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Abstract. We study Mordell-Weil lattices for bielliptic fibrations on rational surfaces. We
prove theorems on the structure and give an explicit construction of the fibration with maximal
Mordell-Weil rank and moreover determine the structures of such lattices.

1. Introduction.

Let X be a smooth rational surface defined o@eand ¢ : X — P* a relatively minimal

fibration of curves of genug > 1 with a section, and le be the rational function field d®?.

We denote byl the Jacobian variety of a general fideiof ¢. The Mordell-Weil grouplg (K)

of K-rational points orlk is finitely generated. Its rankis called theMordell-Weil rank In [7],

[8] and [9], Shioda introduced and developed the theory of Mordell-Weil latticedfaK) (in a
more general context). In his theory of Mordell-Weil lattices of the elliptic fibrations, Mordell-
Weil lattices with maximal rank which are isometrickg play a very important role as a frame
lattice.

It is shown in B] thatr < 4g + 4 for fibrations of genug > 2, and that the fibration with
maximal rankr = 4g + 4 is of hyperelliptic type. In the case of non-hyperelliptic fibrations of
genusg > 3, which are studied ing], r < 3g+ 6. The fibration with maximal rank = 3g+ 6
is either of plane quintic or of trigonal type (so Clifford index 1). Moreover the structure of the
corresponding Mordell-Weil lattices are completely determined in these papers.

In this paper we deal with the case of bielliptic fibrations of geys6 (i.e., whenF has a
two-to-one map onto an elliptic curve, so Clifford index 2). We first prove the following theorem:

THEOREM1.1 (cf. Theorem 3.4). Let X be a smooth rational surface agd X — P a
relatively minimal bielliptic fibration of genug > 6 with a section. Then

r =rankJe (K) < 29+ 10.

Moreover, the equality & 2¢g -+ 10 holds if and only if K2 = —2g — 2 and all fibers ofg are
irreducible.

We put

n=n(g) = 1 ifgiseven
Y70 ifgisodd

and letZ, be the Hirzebruch surface of degmee Let Bg, be a smooth hyperelliptic curve of
genusg — 4 on X, and X the surface obtained as the finite double cover branched &gng
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For eacly > 6 we take a general sub-pencil in the pull-back of the anti-canonical systefn on
Then the blowing up the base points of the pencil whose general members are smooth bielliptic
curves of genug gives us a fibrationp : X — P1. We can show that such fibrations have

the maximal Mordell-Weil rank = 2g + 10 and 16 disjoint(—1)-sections. We have another
example. LetXig be a blow-up ofP? at seven points in general position akg ; a canonical
divisor. Then we have a bielliptic fibratioh: X — P* of genus 7 whose Mordell-Weil rank is
maximal, i.e.y = 24 by blowing up the base points of a general sub-pencil in the complete linear
system| — 3Kx,,|. We say that the fibratiog obtained in this way &bration of type(16;g;n)
and(18;7), respectively (cf. Proposition 4.9).

THEOREM 1.2 (cf. Theorems 4.3 and 5.1).Let X be a smooth rational surface and:
X — P! a relatively minimal bielliptic fibration of genug> 6 with a section. Assume that the
Mordell-Weil rank is maximal, i.e.,+ 2g+ 10. Theng is a fibration of type16;g;n) or (18;7).

Our final result on the structure of Mordell-Weil lattices with maximal rark 2g + 10is
stated in the following theorem.

THEOREM 1.3 (cf. Propositions 6.2 and 6.5). The Mordell-Weil lattices of fibrations of
type (16;g;n) and type(18;7) are unique up to isometry. More precisely, in the case of type
(16;g; n) the lattice is the positive-definite odd unimodular lattigg J.,~ of rank2g+ 10whose
Dynkin diagram is given by Figur6.3 and Figure6.4 in Proposition6.5. In the case of type
(18;7) the lattice is isometric to the lattice(” in Niemeyer’s classification of positive-definite
even unimodular lattices of rar2d (cf. [2, Chapter XVI,§1]).

Let us explain the ideas for the proofs. Theorem 1.1 is a consequence of a slope inequal-
ity for bielliptic fibrations (cf. [l]). By a refinement of the slope inequality under our situation,
the equalityr = 2g 4 10 implies that we have a finite double cover frofnto a smooth ratio-
nal minimal elliptic surface. Theorem 1.2 follows from the analysis of the finite double cover.
More precisely, we determine the plane curve model of the branch divisor up to birational maps,
which are composite of Cremona transformations (cf. Theorem 4.3), and give an explicit con-
struction of the fibration of each type, all of whose fibers are irreducible, as the bidouble cover
of the Hirzebruch surface (cf. Theorem 5.1). To prove Theorem 1.3 we respectively find natu-
ral birational morphisms frorX;g and X1g to a Hirzebruch surface arff so that we have an
explicit description of the Bron-Severi group NX). Then we can determine the structures of
Mordell-Weil lattices with maximal rank by calculating intersection pairing of divisorXon
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2. Mordell-Weil lattices.

