequence so we will not give more details.

Before we state the ε–δ surgery sequence we need some more definitions. Let p :
X → B be a control map, B a (finite-dimensional) compact metric ANR. Then p is a
UV 1(δ)-map, δ > 0, if every commutative diagram

K0
α0 //

_�

²²

X

p
²²

K
α // B

where K is a 2-complex and K0 ⊂ K is a subcomplex, can be completed by a map
α : K → X such that α|K0 = α0 and d(p ◦ α(u), α(u)) < δ for all u ∈ K. The map p is
called a UV 1 map if it is a UV 1(δ) map for every δ > 0. Here, d : B ×B → R+ denotes
the metric on B.

Suppose now that X is an n-dimensional Poincaré complex, and suppose that X has
a simplicial structure. By the Borsuk theorem the simplicial structure hypothesis can
often be obtained replacing X by a homotopy equivalent space and then working with
it.

A space X is said to be an (oriented) δ-Poincaré complex with respect to p : X → B

if

(i) for every simplex ∆ of X the diameter of p(∆) ⊂ B is less than δ; and
(ii) there exists a fundamental cocycle ξ ∈ Cn(X) such that the cap product

∩ξ : Ck(X) → Cn−k(X)

is a δ-chain equivalence.

The second condition requires geometric module structure on the Λ-chain complex
{Ck(X) = Hn(X̃(k), X̃(k−1)) | k = 0, 1, 2, . . . }, where Λ = Z[π1(X)]. We shall not give
any more details but will refer to the literature (see [Ra-Ya1], [Ra-Ya2]). A more
geometric definition was given in [Qu2].

If X is a manifold then one obtains by barycentric subdivision a δ-Poincaré structure
for every δ > 0 with respect to p = Id : X → X, hence with respect to every p : X → B.

Suppose that f, g : Y → X are given maps. Then f is said to be δ-homotopic to
g if there is a homotopy h : Y × I → X between f and g such that for any y ∈ Y the
diameter of {ph(y, t) | t ∈ I} ⊂ B is less than δ.

Moreover, f : Y → X is called a δ-homotopy equivalence if there exists g : X → Y

and homotopies h : X × I → X, h′ : Y × I → Y between f ◦ g and IdX (resp. g ◦ f and
IdY ) such that the diameters of {ph(x, t) | t ∈ I} and {pfh′(y, t) | t ∈ I} are less than δ

for all x ∈ X (resp. y ∈ Y ).

Lemma 2.1. Suppose that f : Y → X is a δ-homotopy equivalence and Y a δ′-
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Poincaré complex with respect to p ◦ f . Then X is a (δ′ + 2δ)-Poincaré complex over
B.

This is a useful observation. It follows easily from [Ra-Ya1, Proposition 2.3]. The
following is the main theorem of [Pe-Qu-Ra]:

Theorem 2.2. Let B be a finite-dimensional compact ANR and X a closed topo-
logical n-manifold, where n ≥ 4. Then there exists an ε0 > 0, depending on B, such that
for every 0 < ε < ε0 there exists δ > 0 such that the following holds: If there is a map
p : X → B satisfying the UV 1(δ) property, then we get the following controlled surgery
exact sequence

Hn+1(B,L) → Sε,δ(X, p) → [X, G/TOP ] → Hn(B,L).

In fact, the following supplement holds (however, we shall not need it):

Supplement. If the map, p : X → B is only assumed to be a sufficiently small
controlled Poincaré complex over B (instead of assuming that X is a manifold), then the
surgery sequence

Sε,δ(X, p) → [X, G/TOP ] → Hn(B,L)

is still exact.

The controlled structure set Sε,δ(X, p) is defined as follows: Its elements are repre-
sented by δ-homotopy equivalence f : M → X over B, where M is a closed topological
n-manifold. Another δ-homotopy equivalence g : N → X is said to be ε-related to (M, f)
if there exists a homeomorphism h : M → N , so that

M
h //

f ÃÃA
AA

AA
AA

A N

g~~}}
}}

}}
}

X

is ε-homotopy commutative. This relation is reflexive and symmetric, so it gives rise
to an equivalence relation. (However, the proof actually shows the transitivity of the
relations above.) This theorem has a relative version which we shall not use.

