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Abstract. We introduce the notion horospherical curvatures of hypersurfaces
in hyperbolic space and show that totally umbilic hypersurfaces with vanishing cur-
vatures are only horospheres. We also show that the Gauss-Bonnet type theorem
holds for the horospherical Gauss-Kronecker curvature of a closed orientable even
dimensional hypersurface in hyperbolic space.

1. Introduction.

The hyperbolic Gauss map of a surface in hyperbolic space has been independently
introduced by Bryant [2] and Epstein [4] in the Poincaré ball model. Kobayashi [13], [14]
has also independently defined it for a hypersurface in Hn(R) = SO0(n, 1)/SO(n) and a
more general setting. It is a quite useful tool for the study of mean curvature one surfaces
in hyperbolic space [2], [19]. For fundamental concepts and results in this area, please
refer [2], [4], [5], [17]. In [11] we have investigated singularities of hyperbolic Gauss
maps of hypersurfaces in hyperbolic n-space Hn

+(−1) by using the model in Minkowski
space. We introduced the notion of hyperbolic Gauss indicatrices slightly modified the
definition of hyperbolic Gauss maps. The notion of hyperbolic indicatrices is independent
of the choice of the model of hyperbolic space. Using the hyperbolic Gauss indicatrix,
we defined the principal hyperbolic curvatures κ̄± and the hyperbolic Gauss-Kronecker
curvature K±

h by exactly the same way as the definition of those of classical Gaussian dif-
ferential geometry in Euclidean space. Totally umbilic hypersurfaces with respect to the
above curvatures are equidistant hypersurfaces, hyperspheres or hyperhorospheres which
are called model hypersurfaces in hyperbolic space. The hyperbolic Gauss-Kronecker
curvature is a hyperbolic invariant which describes the contact of hypersurfaces with
such model hypersurfaces. We remark that Kobayashi [13], [14] had already defined the
notion of hyperbolic Gauss-Kronecker curvature under a different framework and studied
some basic properties of it from the view point of the theory of Fourier transformations.

In this paper we introduce the principal horospherical curvature κ̃± (cf., §3). This
new curvature is not a hyperbolic invariant but an SO(n)-invariant, where we consider
the canonical SO(n)-subgroup in the group of hyperbolic motions. However, we can
show that κ̃±(p) is invariant under hyperbolic motions if and only if κ̃±(p) = 0. We can
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also show that totally umbilic hypersurfaces with vanishing principal horospherical cur-
vatures are hyperhorospheres. Therefore, totally umbilic hypersurfaces with hyperbolic
invariant principal horospherical curvatures are only hyperhorospheres. By definition,
the curvature κ̃±(p) might depend on the choice of the model of hyperbolic space in
Minkowski space. However, we can show that this curvature is independent of the choice
of the model of hyperboilic space (cf., §3). We define a curvature K̃±

h as the product
of principal horospherical curvatures which is called the horospherical Gauss-Kronecker
curvature. Of course the horospherical Gauss-Kronecker curvature is not a hyperbolic
invariant. However it describes the contact of hypersurfaces with hyperhorospheres. We
call such the geometry the “horospherical geometry” of hypersurfaces in hyperbolic space.

The main purpose in this paper is to study the global properties of hypersurfaces
in hyperbolic space. Since the horospherical Gauss-Kronecker curvature depends on
the choice of the normal direction, we need to explicitly use the normal vector of the
hypersurface when dealing with global properties. Therefore, in order to define the
global horospherical Gauss-Kronecker curvature K̃h (cf., §4), we shall need to assume
that the hypersurface M is orientable. The main result in this paper is the following
horospherical Gauss-Bonnet type theorem:

Theorem 1.1. If M is a closed orientable even-dimensional hypersurface in hy-
perbolic n-space, then

∫

M

K̃hdvM =
1
2
γn−1χ(M)

where χ(M) is the Euler characteristic of M , dvM is the volume form of M and the
constant γn−1 is the volume of the unit (n− 1)-sphere Sn−1.

We include a quick review of the local properties of the hyperbolic Gauss-Kronecker
curvature in section 2. We also introduce in section 2 the concept of de Sitter Gauss-
Kronecker curvature of a hypersurface in Hn

+(−1) that will be used in section 5. In
section 3 we define the notions of principal horospherical curvatures and horospherical
Gauss-Kronecker curvatures. We investigate the geometric meanings of these curvatures.
Theorem 1.1 is proven in section 4. Section 5 is devoted to a more detailed study of
the case n = 3. A further consequence of the main theorem together with the generic
classification of singularities of hyperbolic Gauss indicatrices is the relation between the
Euler characteristics of the image of the hyperbolic Gauss indicatrix and horospherical
properties on the closed surface (cf., Theorem 5.6).

We shall assume throughout the whole paper that all the maps and manifolds are
C∞ unless the contrary is explicitly stated.

Acknowledgment. The authors are very grateful to the referee for pointing out
several mistakes in the first draft of this paper.

2. Local hyperbolic differential geometry.

We outline in this section the local differential geometry of hypersurfaces in the hy-
perbolic n-space developed in the previous papers [11], [12]. We adopt, for this purpose,



The horospherical Gauss-Bonnet type theorem 967

the model of hyperbolic n-space in Minkowski (n + 1)-space.
Let Rn+1 = {(x0, x1, . . . , xn) | xi ∈ R (i = 0, 1, . . . , n)} be an (n + 1)-dimensional

vector space. For any x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn) ∈ Rn+1, the pseudo
scalar product of x and y is defined by 〈x,y〉 = −x0y0 +

∑n
i=1 xiyi. We call (Rn+1, 〈, 〉)

Minkowski (n+1)-space and denote it by Rn+1
1 . We say that a non-zero vector x ∈ Rn+1

1

is spacelike, lightlike or timelike if 〈x,x〉 > 0, 〈x,x〉 = 0 or 〈x,x〉 < 0 respectively. For a
vector v ∈ Rn+1

1 and a real number c, we define the hyperplane with pseudo normal v by
HP (v, c) = {x ∈ Rn+1

1 | 〈x,v〉 = c}. We call HP (v, c) a spacelike hyperplane, a timelike
hyperplane or a lightlike hyperplane if v is timelike, spacelike or lightlike respectively.