Let X be a smooth rational surface defined o@eand ¢ : X — P! a relatively minimal
fibration of curves of genug > 1 with a section. We review basic notation and results on
Mordell-Weil lattices according to Shioda7{[ [8] and [9]) in the situation we are interested
in.

Let F be a general fiber o andK = C(P') the rational function field. We denote by
Jr the Jacobian variety df. The Mordell-Weil group ofg is the group ofK-rational points
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Jr(K). Then it is a finitely generated abelian group siXcis a rational surface. The ramkof

this group is called th&lordell-Weil rank There is a natural correspondence between the set of

K-rational points=(K) and the set of sections ¢f. ForP < F(K) we denote byP) the section

corresponding td which is regarded as a curve ¥ In particular,(O) corresponding to the

origin of Jg (K) is called thezero sectionShioda’s main idea in7], [8] and [9] is to view Je (K)

as a Euclidean lattice with respect to a natural pairing induced by the intersection forfiin H
We denote byl the subgroup oNS(X) generated byO) and all irreducible components of

fibers ofg. With respect to the intersection pairing the sublatlide called thdrivial sublattice

The following fundamental result due to Shioda plays an important role in the whole theory.

THEOREM2.1 (cf. [7], [8] and [B]). There is a natural isomorphism of groups
Jr(K) = NS(X)/T. (2.2)
As a corollary to Theorem 2.1, we have the following formula:

r=p—2-— z (vp—1), (2.2)
PeP!

wherep = rank N§X) is the Picard number ang denotes the number of irreducible compo-
nents of the fiber ovelP € P, In particular, if all fibers ofp are irreducible, then we have

r=p—2.

LetL =T+ c NS(X) be the orthogonal complement®fin NS(X). The latticeL is called
the essential sublatticeVe define the lattice dual toby the formula

L*={xeL®Qxyec Zforallye L},

wherex.y denotes the intersection pairing on (¥S.

Using (2.1), we define a symmetric bilinear fom on J= (K), which induces the structure
of a positive-definite lattice o8 (K)/Jr (K)ior. The lattice(Jr (K)/JIr (K)ior, (,)) is called the
Mordell-Weil latticeof the fibration¢ : X — P!, Thenarrow Mordell-Weil lattice 3 (K)? is
a sublattice of the Mordell-Weil latticdr (K) such thatle (K)° ~ L/T  NS(X)/T under the
isomorphism (2.1).

THEOREM2.2 (cf. [7], [8] and [Q]). There is the following commutative diagram in which
the natural morphisms are isometries

Je(K) /I (K)tor > (L7)*
U ]
F(K o~ L,

where the opposite lattice Lis obtained from L by putting the minus sign on the intersection
pairing on L.
In particular, if all fibers of¢ are irreducible, then

JF(K) ~ (KO~ L~

is a unimodular lattice of rank &£ p — 2.
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3. Bounds of Mordell-Weil rank.

In this section, we will give an upper bound of the Mordell-Weil rank for bielliptic fibrations
of genusg > 6 on rational surfaces. The important result we need in this section is a slope
inequality for bielliptic fibrations due to Barjd].

Let F be a smooth curve of genys The curveF is called bielliptic if F admits a two-to-
one map onto a smooth elliptic curve. Lggt X — C be a fibration of genug. We say that
¢ is bielliptic if the general fibeF of ¢ is a bielliptic curve. The following result clarifies the
structure of such fibrations.

PrROPOSITION3.1 (cf. [1, Proposition 1.1]). Let¢ : X — C be a relatively minimal biel-
liptic fibration of genusy > 6. Then X is a rational double cover of an elliptic surface over
C.

Let ¢ : S— C be the relatively minimal elliptic surface as in Proposition 3.1. We let
0 : X — X be a minimal succession of blowing-ups which eliminates the indeterminacy of the
rational double coveX --» S Let @ : X — Sdenote the resulting morphism of degree 2. Let
mou: X —s Xg — Shbe the Stein factorization ab, whereu is birational,m is finite and
Xo normal. Now consider the diagram as in Figure 3.1, whmyre Xx — S is the canonical
resolution of singularities of: Xg — S and o : Xx — X is the birational morphism to the
relative minimal modeX. Denotex, = degp..Ox(Kx,c) whereKy c is a relative canonical
divisor of ¢.

Figure 3.1.

THEOREM3.2 (cf. [1, Theorem 2.1]). Let ¢ : X — C be a relatively minimal bielliptic
fibration of genug; > 6. Let S be the relative minimal model of the elliptic fibration as above.
Then

Kx/c?—4Xp > 2(g—5)X(Os). (3.1)

KX/C2 —4xy = 2(9—5)x(0s) if and only if X is the minimal desingularization of the double
cover X% — S whose branch divisor has at maostgligiblesingularities(i.e., all the multiplici-
ties of singular points of the branch divisor @f in Figure 3.1are 2 or 3).