As explained above, we now have the following commutative diagram for n = 4
(assuming the hypotheses of the theorem),

Sε,δ(X, p) //

²²

[X, G/TOP ] // H4(B,L)

A

²²
S (X) // [X, G/TOP ] // L4(π1(B)).

Hence in order to solve the 4-dimensional surgery problem with target X one needs
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a control map p : X → B satisfying conditions (i), (ii) and (iii) stated in Section 1.
Examples will be given in the following section.

3. Examples.

There is another characterization of UV 1-maps which is useful in the applications
(see [Dav] or [BFMW]). A subset A of a space X is said to be UV 1 if for each
neighborhood U of A in X there is another neighborhood V of A with V ⊂ U , such that
the induced map π1(V ) → π1(U) is zero for any base point in V , and any two points
in V can be connected in U . The following is a special case of the Approximate lifting
theorem ([Dav, p. 126]):

Theorem 3.1 ([Dav]). Suppose X is a metric space and G is an upper semicon-
tinuous UV 1-decomposition of X (i.e. each member A ∈ G is a UV 1 subset). Let B

= X/G and p : X → B. Then p is a UV 1 map, i.e. p is a UV 1(δ) map for every δ > 0.

As the first example we consider X as a Poincaré 4-complex with free nonabelian
fundamental group and Z-extended Λ-intersection form, Λ = Z[π1(X)]. By results

from [He-Re-Sp], X is homotopy equivalent to
( r

#
1

S1 × S3
)
#M ′ = M . A homotopy

equivalence M → X induces an “isomorphism” of the ordinary short exact surgery
sequences, i.e. we transform a surgery problem with target X to a surgery problem with
target M .

Lemma 3.2. Let M#M ′ be the connected sum of two topological manifolds and
p : M#M ′ → M the map which collapses M ′ to a point. If M ′ is simply connected then
p is a UV 1 map.

Proof. The map p is the composition of the maps p2 and p1. First, p1 : M#M ′ →
M ∨M ′ is the map which collapses the 3-sphere

∑3 ⊂ M#M ′ to the base point of the
wedge M ∨M ′. More precisely, a bicollar [−1, 1]×∑3 is radially smashed to D4∨D′4 ⊂
M ∨ M ′, fixing {±1} × ∑3. The inverse images are points or a nicely embedded

∑3.
Hence by Theorem 3.1, p1 is a UV 1 map.

Next, the map p2 : M ∨M ′ → M is the projection. Since π1(M ′) = {1}, Theorem
3.1 again implies that p2 is a UV 1 map.

It remains to observes that the composition of UV 1-maps is again a UV 1-map. ¤

The proof of Lemma 3.2 shows the following:

Lemma 3.3. If M1#M2 is a connected sum of topological manifolds, then the smash
map p : M1#M2 → M1 ∨M2, is UV 1.

We now consider the following composition

p = p3 ◦ p2 ◦ p1 :
(

r

#
1

S1 × S3

)
#M ′ p1→

(
r∨
1

S1 × S3
)
∨M ′

p2→
(

r∨
1

S1 × S3
)

p3→ r∨
1

S1 = B
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where p3 is induced by the projection S1×S3 → S1. Obviously, p3 is a UV 1 map, hence
we obtain the following:

Corollary 3.4. The map p :
( r

#
1

S1 × S3
)
#M ′ = M → r∨

1
S1 = B is UV 1.

From the Atiyah–Hirzebruch spectral sequence

E2
rs = Hr(B, πs(L)) =⇒ Hr+s(B,L)

we deduce the well–known fact that A : H4(B,L) → L4(π1(B)) is an isomorphism.
In particular E2

rs = 0 for r > 1, so the spectral sequence collapses and H4(B,L) =
H0(B,Z) = Z ∼= L4(π1(B)). Recall that:

πs(L) =





0 if s is odd

Z2 if s ≡ 2(4)

Z if s ≡ 0(4),

Since M is a manifold, the map p : M → r∨
1

S1 satisfies conditions (i), (ii) and (iii). This

proves Theorem 1.1. ¤

To prove Theorem 1.2 we consider a Poincaré complex X4 with w2(X) = 0 and
Λ-intersection form extended from Z. The fundamental group of X is that of some
surface F . The construction of [Cav-He-Rep] applies to give a degree one normal map

X
f→F × S2. This splits the Λ-intersection form. Since it is extended from the Z-

intersection form one gets a homotopy equivalence X ' F × S2#M ′ = M , where M ′ is
simply connected.

We get as above the following UV 1-map:

p = p3 ◦ p2 ◦ p1 : M → F × S2 ∨M ′ → F × S2 → F = B.

The Mayer–Vietoris technique can be applied to the L-functor (see [Capp]) and to
Hn(B,L) to show that A : H4(B,L) → L4(π1(B)) is an isomorphism. In particular
L4(π1(B)) = Z ⊕ Z2. So p : M → B satisfies the conditions (i), (ii) and (iii), which
proves Theorem 1.2. ¤

Our next examples are 4-manifolds whose fundamental groups are knot groups. As
the control space B we take a spine of the knot complement in S3. It is well known that
B is an aspherical space and that Hp(B) = Z for p = 0, 1 and trivial otherwise. The
Atiyah–Hirzebruch spectral sequence then gives H4(B,L) = Z, in fact A : H4(B,L) →
L4(π1(B)) is an isomorphism.

Theorem 3.5. Let X = ∂
(
(S3\ o

N(k))×D2
)

be the boundary of a regular neighbor-
hood of the spine of the complement of a torus knot, embedded in R5. Then the surgery
sequence
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S (X) → [X, G/TOP ] → L4(π1(X))

is exact.

Note that X is a manifold. So it remains to verify only condition (i) of Section 1.
We state it as follows:

Lemma 3.6. Let p : X → B be the restriction of the neighborhood collapsing map.
Then p is a UV 1 map.

Proof. We shall show that the inverse images of points are UV 1 subsets of X

and then we shall apply Theorem 3.1 to get the assertion. So let k ⊂ S1 × S1 ⊂ S3 be
a torus knot in S3 of type (a, b), where (a, b) = 1, and the torus S1 × S1 divides S3 into
two solid tori T and T ∗ such that k ⊂ T ∩ T ∗ = ∂T = ∂T ∗ = S1 × S1.

Let M3 = S3 \
o

N3(k), where N3(k) is a small tubular neighborhood of the knot k

in S3. The spine of M3 (i.e. a compact 2-polyhedron onto which the 3-manifold M3

collapses) consists of 2-dimensional compact polyhedra Σ ⊂ T and Σ∗ ⊂ T ∗, intersecting
in an annulus A = l × [−1, 1] which lies on T ∩ T ∗ = S1 × S1 and where the curve l is
parallel on S1 × S1 to the knot k. (see Figure 1).

Figure 1.

If we look at the 2-disk cross sections C and C∗ of the solid tori T and T ∗ (which are
orthogonal to the longitudes of these solid tori), the pictures of Σ and Σ∗, respectively, are
as in the Figure 2 below (for the case when (a, b) = (3, 2), i.e. when k is the (3, 2)-torus
knot): where Σ and Σ∗ are depicted by bold lines.

The collapsing map ρ : M3 → B = Σ∪Σ∗ is described on Figure 3. Let us consider
the point inverses of the map ρ. There are essentially three different types of points
to consider: ρ−1(a) (resp. ρ−1(a∗)) is a bouquet of 3 (resp. 2) intervals, ρ−1(b) and
ρ−1(c) (resp. ρ−1(b∗) and ρ−1(c∗)) are bouquets of 2 intervals, and finally, ρ−1(d) (resp.
ρ−1(d∗)) is just a point.