We now define hyperbolic n-space by Hn
+(−1) = {x ∈ Rn+1

1 | 〈x,x〉 = −1, x0 ≥ 1}
and de Sitter n-space by Sn

1 = {x ∈ Rn+1
1 | 〈x,x〉 = 1}.

Given x1,x2, . . . ,xn ∈ Rn+1
1 , we define a vector x1 ∧ x2 ∧ · · · ∧ xn by

x1 ∧ x2 ∧ · · · ∧ xn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−e0 e1 · · · en

x1
0 x1

1 · · · x1
n

x2
0 x2

1 · · · x2
n

...
... · · · ...

xn
0 xn

1 · · · xn
n

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where e0, e1, . . . ,en is the canonical basis of Rn+1
1 and xi = (xi

0, x
i
1, . . . , x

i
n). We can

easily show that x1 ∧ x2 ∧ · · · ∧ xn is pseudo orthogonal to any xi (i = 1, . . . , n).
We also define a set LC∗+ = {x = (x0, . . . xn) ∈ LC0 | x0 > 0}, which is called future

lightcone at the origin.
We now construct the local extrinsic differential geometry on hypersurfaces in

Hn
+(−1). Let x : U −→ Hn

+(−1) be an embedding, where U ⊂ Rn−1 is an open subset.
We shall identify M = x(U) and U through the embedding x. Since 〈x,x〉 ≡ −1, we
have 〈xui

(u),x(u)〉 ≡ 0 (i = 1, . . . , n − 1), for any u = (u1, . . . un−1) ∈ U . Therefore, if
we define

e(u) =
x(u) ∧ xu1(u) ∧ · · · ∧ xun−1(u)
‖x(u) ∧ xu1(u) ∧ · · · ∧ xun−1(u)‖ ,

we have 〈e(u),xui
(u)〉 ≡ 〈e(u),x(u)〉 ≡ 0, 〈e(u), e(u)〉 ≡ 1. And thus the vector x(u)±

e(u) is lightlike. Since x(u) ∈ Hn
+(−1) and e(u) ∈ Sn

1 , we have x(u)± e(u) ∈ LC∗+ and
hence we can define a map

L± : U −→ LC∗+

by L±(u) = x(u)± e(u) which is called the hyperbolic Gauss indicatrix (or the lightcone
dual) of x. We also define a map E : U −→ Sn

1 by E(u) = e(u) and call it the de Sitter
Gauss indicatrix of x.

In order to define the hyperbolic Gauss-Kronecker curvature and the hyperbolic
mean curvature of the hypersurface M = x(U), we have shown in [11] that DvE ∈ TpM

for any p = x(u0) ∈ M and v ∈ TpM , so that DvL± ∈ TpM . Here, Dv denotes the
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covariant derivative with respect to the tangent vector v.
In [11] we studied the geometric meaning of the hyperbolic Gauss map and the

hyperbolic Gauss indicatrix of a hypersurface. A hypersurface given by the intersection
of Hn

+(−1) and a spacelike hyperplane, a timelike hyperplane (through the origin) or
a lightlike hyperplane is respectively called a hypersphere, a equidistant hypersurface
(hyperplane) or a hyperhorosphere. Then we have the following:

Proposition 2.1. Let x : U −→ Hn
+(−1) be a hypersurface in Hn

+(−1).
(1) If the hyperbolic Gauss indicatrix L± is constant, then the hypersurface M is a part
of a hyperhorosphere.
(2) If the de Sitter Gauss indicatrix E is constant, then the hypersurface M is a part of
a hyperplane.

The first assertion of the above proposition has been shown in [11]. The second
assertion is rather easier to show and we omit its proof here.

Under the identification of U and M by the embedding x, the derivative dx(u0) can
be identified to the identity mapping 1TpM on the tangent space TpM , where p = x(u0).
Therefore, dE(u0) can be considered as a linear transformation on the tangent space
TpM . This means that dL±(u0) = 1TpM ± dE(u0) is also a linear transformation on the
tangent space TpM . We call the linear transformation S±p = −dL±(u0) : TpM −→ TpM

the hyperbolic shape operator of M = x(U) at p = x(u0). We also call the linear
transformation Ap = −dE(u0) : TpM −→ TpM the de Sitter shape operator of M = x(U)
at p = x(u0). We remark that Ap is nothing but the shape operator of M as a Riemannian
submanifold of Hn

+(−1). We denote the eigenvalue of S±p by κ̄±p and the eigenvalue of
Ap by κp. The relation S±p = −1TpM ± Ap implies that S±p and Ap have the same
eigenvectors, moreover κ̄±p = −1± κp.

We now define the notion of hyperbolic curvatures as follows: The hyperbolic Gauss-
Kronecker curvature of M = x(U) at p = x(u0) is defined to be

K±
h (u0) = det S±p .

The hyperbolic mean curvature of M = x(U) at p = x(u0) is defined to be

H±
h (u0) =

1
n− 1

Trace S±p .

The de Sitter Gauss-Kronecker curvature is defined to be

Kd(u0) = det Ap

and the de Sitter mean curvature is

Hd(u0) =
1

n− 1
Trace Ap.

We remark that the de Sitter mean curvature is actually the mean curvature of M . We,
clearly, have that H±

h (u) = ±Hd(u) − 1. Surfaces with Hd ≡ ±1 represent the most
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important class among those with constant mean curvature in hyperbolic space. These
surfaces have vanishing hyperbolic mean curvature and might thus be called hyperbolic
minimal surfaces.

We say that a point u ∈ U or p = x(u) is an umbilic point if S±p = κ̄±(p)1TpM .
Since the eigenvectors of S±p and Ap are the same, the above condition is equivalent to
the condition Ap = ±κ(p)1TpM . We say that M = x(U) is totally umbilic if all points on
M are umbilic. In [3], Cecil and Ryan have characterized totally umbilic submanifolds by
using three different functions on hyperbolic space. In [11] we have shown the following
classification theorem on totally umbilical hypersurfaces:

Proposition 2.2. Suppose that M = x(U) is totally umbilic, then κ̄±(p) is a
constant κ̄±. Under this condition, we have the following classification:
1) Suppose that κ̄± 6= 0.

a) If κ̄± 6= −1 and |κ̄± + 1| < 1, then M is a part of an equidistant hypersurface.
b) If κ̄± 6= −1 and |κ̄± + 1| > 1, then M is a part of a hypersphere.
c) If κ̄± = −1, then M is a part of a hyperplane.