If X is a rational surface, the®in Figure 3.1 is also rational. So we have the following:
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LEMMA 3.3. Let X be a smooth rational surface agd: X — P! a relatively minimal
bielliptic fibration of genug > 6. Then
Kx?> —2g—2. (3.2)

If Kx?2 = —2g — 2 and all fibers ofg are irreducible, then there are the smooth rational minimal
elliptic surfacep : S— P* and a finite double covaw : X — S such thath = @o w (cf. Figure
3.2).

X ¢ ~pl
BN
S
Figure 3.2.

PrROOF.  SinceX is a smooth rational surface, we hayéds) = 1. By Leray spectral
sequence,

X(0x) = X(9.0x) — X (R'$.0x) = X(Op) — X(R'..Ox).

It follows from Grothendieck duality and Riemann-Roch theorem & ¢. O ) = gx (Op1) —
Xo¢- Therefore we havgy = g. It follows thath/F,l2 =Kx?—8(g—1)(0—1) =Kx?+8g—8.
So (3.2) follows from Theorem 3.2.

Assume thaKy? = —2g — 2. Then the equality sign holds in (3.1), hen¢esatisfies the
equivalent condition in Theorem 3.2. We use the notation as in Figure 3.1. WeXhavi.
If the branch divisor oftm were singular, then we would have(a2)-curve onX which is a
component of a fiber. Hence if all the fibers are irreducible, therD. O

THEOREM3.4. Let X be a smooth rational surfacg,: X — P! a relatively minimal
bielliptic fibration of genugy > 6 with a section, and let r be the Mordell-Weil rank¢g@f Then

r <2g+10.
Moreover, r= 2g+ 10if and only if Kx?> = —2g — 2 and all fibers ofp are irreducible.

PROOF. SinceX is a rational surface, the Picard numipéX) is equal to the second Betti
numberb,(X). Moreover,b;(X) = 2q(X) = 0and x(&x) = 1. So from Noether’s formula, we
havep(X) = 10— Kx2. Hence (2.2) and3.2) imply thatr < 2g+ 10. The equalityr = 2g+ 10
holds if and only ifKx?2 = —2g — 2 and all fibers o are irreducible. O

4. Fibrations with maximal Mordell-Weil rank.

Let X be a smooth rational surface apd X — P* a relatively minimal bielliptic fibration
of genusg > 6 with a section. In this section, we assume that the Mordell-Weil raok¢ is
maximal, i.e.r = 2¢g+ 10, and analyze the structure ¢f We use the following notation in the
rest of the paper: Put
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n=n(g) = 1 ifgiseven,
Y70 it gis odd,

and letpr: 2y =P(0p1 © Op1(N)) — P! be the Hirzebruch surface of degmeeC, the minimal
section, and, a fiber ofpr.

Theorem 3.4 says th& > = —2¢ — 2 and all fibers ofp are irreducible. Moreover there are
a rational elliptic surface : S— P! and a finite double coven : X — Ssuch thatp = po w
by Lemma 3.3.

LEMMA 4.1. Letg : X — P! be a bielliptic fibration of genug > 6 whose Mordell-Weil
rank is maximal, i.e., &= 29+ 10. Let@: S— P! denote the smooth rational minimal elliptic
surface andw : X — S the finite double cover in Lemr8&. Theng: S— P! has a section
and satisfies the following

(a) S is obtained by blowing up nine pointsRsf.P

(b) The elliptic fibrationg is the anti-canonical map of S and it has no reducible fibers.

(c) A section ofpis a(—1)-curve on S, and vice versa.
Furthermore, G > —1 for any smooth rational curves C on S. Consequently, the nine points of
P? as in(a) are in general position, that is, no three of them are collinear and no six lie on a
conic.

PROOF. The direct image as a divisor of a sectiongoby @ is a section ofp from the
projection formula. Ifg has a reducible fiber, then so dogs So, ¢ cannot have reducible
fibers. Then from4] we have (a) and (b). L& be a smooth rational curve & Then we have
C? = —2—C.Ksby the genus formula. Singghas no reducible fibe€ must be horizontal with
respect tap. SoC intersects a fiber ofp which is the anti-canonical map by (b). It follows that
C.(—Ks) > 1 and we haveC? > —1. Note that we hav€? = —1 if and only if C.(—Ks) = 1.
This gives (c). The rest may be clear. O

Let B be the branch divisor of the finite double cowsr. X — S ThenB is smooth and
divisible by 2 in Pi¢S). In our situation Pi¢S) is torsion free sinc&is a smooth rational surface.
So there is a unique elemedite Pic(S) with B ~ 28. From Lemma 4.1, we already know that
Scan be obtained as a nine-points blow-upP3f Hence we can transform the p&B, B) to
(P2,C). However since there are many choices of disjoint rfiné)-curves onSto obtainP?,
we have various plane curve modelsBf We want to choose among them the canonical one.
For this purpose, we prove the following lemma needed later.