We now consider the embedding B ⊂ R5 given by

B ⊂ M3 ⊂ S3 ⊂ S3 ×D1 ⊂ R4 × {0} ⊂ R5.

Let X be the boundary of the regular neighborhood M3 ×D2 of B ⊂ R5:
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X = ∂(M3 ×D2) = ∂M3 ×D2 ∪M3 × ∂D2.

Figure 2.

Figure 3.

Then the collapsing map p : X → B is the composition of the canonical projection
π : M3 ×D2 → M3 followed by the collapsing map ρ : M3 → B described above, that is
p = ρ ◦ (π|X).

It can now be easily verified that p−1(z) = (π|X)−1(ρ−1(z)) is indeed a UV 1 subset
of X, for every point z ∈ B. We shall do this for interior points a and b (resp. a∗ and
b∗) of Σ (resp. Σ∗) and we leave the reader the verification for the boundary points c

and d (resp. c∗ and d∗). As we have seen above, in such a case, ρ−1(z) is a bouquet of
arcs

m∨
i=1

D1
i with endpoints di. Therefore we can easily see that p−1(z) is in this case a

2-sphere with finitely many disks attached along the equator (see Figure 4). Therefore
p−1(z) is certainly a UV 1 subset:

R3 ×R2 ⊃ ∂(M3 ×D2) ⊃ p−1(z) = ∂
(

m∨
i=1

D1
i ×D2

)

=
(

∂
(

m∨
i=1

D1
i

)
×D2

)
∪

(
m∨

i=1
D1

i × ∂D2
)
' m−1∨

i=1
S2.
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Figure 4.

It therefore follows by Theorem 3.2 that p is indeed a UV 1-map, as it was asserted.
¤

Remark. Yamasaki has recently proved that our strategy can also be used to
prove Theorem 3.5 for hyperbolic knots [Ya].

4. Appendix

1. Using Daverman’s theorem (see Theorem 3.1 above) one gets UV 1-maps p : X → B

in the following way: Let U ⊂ X be a compact 4-dimensional submanifold with boundary
∂U . If every component of U is simply connected then the projection pU : X → X/U

is UV 1. We shall say that a 4-manifold X is a good manifold if there exists such a
submanifold U that A : H4(X/U ;L) → L4(π1(X)) is injective. Note that π1(X) ∼=
π1(X/U ). Then one gets the following more general result:

Theorem 4.1. If a 4-manifold M4 is homotopy equivalent to a good 4-manifold
X, then the surgery sequence

S (X) → [X, G/TOP ] → L4(π1)

is exact.

Note that “X has a good fundamental group” does not imply that “X is a good
manifold”, and vice–versa.

2. Let π be the fundamental group of an arbitrary knot k ⊂ S3. There is a well-known
procedure (see e.g. [Ma]) by which one can construct a (special) compact 2-polyhedron
K ⊂ S3, such that π1(K) ∼= π = π1(S3 \ k). We briefly outline it below.

Let a knot k be given by its projection onto S2, which is discontinued at the double
points – in order to show which of the diagram’s parts goes over the other. Glue a long
closed strip (a tunnel) to S2 and to itself along the knot projection, as it is shown in
Figure 5.

We obtain a (special) spine K of the twice punctured knot complement, i.e. of the
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Figure 5.

compact 3-dimensional manifold N3 ⊂ S3 which collapses to K, N3 ↘ K, and ∂N =
S2 ∪ (S1 × S1) ∪ S2. Unfortunately, the 2-polyhedron K contains a nontrivial 2-sphere,
i.e. H2(K, Z2) 6= 0. However, since L4(π) = Z, the control space B = K should have
trivial H2(K, Z), in order to guarantee that the assembly map A : H4(B,L) → L4(π) is
an isomorphism.
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