2) If κ̄± = 0, then M is a part of a hyperhorosphere.

It follows from the above proposition that we can classify the umbilic point as follows:
Let p = x(u0) ∈ x(U) = M be an umbilic point, we say that p is an equidistant flat point
if κ̄± 6= 0, 0 < |κ̄± + 1| < 1, a hyperspherical point if κ̄± 6= 0, |κ̄± + 1| > 1, a flat point if
κ̄± 6= 0, |κ̄± + 1| = 0, or a hyperhorospherical point if κ̄± = 0.

We establish next the hyperbolic (respectively, de Sitter) version of the Weingarten
formula. Since xui

(i = 1, . . . n − 1) are spacelike vectors, we have the Riemannian
metric (hyperbolic first fundamental form) given by ds2 =

∑n−1
i=1 gijduiduj on M =

x(U), where gij(u) = 〈xui
(u),xuj

(u)〉 and the hyperbolic (respectively, de Sitter) second
fundamental invariant defined by h̄±ij(u) = 〈−L±ui

(u),xuj
(u)〉 (respectively, hij(u) =

−〈eui
(u),xuj

(u)〉) for any u ∈ U . They satisfy the relation h̄±ij(u) = −gij(u)± hij(u).

Proposition 2.3. Under the above notations, we have the following formulae:

(1) L±ui
= −

n−1∑

j=1

(
h̄±

)j

i
xuj

(The hyperbolic Weingarten formula),

(2) Eui
= −

n−1∑

j=1

(
hj

i

)
xuj

(The de Sitter Weingarten formula),

where
(
(h̄±)j

i

)
=

(
h̄±ik

)
(gkj),

(
hj

i

)
= (hik)(gkj) and (gkj) = (gkj)−1.

Proof. Since the hyperbolic Weingarten formula has been shown in [11], we only
give here the proof of the de Sitter Weingarten formula.

There exist real numbers λ, µ, Γ j
i such that Eui = λe + µx +

∑n−1
j=1 Γ j

i xuj . Since
〈E,E〉 = 1, we have 0 = 〈Eui

,E〉 = 〈λe + µx, e〉 = λ. Therefore, Eui
= µx +

∑n−1
j=1 ·

Γ j
i xuj . On the other hand, it follows from the definition −hiβ =

∑n−1
α=1 Γα

i 〈xuα ,xuβ
〉 =∑n−1

α=1 Γα
i gαβ . Hence, we have −hj

i = −∑n−1
β=1 hiβgβj =

∑n−1
β=1

∑n−1
α=1 Γα

i gαβgβj = Γ j
i .

Moreover, 〈E,x〉 = 0 and 〈E,xui
〉 = 0, and thus µ = −µ〈x,x〉 = 〈Eui

,x〉 = 0.
This completes the proof of the de Sitter Weingarten formula. ¤

As a corollary of the above proposition, we have an explicit expression of the hy-
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perbolic (respectively, de Sitter) Gauss-Kronecker curvature in terms of the Riemannian
metric and the hyperbolic (respectively, de Sitter) second fundamental invariant.

Corollary 2.4. Under the same notations as in the above proposition, we have
the following formulae:

K±
h =

det
(
h̄±ij

)

det(gαβ)
, Kd =

det(hij)
det(gαβ)

.

Proof. By the hyperbolic Weingarten formula, the representation matrix of the
hyperbolic shape operator S±p with respect to the basis {xu1 , . . . ,xun−1} is

(
(h̄±)j

i

)
=

(
h̄±iβ

)
(gβj).

It follows from this fact that

K±
h = det S±p = det

(
(h̄±)j

i

)
= det

(
h̄±iβ

)
(gβj) =

det
(
h̄±ij

)

det(gαβ)
.

By Proposition 2.3, the representation matrix of de Sitter shape operator Ap is also given
by (hj

i ), the formula for the de Sitter Gauss-Kronecker curvature follows. ¤

We also get in this context the hyperbolic Gauss equations as we shall see next and
it will be used in section 4. Since x(U) = M is a Riemannian manifold, it makes sense
to consider the Christoffel symbols:

{
k

i j

}
=

1
2

∑
m

gkm

{
∂gjm

∂ui
+

∂gim

∂uj
− ∂gij

∂um

}
.

Proposition 2.5. Let x : U −→ Hn
+(−1) be a hypersurface. Then we have the

following hyperbolic Gauss equations:

xuiuj =
∑

k

{
k

i j

}
xuk

+ hije + gijx.

Proof. Since {e,x,xu1 , . . . ,xun−1} is a pseudo-orthonormal frame of Rn+1
1 , we

can write xuiuj
=

∑
k Γ k

ijxuk
+ Γije + Γ ijx. We now have

〈xuiuj ,xu`
〉 =

∑

k

Γ k
ij〈xuk

,xu`
〉 =

∑

k

Γ k
ijgk`.

Since ∂gi`

∂uj
= 〈xuiuj

,xu`
〉 + 〈xui

,xu`uj
〉 and xuiuj

= xujui
, we get Γ k

ij = Γ k
ji, Γij =

Γji, Γ ij = Γ ji. Then by exactly the same calculation as those applied in the case of
hypersurfaces in Euclidean space, it follows Γ k

ij =
{

k
i j

}
.
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On the other hand, Γij = 〈xuiuj
, e〉 = hij . Moreover 〈xuiuj

,x〉 = −Γ ij . And since
〈xui

,x〉 = 0, we have 〈xuiuj
,x〉 = −〈xui

,xuj
〉 = −gij , which implies that Γ ij = gij . ¤

3. Horospherical geometry in hyperbolic space.

In the previous section we reviewed the properties of hyperbolic Gauss indicatrices
and hyperbolic Gauss-Kronecker curvatures. The original definition of hyperbolic Gauss
maps introduced by Bryant [2] and Epstein [4] is given in the Poincaré ball model.
Here, we introduce the corresponding definition in Minkowski model as follows: If x =
(x0, x1, . . . , xn) is a lightlike vector, then x0 6= 0. Therefore we have

x̃ =
(

1,
x1

x0
, . . . ,

xn

x0

)
∈ Sn−1

+ = {x = (x0, x1, . . . , xn) | 〈x,x〉 = 0, x0 = 1}.