LEMMA 4.2. Let(S B) be the pair as above. Then there exists a blow-dew(s B) —
(P2,C) of disjoint nine(—1)-curves g, ..., e such that

deqC > mg +mg + Iy, (4.1)
Mg >mg>My>--->my >0, (4.2)
where the m(i = 1,...,9) denotes the multiplicity of C at P £(g).

PROOF. Letey,...,e9 be disjoint nine(—1)-curves onS, u : S— P? the blow-down
which contract®’s and putP = u(e) € P2. In particular, we have® # P if i # j. Letd be the
degree ofu.Bandm (i =1,...,9) the multiplicity of u.B atR. We can assume that (4.2) holds.
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Being branch divisor of a finite double cov& does not contain &1)-curve. It follows
that 11,B does not contain the ling; through two pointd?, P; for anyi # j. We get the plane
curve of degre@d — mg — mg — my after the Cremona transformation pfB at Py, Ps and ;.
Then the composite gf and the Cremona transformation gives us a new blow-dows— P?
replacing the role ofy, eg andey by the strict transform dig g, Is 7 andl7 g by .

Hence after a finite number of succession of such transformations, we get a blonedown
satisfying (4.1). O

A m-fold point P of a plane curve€ is called asimple singular pointif the strict transform
of C by the blowing up aP is smooth oveP.

THEOREM4.3. Let¢ : X — P! be arelatively minimal bielliptic fibration of genys> 6
with a section whose Mordell-Weil rank is maximal, i.e5 Bg+ 10. Letp: S— P! denote the
smooth rational minimal elliptic surfaceg : X — S the finite double cover obtained by Lemma
3.3 and B the branch divisor ab. Then there is a blow-dows: (S,B) — (S, Bg) such that
S ~ P? and B is one of the following

Type (16;9;1): a curve of degreg — 2 with a simple singular point of multiplicity — 4 (g is
ever).
Type (16;g;0): a curve of degreg — 1 with a simple singular point of multiplicity — 3 and a
node or cusfy is odd).
Type (18;7): a smooth quartic curvég = 7).
In particular, B is a smooth irreducible curve of genus 4.

PROOF. Lete: (SB) — (S,Bg) be a blow-down as in Lemma 4.2. LBte P? (i =
1,...,9) denote the contracted point lay g the (—1)-curve onS corresponding td?, d the
degree oBg andm; the multiplicity of Bg at B. We have

9
Pic(S) ~ Z&* 0o (1) & P (Z8),
i=1
€ 0p2(1).6 =6e.6=0(1<i,j,k<9, j#Kk) (4.3)

from Lemma 4.1. Led be a divisor with2d ~ B. ThenB.&* 0p2(1) = 26.€*0p2(1) andB.g =
25.6. SinceB € |e"By — 7 ;ma|, we see thatl andm’s are all even. We pub = d/2,
n=m/2(1<i<9). Itfollows from Lemma 4.2 that

Ng>Ng>n7>--->n; >0, (4.4)
b > ng+ ng+ny. (4.5)

Restricting the finite double coves : X — Sto a general fiber 0p : X — P!, we have the
finite double cover of an elliptic curve. By Hurwitz's formula,

B.Ks=2—2g. (4.6)

So we have

9
—3+$n=1—g 4.7)
2"
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fromKs~ £*Op2(—3)+ 371 &. Sincew : X — Sis the finite double cover @branched along

B, we have—2g — 2 = Ky2? = w*(Ks+ )% = 2(Ks+ 8)? = 2Ks? + 2B.Ks+ 252. The equality
(4.6) andKs? = 0imply 62 = g — 3, that is,

b2~ $ n=g-3. (4.8)
2"
It follows from (4.7) and (4.8) that

bB3-b)+ Y ni(ni—1)=2. (4.9

Mo

Moreover, (4.7) ang > 6 give

9
3b— S n>5 (4.10)
2"

Now, Lemma 4.1 says that the singularitiesBgfare simple. So we have the classification as in
Theorem 4.3 by the following:

CLAIM 4.4. The solutions of the simultaneous inequalities give(4h), (4.5), (4.9and
(4.10)are

(b7n97n87n77?n1) = (2707"'70)’ (271707"'70)7
(k,k—1,0,...,0), (k,k—1,1,0,...,0), (k>3 ke Z).
PrROOF OFCLAIM 4.4. If b= 1, the simultaneous inequalities has no solutiorb # 2,

we havenj =0(i=1,...,9)orng=1,n =0 (i =1,...,8). Supposé > 3. Then it follows
from (4.5) that

b(b—3) > (ng+ng+ny)(ng+ng+ny —3)
> ng(ng—1)+ng(ng—1)+ng(ny — 1)
+ng(ng—1) +ng(ng—1) +ng(n7 — 1)
+n7(ng — 1) +nz(ng — 1) + nz(n7 — 1). (4.11)

Assumen; > 1. We haveng—1>ng—1>n;—1> 0from (4.4), and, hence

9
bb-3)> Y n(m—1),
i; | |
contradicting to (4.9).
Assumen; =0 (i=1,...,7). Then (4.11) becomes
b(b—3) > ng(ng — 1) + ng(ng — 1) + ng(ng — 2) + ng(ng — 2).

If ng > 2, then we have similarlyg —2 > ng—2 > 0and0 > b(3—b) + ng(ng — 1) + ng(ng — 1),
which leads us to a contradiction as before.



On Mordell-Weil lattices of bielliptic fibrations 145

If ng =0 or 1, then it follows from (4.9) thatng — b+ 1)(ng+b—2) = 0. Thus we have
ng = b—1, and Claim 4.4 is proved. O

It remains to show the irreducibility d@. The casd18;7) is clear, since a smooth quartic
curve onP? is irreducible. In the other cases, we argue as follows.

If By is a curve of degreg — 2 with a simple singular point of multiplicity — 4 at Py, let
01:(S81,Bs1) — (S9,Bo), Ss1 > 21, be the blow-up ofy atPs. ThenBg is a smooth curve
which is linearly equivalent t@C; + (g — 2) f1.

If By is a curve of degreg — 1 with a simple singular point of multiplicity — 3 at Py and
anode or cusp &, let 0, : (S7,B7) — (So, Bg) be the blow-up aB; andPs, andlg g the strict
transform byo, of the line throughP andPs. Thenlgg is a(—1)-curve which is disjoint from
B7, and let¢ : (S7,B7) — (Sg0,Bs0), Sg.0 ~ 20, be the blow-down contractinggs. ThenBgg
is a smooth curve which is linearly equivalé@ + (g — 3) fo.

CLAIM 4.5. Let Bgp, be a smooth curve oB, whish is linearly equivalent taCn + (g —
3+n)f,andg > 6. Then B, is irreducible.

PROOF. Let G be an irreducible curve oB, which is notC,. Assume thaG is linearly
equivalent toaC, + Bf,. FromG.C, > 0 andG.f, > 0, we havea > 0andfB > na > 0. If
Bg,n contains a fiberff as an irreducible component, thBg, — f does not contairi sinceBgp,
is a reduced curve. FrortBg,— f).f =2, Bgn cannot be smooth. Hend&, consists of
horizontal components. Sind& . fn = 2, we conclude thaBg , has at most two components.
We assume thag, has two components and wriBg, = G1 + Gy, whereG; ~ Cp + yf,, and
G2 ~Ch+(9g—3+n—y)fn. ThenG;.Gy = g — 3 > 3, which is absurd becausg , is smooth.

O

This completes the proof of Theorem 4.3. O

If By is of type(16;g;1), thene; = 01 o : (SB) — (Se1,Bs1), Se.1 = 21, is the blow-
down contractings (i =1,...,8). If By is of type(16;g;0), thengg = Go oy loeg: (SB) —
(S8,0,Bs0), S0~ 20, is the blow-down contractinig g ande (i=1,...,7).

LEMMA 4.6. Letg, be as above. Any—1)-curve which is contracted b, is disjoint
from B. In particular, the modglSg n, B n) is unique.

PROOF. Let e be a(—1)-curve that is contracted bs,. ThenB.eis even. Therefore
B.e# 0implies thatBg , has a singular point, which is absurd.

Lete,...,eg be the contracte@-1)-curves bye,. Assume that there exists another model
&' : (SB) — (Ssn',Bgn’). We may assume thay is not contracted by,’. Theney'(ep) is an
irreducible curve and we haw&'(e1).Bgy’ > 0 becausdg,, is ample. Now the center of the
blow-up &y’ is disjoint fromBg /. This implies that;.B # 0, which is a contradiction. O

DEFINITION 4.7. The birational morphisng, : (S B) — (Sgn,Bsn) as above is called
the canonical non-singular minimal model of ty{de;g; n).

We next consider the minimal model OK,F). Since¢ is a relatively minimal fibration,
we have only to consider the sectiongpfwhose self-intersection is minus one. We call such a
section a —1)-section ofg.
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LEMMA 4.8. Let ¢ : X — P! be a bielliptic fibration of genug > 6 with maximal
Mordell-Weil rank,p : S— P* the smooth rational elliptic surfacey : X — S the finite double
cover as in LemmAd.1, and B the branch divisor ab. Then the directimage of(a1)-section of
¢ by w is a (—1)-curve on S which is disjoint from B. Conversely the pull-back @f &)-curve
on S which is disjoint from B consists of two disjairtl)-sections ofp.

PROOF. Let o be a divisor with2d ~ B. Sinceg is the anti-canonical map arik ~
w*(Ks+ 9), we have

F ~ —@'Ks~ —Kx + @"3. (4.12)

Let & be a(—1)-section of¢. Since&.F =1 and&.Kx = —1, we have&.w*d =0 by
(4.12). Thus the projection formula implies th@at& is a (—1)-curve onS which is disjoint
from B.