We call Sn−1
+ the lightcone (n− 1)-sphere. We define a map

L̃± : U −→ Sn−1
+

by L̃±(u) = L̃±(u) and call it the hyperbolic Gauss map of x. We remark that for
n = 3, our definition of hyperbolic Gauss map is equivalent to the one introduced in
[2], [4]. Let TpM be the tangent space of M at p and NpM be the pseudo-normal
space of TpM in TpR

n+1
1 . We have the decomposition TpR

n+1
1 = TpM ⊕ NpM , so

that we also have the Whitney sum TRn+1 = TM ⊕ NM . Therefore we have the
canonical projection Π : TRn+1 −→ TM . It follows that we have a linear transformation
Πp ◦ dL̃±(u) : TpM −→ TpM for p = x(u) by the identification of U and x(U) = M via
x. We have the following proposition:

Proposition 3.1. Under the above notation we have the following horospherical
Weingarten formula:

Πp ◦ L̃±ui
= −

n−1∑

j=1

1
`±0 (u)

(h̄±)j
ixuj

,

where L±(u) = (`±0 (u), `±1 (u), . . . , `±n (u)).

Proof. By definition, we have `±0 L̃± = L±. It follows that we have `±0 L̃±ui
=

L±ui
− `±0ui

L̃±. Since L̃± ∈ NM and L±ui
∈ TM , we have

Πp ◦ L̃±ui
=

1
`±0

L±ui
.

By the hyperbolic Weingarten formula (Proposition 2.3), we have the desired horospher-
ical Weingarten formula. ¤

We call the linear transformation S̃±p = −Πp ◦dL̃± the horospherical shape operator
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of M = x(U). We also define the principal horospherical curvature κ̃±p as an eigenvalue
of S̃±p . By the above proposition, we have κ̃±p = (1/`±0 )κ̄±p . The horospherical Gauss-
Kronecker curvature of x(U) = M is defined to be K̃±

h (u) = det S̃±p . It follows that
we have the following relation between the horospherical Gauss-Kronecker curvature and
the hyperbolic Gauss-Kronecker curvature:

K̃±
h (u) =

(
1

`±0 (u)

)n−1

K±
h (u).

We say that a point u ∈ U or p = x(u) is a horo-umbilic point if S̃±p = κ̃±(p)1TpM .
By the above proposition, p is a horo-umbilic point if and only if it is an umbilic point.
We say that M = x(U) is totally horo-umbilic if all points on M are horo-umbilic as
usual.

We remark that κ̃±(p) is not invariant under hyperbolic motions but it is an SO(n)-
invariant. However, we can make sense a point with vanishing horospherical principal
curvature as a notion of the hyperbolic differential geometry.

Proposition 3.2. For a point p = x(u), κ̃±(p) is invariant under hyperbolic
motions if and only if κ̃±(p) = 0.

Proof. We have the relation κ̃±(p) = (1/`0(p))κ̄±(p) at any point p ∈ M . Here,
`0(p) varies with hyperbolic motions of hypersurfaces. Since κ̄±(p) is a hyperbolic in-
variant, it is zero if and only if κ̃±(p) is a hyperbolic invariant. ¤

Corollary 3.3. Suppose that M = x(U) is totally horo-umbilic and κ̃±(p) is a
hyperbolic invariant, then M is a part of a hyperhorosphere (κ̃±(p) ≡ 0).

We define a family of functions

H̃ : U × Sn−1
+ −→ R

by H̃(u, v) = 〈x(u),v〉. We call H̃ a lightcone height function on x : U −→ Hn
+(−1). We

denote the Hessian matrix of the lightcone height function h̃v0(u) = H̃(u, v0) at u0 by
Hess(h̃v0)(u0).

We say that a point p = x(u0) is a (positive or negative) horo-parabolic point of
x : U −→ Hn

+(−1) if K+
h (u0) = 0 or K−

h (u0) = 0. Moreover, a point p = x(u0) is said to
be a horospherical point if it is umbilic and horo-parabolic.

Proposition 3.4. Let H̃ : U × Sn−1
+ −→ R be a lightcone height function on

x : U −→ Hn
+(−1). Then

(1) ∂H̃/∂ui(u, v) = 0 (i = 1, . . . n− 1) if and only if v = L̃±(u).
Suppose that v0 = L̃±(u0). Then

(2) p = x(u0) is a horo-parabolic point if and only if detHess(h̃v0)(u0) = 0.
(3) p = x(u0) is a horospherical point if and only if rankHess(h̃v0)(u0) = 0.

Proof. (1) Since {x, e,xu1 , . . . ,xun−1} is a basis of the vector space TpR
n+1
1

where p = x(u), there exist real numbers λ, µ, ξ1, . . . , ξn−1 such that v = λx+µe+ξ1xu1+
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· · ·+ξn−1xun−1 . Since ∂H/∂ui(u, v) = 〈xui
,v〉, we have 0 = 〈xui

,v〉 = ξi〈xui
,xui

〉. This
means that the condition ∂H̃/∂ui(u, v) = 0 is equivalent to the condition v = λx + µe.
Since 〈v,v〉 = 0, µ = ±λ. Since v ∈ Sn−1

+ , λ = 1.
By definition, we have

Hess(h̃v0)(u0) =
(〈xuiuj

(u0), L̃±(u0)〉
)

=
(− 〈xui

(u0), L̃±uj
(u0)〉

)
.

By the horospherical Weingarten formula, we have

−〈
xui

, L̃±uj

〉
=

1
`0

n−1∑
α=1

(h̄±)α
i 〈xuα

,xuj
〉 =

1
`0

n−1∑
α=1

(h̄±)α
i gαj =

1
`0

h̄±ij .

Therefore we have

K̃±
h (u0) =

detHess(h̃v0)(u0)
det(gαβ(u0))

.

The assertion (2) follows from this formula. For the assertion (3), by the hyperbolic
Weingarten formula, p = x(u0) is an umbilic point if and only if there exists an orthogonal
matrix A such that tA

(
(h̄±)α

i

)
A = κ̄±I. Therefore, we have

(
(h̄±)α

i

)
= Aκ̄±I tA = κ̄±I,

so that

Hess(h̃v0) =
1
`0

(
h̄±ij

)
=

1
`0

(
(h̄±)α

i

)
(gαj) =

1
`0

κ̄±(gij).