Conversely, lee be a(—1)-curve onS which is disjoint fromB. Sincew is unramified
overe, we can writeto*e = &1 + &> with disjoint non-singular rational curve§ andé&. Then
eKs= —limpliesF.(&1 + &) = F.w*e= 2 by (4.12). It followsF.& = 1. O

The fibrations of each type are characterized by the following proposition:

PROPOSITION4.9. For a bielliptic fibration with maximal Mordell-Weil rank, there exists
uniquely themaximal set of disjoint—1)-sections It consists of sixteen disjoirjt-1)-sections
in the case of typé€l6;g;n), and eighteen in the case of ty(8; 7). In particular, the maximal
set of disjoint —1)-sections induces the canonical non-singular minimal model.

PROOF. Let ¢ : X — P! be a bielliptic fibration of typg16;4;n). We use the same
notation as in Lemma 4.6. There exist eight disjdintl)-curves onS each of which does not
meetB by Definition 4.7. Pulling back these eight 1)-curves, we have sixteen disjoifi1)-
sections ofp by Lemma 4.8.

Assume that there exist more than sixteen disj¢int)-sections of¢. From Lemma 4.8
these(—1)-sections of¢ give at least ning¢—1)-curves onS disjoint from B. It contradicts to
Lemma 4.6.

Similarly, in the case of typ€l8;7), there exist exactly eighteen disjoifit1)-sections
of ¢. O

COROLLARY 4.10. Let ¢ : X — P! be a fibration of type(16;g;n) or (18;7), and
let :S— P'andw: X — S be as in Lemm&.1, and B the branch divisor ofo. Let
&1 (SB) — (S, Bgn) and e : (S B) — (S,Bg) denote the canonical non-singular mini-
mal model for¢ of type (16;g;n) and (18;7) as in Definition4.7 and Theoremd.3, and let
& X — Xggande : X — Xig be the blow-down which contracts disjoirt 1)-sections in the
maximal set as in Propositioh9, respectively. Then there are the natural diagrams in Figure
4.1, wherer: Xie — Sgn and 1, : Xig — Sy are the finite double cover branched alongB
and B respectively.

PROOF. Let ¢ be a bielliptic fibration of typg16;9;n). Let {&1,...,616} denote the
maximal set of(—1)-sections ofg, and{ey,...,es} the set of the direct image curves by
Since the blow-dow, : (S B) — (Sgn, Bsn) contractsey, .. ., e, the morphisng, o w contracts
é1,...,81610 eight pointssy(ey), ..., &n(es). Sogn o w factors through the blow-dowsy, : X —
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Type (16;g;n) Type(18;7)
)
X—— +pl X pL
&
n S £ s
X16 &n X18 €
S N
Sn S
Figure 4.1.

Xi60f &1, ..., &16. Let 1, be the morphism such that o &, = en0 . Becauseo(41),. .., w(516)
are disjoint fromB, 1, : X16 — Sg.n is the finite double cover branched aloBg.
We can argue similarly in the case of ty(i8; 7). O

5. An explicit construction of a bielliptic fibration with maximal rank.

In this section, we give an explicit construction of smooth rational surfaces with the bielliptic
fibration of genug > 6 whose Mordell-Weil rank is maximal, i.e.,= 2g + 10.

PutSy = P? and letBg be an irreducible plane curve of type as in Theorem 4.3. Since the
singularities ofBg are at most two simple singular points, we have a blowsupS;,Bsz) —
(S, Bg) at six points in general position so th&fis a smooth curve. Let: (S,B) — (S5, B3)
be a blow-up ofS; at a general poin®s. Let ¢ : ($,B;) — (Z,D) denote the anti-canonical
map ofS,, which is the finite double cover & ~ P?. Take a sufficiently general penc# of
lines onZ. Then we have the diagram as in Figure 5.1. Here(SB) — ($,B;) denote
the blow-up at the base points ¢f'.Z, @ and ®y: o the rational maps corresponding to
& and y*.Z, respectively, and : S— P* the anti-canonical map @&, which is an elliptic

N
(1)
(S.B) ¢ —pt

52
SZ BZ — CDw*g

- \/%

5959

Figure 5.1.
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fibration. Letw : X — Sbe the finite double cover branched aldhigThen we get a fibration
¢ =gow:X — PL

THEOREMS5.1. The fibrationg : X — P! obtained by as above is a bielliptic fibration
of genusy whose Mordell-Weil rank is maximal, i.e.xK= —2g—2 and all fibers are irreducible.
In particular, the fibration of each type, i.e., typ&6;g;n) or (18;7), exists.

We can check the numerically conditions easily.

LEMMA 5.2. Let(SB) be a pair as above, and let : X — S denote the finite double
cover of S branched along B. Assume tpatS — P! satisfies(a), (b) and (c)of Lemmad4.1.
Then X is a smooth rational surface withk K= —2g — 2 and¢ := wo @ is a bielliptic fibration
of genuy.

PROOF. There exist8 as above by Bertini’s theorem. LB, B) be a pair obtained by a
plane curve model of typgl6;g; n) as in Theorem 4.3. Then there is a blow-dagyn (S,B) —
(Ss.n,Bgn) of disjoint eight(—1)-curves each of which does not méeso thatBg , is smooth
and

Bgn € [2Ch+ (9 —3+n)fnl, Sen > 2n.