Thus, p is a hyperhorospherical point if and only if rank Hess(h̃v0)(u0) = 0. ¤

Corollary 3.5. For a point p = x(u0) ∈ M , the following conditions are equiv-
alent :
(1) The point p ∈ M is a horo-parabolic point (i.e., K±

h (p) = 0).
(2) The point p ∈ M is a singular point of the hyperbolic Gauss indicatrix L±.
(3) The point p ∈ M is a singular point of the hyperbolic Gauss map L̃±.
(4) K̃±

h (p) = 0.
(5) det Hess(h̃v0)(u0) = 0 for v0 = L̃±(u0).

We now interpret the results of Proposition 3.4 and Corollary 3.5 from another view
point. We consider the relationship between the contact of submanifolds with foliations
and the R+-class of functions. Let Xi (i = 1, 2) be submanifolds of Rn with dimX1 =
dimX2, gi : (Xi, x̄i) −→ (Rn, ȳi) be immersion germs and fi : (Rn, ȳi) −→ (R, 0) be
submersion germs. For a submersion germ f : (Rn, 0) −→ (R, 0), we denote that Ff be
the regular foliation defined by f ; i.e., Ff = {f−1(c)|c ∈ (R, 0)}. We say that the contact
of X1 with the regular foliation Ff1 at ȳ1 is of the same type as the contact of X2 with the
regular foliation Ff2 at ȳ2 if there is a diffeomorphism germ Φ : (Rn, ȳ1) −→ (Rn, ȳ2)
such that Φ(X1) = X2 and Φ(Y1(c)) = Y2(c), where Yi(c) = f−1

i (c) for each c ∈ (R, 0).
In this case we write K(X1,Ff1 ; ȳ1) = K(X2,Ff2 ; ȳ2). It is clear that in the definition
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Rn could be replaced by any manifold. We apply the method of Goryunov [6] to the
case for R+-equivalences among function germs, so that we have the following:

Proposition 3.6 ([6, Appendix]). Let Xi (i = 1, 2) be submanifolds of Rn with
dimX1 = dim X2 = n − 1 (i.e. hypersurface), gi : (Xi, x̄i) −→ (Rn, ȳi) be immer-
sion germs and fi : (Rn, ȳi) −→ (R, 0) be submersion germs. Then K(X1,Ff1 ; ȳ1) =
K(X2,Ff2 ; ȳ2) if and only if f1 ◦ g1 and f2 ◦ g2 are R+-equivalent (i.e., there exists a
diffeomorphism germ φ : (X1, x̄1) −→ (X2, x̄2) such that (f2 ◦ g2) ◦ φ = f1 ◦ g1).

On the other hand, Golubitsky and Guillemin [7] have given an algebraic charac-
terization for the R+-equivalence among function germs. We denote C∞0 (X) is the
set of function germs (X, 0) −→ R. Let Jf be the Jacobian ideal in C∞0 (X) (i.e.,
Jf = 〈∂f/∂x1, . . . , ∂f/∂xn〉C∞0 (X)). Let Rk(f) = C∞0 (X)/Jk

f and f̄ be the image of f

in this local ring. We say that f satisfies the Milnor Condition if dimR R1(f) < ∞.

Proposition 3.7 ([7, Proposition 4.1]). Let f and g be germs of functions at 0
in X satisfying the Milnor condition with df(0) = dg(0) = 0. Then f and g are R+-
equivalent if

(1) The rank and signature of the Hessians Hess(f)(0) and Hess(g)(0) are equal,
and

(2) There is an isomorphism γ : R2(f) −→ R2(g) such that γ(f̄) = ḡ.

For v0 = L̃±(u0), we consider a function hv0 : Hn
+(−1) −→ R defined by hv0(x) =

〈x,v0〉. It is easy to show that hv0 is a submersion. Moreover we have hv0 ◦ x(u) =
H̃(u, v0). By Proposition 3.4, we have

∂hv0 ◦ x

∂ui
(u0) =

∂H̃

∂ui
(u0,v0) = 0

for i = 1, . . . , n−1. This means that the hyperhorosphere hv0
−1(−1) = HSn−1(v0,−1) =

HP (v0,−1) ∩ Hn
+(−1) is tangent to M = x(U) at p = x(u0). In this case, we call

HSn−1(v0,−1) a tangent hyperhorosphere with the center v0. We have two tangent
hyperhorospheres at p = x(u0) depending on the direction of v0. Let ε be a sufficiently
small positive real number. For any t ∈ Iε = (−ε− 1, ε− 1), we have a hyperhorosphere

HSn−1(v0, t) = HP (v0, t) ∩Hn
+(−1) = h−1

v0
(t).

In this case Fhv0
is a family of parallel hyperhorospheres around p = x(u0) such that

h−1
v0

(−1) is the tangent hyperhorosphere of M at p. Let xi : (U, ūi) −→ (Hn
+(−1),xi(ūi))

(i = 1, 2) be hypersurface germs, then we have h̃i,vi(u) = hvi ◦ xi(u). Then we have the
following proposition as a corollary of Propositions 3.6 and 3.7.

Proposition 3.8. Let xi : (U, ūi) −→ (Hn
+(−1),xi(ūi)) (i = 1, 2) be hypersurface

germs such that h̃i,vi
satisfy the Milnor condition, where vi = L̃±(ūi) are centers of the

tangent hyperhorospheres of xi respectively. Then the following conditions are equivalent :

(1) K(x1(U), Fhv1
;x(ū1)) = K(x2(U), Fhv2

;x(ū2)).
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(2) h̃1,v1 and h̃2,v2 are R+- equivalent.
(3) (a) The rank and signature of the Hess(h̃1,v1)(ū1) and Hess(h̃2,v2)(ū2) are equal,

(b) There is an isomorphism γ : R2(h̃1,v1) −→ R2(h̃2,v2) such that γ(h̃1,v1) =

h̃2,v2 .

Remarks. We can show that the hyperbolic Gauss map L̃± is a Lagrangian
map of a certain Lagrangian submanifold L̃ ± in T ∗Sn−1

+ whose generating family is the
lightcone height function H̃. For the notions and basic results of the theory of Lagrangian
singularities, see [1]. Therefore we can apply the theory of Lagrangian singularities to
the study of the contact of hypersurfaces with the parallel families of hyperhorospheres.
However, arguments are almost parallel to those of section 4 and section 5 in [12], so
that we omit the details.

In the last part of this section we show that the notion of horospherical curvatures is
independent of the choice of the model of hyperbolic space. For the purpose, we introduce
a smooth function on the unit tangent sphere bundle of hyperbolic space which plays the
principal role of the horospherical geometry. Let SO0(n, 1) be the identity component of
the matrix group

SO(n, 1) = {g ∈ GL(n + 1,R) | gIn,1
tg = In,1, },

where

In,1 =
(−1 0

t0 In

)
∈ GL(n + 1,R).

It is well-known that SO0(n, 1) transitively acts on Hn
+(−1) and the isotropic group at

p = (1, 0, . . . , 0) is SO(n) which is naturally embedded in SO0(n, 1). Moreover the action
induces isometries on Hn

+(−1).
On the other hand, we consider a submanifold ∆ = {(v,w) | 〈v,w〉 = 0}

of Hn
+(−1) × Sn

1 and the canonical projcetion π̄ : ∆ −→ Hn
+(−1). Let π :

S(THn
+(−1)) −→ Hn(−1) be the unit tangent sphere bundle over Hn

+(−1). For
any v ∈ Hn

+(−1), we have the local (global) coordinates (v1, . . . , vn) of Hn
+(−1)

such that v = (
√

v2
1 + · · ·+ v2

n + 1, v1, . . . , vn). We can represent the tangent vector
w =

∑n
i=1 wi∂/∂vi ∈ TvHn

+(−1) by

w =
(

1
v0

n∑

i=1

wivi, w1, . . . , wn

)

as a vector in Minkowski (n+1)-space. Then 〈w,v〉 =
(− 1

v0

∑n
i=1 wivi

)
v0+

∑n
i=1 wivi =

0. Therefore w ∈ S(TvHn
+(−1)) if and only if

〈w,w〉 = 1 and 〈v,w〉 = 0.

The above conditions are equivalent to the condition (v,w) ∈ ∆. This means that
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we can canonically identify π : S(THn
+(−1)) −→ Hn

+(−1) with π̄ : ∆ −→ Hn
+(−1).

Moreover, the linear action of SO0(n, 1) on Rn+1
1 induces the canonical action on ∆ (i.e.,

g(v,w) = (gv, gw) for any g ∈ SO0(n, 1)). For any (v,w) ∈ ∆, the first component of
v ±w is given by

v0 ± w0 =
√

v2
1 + · · ·+ v2

n + 1± 1√
v2
1 + · · ·+ v2

n + 1

n∑

i=1

viwi,

so that it can be considered as a function on the unit tangent bundle S(THn
+(−1)). We

now define a function

N ±
h : ∆ −→ R ; N ±

h (v,w) =
1

v0 ± w0
.

We call N ±
h a horospherical normalization function on Hn

+(−1). Since v2+· · ·+v2
n+1 and∑n

i=1 viwi are SO(n)-invariant functions, N ±
h is an SO(n)-invariant function. Therefore,

N ±
h can be considered as a function on the unit tangent sphere bundle over hyperbolic

space SO0(n, 1)/SO(n) which is independent of the choice of the model space.
For any embedding x : U −→ Hn

+(−1), we have the unit normal vector field e :
U −→ Sn

1 , so that (x(u), e(u)) ∈ ∆ for any u ∈ U . It follows that

K̃±
h (u) = N ±

h (x(u), e(u))n−1K±
h (u).

The right hand side of the above equality is independent of the choice of the model space.

4. Proof of the main result.

In this section we give the definition of global horospherical Gauss-Kronecker
curvatures and a proof for the horospherical Gauss-Bonnet type theorem. Let M

be a closed orientable (n − 1)-dimensional manifold and f : M −→ Hn
+(−1) an

embedding. We consider the canonical projection π : Rn+1
1 −→ Rn defined by

π(x0, x1, . . . , xn) = (0, x1, . . . , xn). Then we have orientation preserving diffeomorphisms
π | Hn

+(−1) : Hn
+(−1) −→ Rn and π | Sn−1

+ : Sn−1
+ −→ Sn−1.

Consider the unit normal E of f(M) in Hn
+(−1), then we define the hyperbolic

Gauss indicatrix in the global

L : M −→ LC∗+

by

L(p) = f(p) + E(p).

The global hyperbolic Gauss-Kronecker curvature function Kh : M −→ R is then
defined in the usual way in terms of the global hyperbolic Gauss indicatrix L. We also
define the hyperbolic Gauss map in the global
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L̃ : M −→ Sn−1
+

by

L̃(p) = L̃(p).

We now define a global horospherical Gauss-Kronecker curvature function K̃h :
M −→ R by

K̃h(p) = Nh(f(p),E(p))n−1Kh(p),

where we simply write Nh = N +
h .

Proposition 4.1. Under the above notation, we have the following relation:

K̃hdvM = L̃∗dvSn−1
+

,

where dvM (respectively, dvSn−1
+

) is the volume form of M (respectively, Sn−1
+ ).

Proof. Firstly we assume that the hyperbolic Gauss map L̃ is nonsingular at a
point p = x(u0) ∈ M = x(U). In this case, there exists an open neighbourhood W ⊂ U

around u0 such that L̃ : W −→ Sn−1
+ is an embedding. Therefore, L̃u1 , . . . , L̃un−1

is a basis of TzS
n−1
+ at any point z ∈ V = L̃(W ). We denote g̃ij the Riemannian

metric on V and gαβ the Riemannian metric on W given by the restriction of the
Minkowski metric. Since L = `0L̃, we calculate that `0L̃ui = Lui − `0uiL̃, where
L(u) = (`0(u), `1(u), . . . , `n(u)). It follows that

g̃ij =
〈
L̃ui

, L̃uj

〉

=
(

1
`0

)2〈
Lui

,Luj

〉

=
(

1
`0

)2〈 n−1∑
α=1

h̄α
i xuα ,

n−1∑

β=1

h̄β
i xuβ

〉

=
(

1
`0

)2 ∑

α,β

h̄α
i h̄β

j 〈xuα
,xuβ

〉

=
(

1
`0

)2 ∑

α,β

h̄α
i h̄β

j gαβ .

By Proposition 3.1, K̃h = (1/`0)n−1 det
(
h̄i

j

)
, so that

det
(
g̃ij

)
= K̃ 2

h det(gαβ).
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Let us denote (ũ1, . . . , ũn−1) as the local coordinate on V via the embedding L̃. This
means that

L̃∗(dũ1 ∧ · · · ∧ dũn−1) =

{
du1 ∧ · · · ∧ dun−1 if K̃h(u) > 0

−du1 ∧ · · · ∧ dun−1 if K̃h(u) < 0,

where (u1, . . . , un−1) is the canonical coordinate on W ⊂ Rn−1. Therefore we have

K̃hdvW = L̃∗dvV .