Hence we havé? = Bg 2 = 4g — 12 andB.Ks = Bgn.Kg,, = 2— 29. From Hurwitz's formula,
the general fiber o is a smooth bielliptic curve of genus Consider the finite double cover
w : X — Sbranched alon®. ThenKx? = —2g —2 andx (0x) = 1. Moreover, the projection
formula impliesw, '(2Kx ) ~ 0(2Ks+ B) & 0(2Ks+ B/2). So we have

HO(X, 2Kx) = H%(S, 2Ks+B) @ HO(S, 2Ks+B/2).
It follows that

Sinceey* fn is nef,h9(S, 2Ks+B) = h9(S, 2Ks+B/2) = 0. Sop,(X) = 0 follows. ThereforeX
is a rational surface by Castelnuovo’s rationality criterion. We can prove similarly in the case of
type (18;7). O

There exists d—1)-curvee which is disjoint fromB. Thenw*eis a union of two disjoint
(—1)-section of¢ (cf. Lemma 4.8). Moreover, i has no reducible fiber, thep is relatively
minimal. In order to see that has no reducible fiber, it suffices to show that any fibep afeets
B transversely at least at one point.

Let A be the branch divisor ofs, which is a smooth quartic curve ah Since.Z is suf-
ficiently general, we may assume that any base point®a$é not onA. Thusy*.Z has two
distinct base points. By blowing up : (SB) — ($,B3) at these points, we have a rational
elliptic surfaceg : S— P? satisfying (a) of Lemma 4.1. We now consider the dual curve of
the plane curvé\. Since the dual curve has at most finite number of singular points, the number
of bitangent lines and pluritangent linesAas finite. Hence we can assume that any linef
meetsA transversely at least at one point. Thus we have the following lemma.

LEMMA 5.3. ¢@:S— P! obtained by# as above is a smooth rational minimal elliptic
surface satisfyinga), (b) and (cpf Lemma4.1.
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CLAIM 5.4. Assume that? is sufficiently general. Then any linesl.Z meets D trans-
versely at least at one poing Rhich is not on A.

ProOOF. The number of singular points of the dual curvdoére at most finite. Similarly
as in Lemma 5.3, we can assume that any lireZ meetsD transversely at least at one point
R.

The intersection oA andD is a finite set. For a poirf® on AND, the number of tangent
lines toD is finite, since the upper bound of the number of such tangent lines is given by the
degree of the dual curve @. Therefore the number of lines which meétgransversely only
onAND is at most finite. Hence we may assume fRag A. O

CLaiM 5.5. (¢*Dis reducible.

PrROOF. Since.Z is sufficiently general, we may assume that the base poif @& not
onD. Assume thaty*D is irreducible. There;*(*D = B by definition. We haveD? = B2 =
4g — 12, and hencéd? = 25 — 6. On the other hand, we hawegD = deg®y|p = g — 1 by
2deg®y|p = degy|s = —Ks.B = 2g — 2. This implies thaD? = (g — 1), which is absurd. OJ

The anti-canonical embedding & is a del Pezzo surface of degree three. Under this
identification,uv = Yo ¢ 1: S --» P? is the point-projection fronPs. Let us prove that the
transversality oiZ lifts on S,.

CLaiM 5.6. Assume that? is sufficiently general. Then any elliptic curygl € y*.¢
meets B transversely at least at one point P

PROOF. By Claims 5.4 and 5.5¢~(R/) N B, is one point, say#. Now we may regard
points out ofP; on S3 as points out of the exceptional curveqadn S, by blowingup¢: S — Ss.
Under this identification, in particular we hai#e+# P5 since the image of the exceptional curve
of ¢ is a bitangent line t&\. For our purpose, it suffices to show that afifi N S3 meetsB;
transversely af. SincePs is the center of projection arfig ¢ A, we have

Ps¢ I5m, (5.1)

where 7, g is the tangent space & atR in P2. On the other handy*I N V*IpR is the line
throughPs andR;. This and(5.1) implies that

vlNu*HRrNIsA ={R}. (5.2)
We now recall
Tsnui R = T N0, Te,p = T NV TDR.
In fact (5.2) means th&; andy*I NS meet transversely &. O

PROOF OFTHEOREM5.1. Consider the construction as in Figure 5.1. It follows tKas
a smooth rational surface witkx?2 = —2g — 2 and¢ : X — P! is a bielliptic fibration of genus
g with a section by Lemmas 5.2 and 5.3. The base pointg*a® are not onB, since we take
sufficiently general? for D. This implies that transversality & andy*l on & lifts to that of
B and fibers ofp on Sby &,. Therefore all fibers op are irreducible ang is relatively minimal.
Thus the Mordell-Weil rank o is 2g + 10 by Theorem 3.4. O
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6. Mordell-Weil lattices with maximal rank.

In this section, we shall determine the structure of the Mordell-Weil lattices for the fibrations
of each type. For this purpose, return to the situation considered in Corollary 4.10.