If p is a singular point of L̃, then the both hand sides are zero. This completes the proof.
¤

We now start to give the proof of Theorem 1.1. Consider the (Euclidean) Gauss
map

N : M −→ Sn−1

on π ◦ f(M).
The proof of Theorem 1.1 is based in the following key lemma:

Lemma 4.2. Under the choice of a suitable direction of N , π ◦ L̃ and N are
homotopic.

Proof. Since E(p) is normal to f(M) in Hn
+(−1), π ◦ E(p) is transverse to

π ◦ f(M) in Rn. It follows that 〈π ◦ E(p),N(p)〉 6= 0 at any p ∈ M . We choose the
direction of N such that 〈π ◦E(p),N(p)〉 > 0. We also denote π ◦E(p) ∈ Sn−1 as the
unit normalization of π ◦E(p).

We now construct a homotopy between π ◦E and N . Let

F1 : M × [0, 1] −→ Sn−1

be defined by

F1(p, t) =
tN(p) + (1− t)π ◦E(p)
‖tN(p) + (1− t)π ◦E(p)‖ ,

where ‖ · ‖ is the Euclidean norm.
If there exists t′ ∈ [0, 1] and p′ ∈ M such that t′N(p′)+(1−t′)π ◦E(p′) = 0, then we

have N(p′) = −π ◦E(p′). This contradicts to the assumption that 〈π ◦E(p),N(p)〉 > 0.
Therefore F1 is a continuous mapping satisfying F1(p, 0) = π ◦E(p) and F1(p, 1) = N(p)
for any p ∈ M .

We also construct a homotopy between π ◦ L̃ and π ◦E. Let

F2 : M × [0, 1] −→ Sn−1
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be defined by

F2(p, t) =
tπ ◦E(p) + (1− t)π ◦ L̃(p)

‖tπ ◦E(p) + (1− t)π ◦ L̃(p)‖
.

If there exists t′ ∈ [0, 1] and p′ ∈ M such that t′π ◦ E(p′) + (1 − t′)π ◦ L̃(p′) = 0, then
we have π ◦E(p′) = −π ◦ L̃(p′). It follows that there exists a negative real number λ

such that π ◦ L(p′) = λπ ◦E(p′). Therefore we have Vp′ = 〈E(p′), f(p′)〉R contains the
kernel of π (i.e., the e0-direction). In this case Vp is Minkowski plane whose basis is
{π ◦ f(p′), e0}. We need the following sublemma:

Sublemma. Let a, b ∈ R2
1 be nonzero vectors with 〈a,a〉 = −1, 〈a + b,a + b〉 = 0

and 〈b, b〉 = 1. We assume that a0 > 0, a1 > 0 and a0 + b0 > 0, where a = (a0, a1),
b = (b0, b1). Then we have (a1 + b1)b1 > 0.

Proof. Since 〈a,a〉 = −1, we have a1 < a0. In the case when a1 + b1 > 0, we
have a1 + b1 = a0 + b0 > 0, so that b0− b1 = a1−a0 < 0. If b1 < 0, then b0 < b1 < 0. On
the other hand we have 1 = −b2

0 + b2
1 = (b1 − b0)(b0 + b1), so that b1 − b0 < 0. This is a

contradiction. If a1 + b1 < 0 and b1 > 0, then a1 < −b1 < 0. This is also a contradiction.
This completes the proof of the sublemma. ¤

We now apply the sublemma to our situation as a = f(p′) and b = E(p′). Suppose
that π ◦ L(p′) = λπ ◦ E(p′) for some non-zero real number λ, then λ is positive by
the sublemma. Therefore tπ ◦E(p) + (1 − t)π ◦ L̃(p) does not vanish at any point
p ∈ M . It follows that F2 is a continuous mapping satisfying that F2(p, 0) = π ◦ L̃(p)
and F2(p, 1) = π ◦E(p) for any p ∈ M .

Eventually, N and π ◦ L̃ are homotopic. ¤

Since the mapping degree is a homotopy invariant, we have the following corollary
(cf., [8], Chapter 4, §9).

Corollary 4.3. If M is a closed orientable, even-dimensional hypersurface in
Hn

+(−1), then we have

deg L̃ =
1
2
χ(M),

where deg L̃ is the mapping degree of L̃.

By the definition of the horospherical Gauss-Kronecker curvature K̃h, we obtain:

∫

M

K̃hdvM =
∫

M

L̃∗dvSn−1
+

= deg(L̃)
∫

Sn−1
+

dvSn−1
+

= deg(L̃)γn−1.

The proof of Theorem 1.1 is now completed as a consequence of Corollary 4.3.

Remark. Since we do not assume that n is odd in Lemma 4.2, we can apply the
lemma for the case n = 2. In this case we consider a unit speed hyperbolic plane curve
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γ : S1 −→ H2
+(−1). In [10] we have shown the Frenet-Serre type formula:





γ′(s) = t(s)

t′(s) = γ(s) + κg(s)e(s)

e′(s) = −κg(s)t(s),

Here, t is the unit tangent vector, e is the normal vector defined as in the same way as
the general case and κg(s) is the geodesic curvature of the curve γ in H2

+(−1) which is
given by

κg(s) = det(γ(s), t(s), t′(s)).

In this case, L = γ + e. If we fix the following parameterization of the lightlike circle:

S1
+ = {(1, cos θ, sin θ) | 0 ≤ θ < 2π},

then the horospherical curvature is

κ̃h(s) = Nh(γ(s), e(s))(κg(s)− 1).

Since the projection π : H1
+(−1) −→ R2 is a diffeomorphism, the winding numbers of γ

and π ◦γ are the same. Therefore we have the following formula as a corollary of Lemma
4.2:

1
2π

∫

S1
κ̃hds = W (γ),

where W (γ) denotes the winding number of γ.

5. Surfaces in hyperbolic 3-space.

In this section we stick to the case n = 3. First of all we need to make some local
calculations. Let x : U −→ H3

+(−1) be a (local) surface, where U ⊂ R2 is an open
region, and consider the Riemannian curvature tensor

R`
ijk =

∂

∂uk

{
`

i j

}
− ∂

∂uj

{
`

i k

}
+

∑
m

{
m

i j

}{
`

m k

}
−

∑
m

{
m

i k

}{
`

m j

}
.

We also consider the tensor Rijk` =
∑

m gimRm
jk`. Standard calculations, analogous to

those used in the study of the classical differential geometry on surfaces in Euclidean
space (cf., [20]), lead to the following formula.

Proposition 5.1. Under the above notations, we have

Rijk` = hjkhi` − hj`hik − gjkgi` + gj`gik.
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From Corollary 2.4 we have

Kd =
h11h22 − h21h12

g11g22 − g12g21
.

And thus we obtain the analogous result of the Theorema Egregium of Gauss for the
hyperbolic case:

Proposition 5.2. Under the above notations, we have

Kd = −R1212

g
+ 1,

where g = g11g22 − g12g21.

We remark that −R1212/g is the sectional curvature of the surface. It is denoted by Ks.
On the other hand, let κi (i = 1, 2) be eigenvalues of (hi

j) (i.e., de Sitter principal
curvatures of the surface). We remind that κ̄±i = −1± κi, from which we deduce:

Proposition 5.3. The following relation holds:

K±
h = 1∓ 2Hd + Kd = 2∓ 2Hd + Ks.

We return to the global situation. Let M be a closed orientable 2-dimensional
manifold and f : M −→ H3

+(−1) an embedding. Under the same notations as in section
4, we define a global mean curvature function Hd : M −→ R by using the de Sitter
Gauss map E. Therefore we have the relation

Kh = 1− 2Hd + Kd = 2− 2Hd + Ks,

where Kd is the global de Sitter Gauss-Kronecker curvature function and Ks is the global
sectional curvature function. Then we obtain relations of the total curvatures on M .

Theorem 5.4. Let M be a closed orientable 2-dimensional manifold and f : M −→
H3

+(−1) an embedding. Then we have

∫

M

KhdaM = 2A(M)− 2
∫

M

HddaM + 2πχ(M)

and
∫

M

K̃hdaM =
∫

M

KhdaM − 2A(M) + 2
∫

M

HddaM .

where daM is the area form and A(M) is the area of M.

Proof. By the Gauss-Bonnet theorem on M , considered as a Riemannian man-
ifold, we have

∫
M

KsdaM = 2πχ(M), so that we have the first formula. But then,
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cuspidaledge swallowtail

Figure 1.

Theorem 1.1 together with the above relation imply the second formula. ¤

We study in the remaining of the paper some generic properties of surfaces embedded
in H3

+(−1). We gave in [11] the following local classification of singularities for the
hyperbolic Gauss indicatrix of a generic local surface in H3

+(−1).

Theorem 5.5. Let Emb (U,H3
+(−1)) be the space of embeddings from an open

region U ⊂ R2 into H3
+(−1) equipped with the Whitney C∞-topology. There exists

an open dense subset O ⊂ Emb (U,H3
+(−1)) such that for any x ∈ O, the following

conditions hold :
(1) The horo-parabolic set K−1

h (0) is a regular curve. We call such a curve the
horo-parabolic curve.

(2) The hyperbolic Gauss indicatrix L along the horo-parabolic curve is locally dif-
feomorphic to the cuspidaledge except at isolated points. At such isolated points, L is
locally diffeomorphic to the swallowtail.

Here, the cuspidaledge is C = {(x1, x2, x3) | x1
2 = x2

3} and the swallowtail is
SW = {(x1, x2, x3) | x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v} (cf., Figure 1).

The proof of the theorem was given by using an appropriate jet-transversality theo-
rem [11]. When considering a global embedding f : M −→ H3

+(−1), one must also pay
attention to the multilocal phenomena. So we must add the double point locus, the inter-
section of a regular surface and the cuspidaledge and the triple point to the list of local
normal forms of the singular image of hyperbolic Gauss indicatrices of generic embed-
dings. These follow from the multi-jet version of the above mentioned jet-transversality
theorem. We also studied in [11] the geometric meaning of the singularities of the hy-
perbolic Gauss indicatrices: Given a point p0 ∈ M and the lightlike vector v0 = L(p0),
we saw that the horosphere HS(v0,−1) = HP (v0,−1) ∩H3

+(−1) is tangent to f(M) at
f(p0). We called HS(v0,−1) the tangent horosphere of f(M) at f(p0). By definition,
L(p1) = L(p2) if and only if HS(v1,−1) = HS(v2,−1) where vi = L(pi). Analogously,
a triple point of the hyperbolic Gauss indicatrix of f : M −→ H3

+(−1) corresponds to a
tritangent horosphere. On the other hand one of the characterizations of the swallowtail
point p0 ∈ M of L was the following (cf., [11]): For any open neighbourhood U of p0

in M , there exist two distinct points p1, p2 ∈ U ⊂ M such that both of p1, p2 are not
horo-parabolic points and the tangent horospheres to f(M) at f(p1), f(p2) are equal.
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Remember that a point p ∈ M is called an horo-parabolic point provided Kh(p) = 0
which is equivalent to the condition that K̃h(p) = 0 (cf., Corollary 3.5).

Denote by T (f) the number of tritangent horospheres and by SW (f) the number
of swallowtail points of a generic embedding f : M −→ H3

+(−1). We saw in [11] that
the image of the hyperbolic Gauss indicatrix of a hypersurface can be interpreted as a
wave front set in the theory of Legendrian singularities (cf., [1]). Therefore, we have the
following formula as a particular case of the relation obtained in [9] for wave fronts:

χ(L(M)) = χ(M) +
1
2
SW (f) + T (f).

This together with Theorem 1.1 lead to the following:

Theorem 5.6. Given a generic embedding f : M −→ H3
+(−1), the following

relation holds:

χ(L(M)) =
1
2π

∫

M

K̃hdaM +
1
2
SW (f) + T (f).

This theorem tells us that the Euler number of the image of the hyperbolic Gauss indica-
trix of a generic embedding can be obtained in terms of the invariants of the horospherical
differential geometry.

Finally, we remark that we can also apply other formulae involving the number
of swallowtails and triple points on singular surfaces in a 3-manifolds (cf., [15], [16],
[18]) to our situation in order to get further relations among invariants of the hyperbolic
differential geometry.
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Espanya

E-mail: carmen.romero@post.uv.es