Let ¢ : X — P! be a fibration of typ€18;7). Recall thatrr: X35 — S as in Corollary
4.10 is a finite double cover branched along a smooth quartic curve. bkepée obtained by
blowing up seven points d®? in general position andt is the anti-canonical map ofs. Let
n : X18 — Xo5, Xog =~ P2, be the blow-up as above, akd 1 <i < 7, the(—1)-curves contracted
by n. Considering the diagram in Figure 4.1, we have the following lemma.

LEMMA 6.1. Let¢ : X — P! be a fibration of typg18;7). In the notation as above,

7 18
NS(X) =~ Z(n 0 €)* Ox,5(1) & P(ZE) & P(Z&),
i=1 i=1
F=9(no&) Oxs(1) SZEl Zéa (6.1)

PROOF. Sinceg andrt are the anti-canonical maps 8andX;g, respectively, we have

FNW*(—Ks)Nw( "(—Ksy) — Za>~€ T (—Kg) — fé‘i
n*(_KSg)N:gn*ﬁSg( )N_?’les’

whereg, 1 <i <9, are the(—1)-curves contracted bg. Thus the lemma follows. O

SinceF.& =1 (i = 1,...,18), the rational curves; become sections ap, and we take
&1 as the zero sectiofO). Then by definition, the trivial sublatticBg7 C NS(X) is generated
by &1g andF. From Theorem 2.2, the Mordell-Weil latti¢ég (K), {,)) is isomorphic taL1g7~
whereLg7 is the orthogonal complement @ig;. The following proposition determines the
structure of the lattic&1g7™.

ProOPOSITIONG.2. For the fibration of typ€18;7), the lattice g7~ is a positive-definite
even unimodular lattice of ran®4 whose Dynkin diagram is given by Figusel

1 2 3 4 5 17
@ Oee0
({2229
2 3 4 5 6 7 1
Figure 6.1.

Here the numbers in the circles denote the self parings of elements, and a line between two circles
shows that the paring of two elements is equal-tb

PROOF. Let the notation be as in Lemma 6.1. In particuldrjs given by (6.1) and
(O) = &18. Take the following elements whose numbers correspond to Figure 6.Irisp;nH:



On Mordell-Weil lattices of bielliptic fibrations 151

1 -1 -1 -1

0 1 -1 0
0 0 1 -1 O (0€)* Oy (1)
1 -1 0 0 O :
0 1 -1 -1 -1
0 0 1 -1 0 E7
O 0 0 1 -1 &
0 0 110 :
9 3 3 -3 ... 3 -1 .. .. 111 é18
0 1
Figure 6.2.
Hl = (f] 08)*ﬁx25(1) — El— E2— Eg,
Hi=E1—Ex (k=2,...,7),
A =Er—E1— 62— 63,
= Er— bk (k=2,...,17). (6.2)

Therefore the matrix representing the base chanfgto. .., Hs, 74, ..., #47,F,(0)) is given
by Figure 6.2. On the other hand, we have

&7=F+(0)—9H; — 6Hy — 12H3 — 18H, — 15Hs — 12Hg — 9H;

17
—671 — 55 — 1043 — Z (19— k) 7,
K=4
hence(6.2) is a basis fot1g7. O

REMARK 6.3. The sublatticéHy,...,H7,F 4+ (0)—&1,.94,...,567) C L1g7™ is the root
lattice E7 4+ A17. This characterizels;g7~ among the positive-definite even unimodular lattices
of rank 24 (cf. p] or [3]).

Let ¢ : X — P! be a fibration of typg16;4;n). We consider the finite double cover
Th : X16 — Sgn branched alon@g , as in Corollary 4.10 similarly.

LEMMA 6.4. Keep the same assumptions and notation as above.
Then there exists a birational morphism: Xig — X,+10 such that %,,10 ~ >4 for some d
andrt* fo ~ n*I, wherel™ is a fiber of %, 10.

PROOF.  Restricting the projectiopr : S — P! to Bgs,n, we have a double covering
Prigg, : Bgn — PL. Since the genus g is g — 4, there are2g — 6 distinct branch points of
pr|gs,. Considerpro 1 @ X1 — P. Then this is a conic bundle witty — 6 reducible conics
over the fibers through the branch pointsofs, . Let{E;", E;~ }fi{a be irreducible components
of these reducible conics such thato 1(E;") = pro mi(E;"). Itis easy to see that each cuiié
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is a(—1)-curve, hence for each< i < 29— 6, we can contract one &*’s and obtain a smooth
rational ruled surfacey. O

For simplicity, we also denote the total transforms of a minimal sedioa fiber/” by the
birational morphisnm o &, : X — Xp,110 by the same letters. Then I§) is isomorphic to the
free module

29—6 16
NS(X) ~ZA®ZI & P (ZE) o P(Z24).
i=1 i=1

Moreover from Corollary 4.10, Lemma 6.4 af#l12), in NS(X), we have the relation:

29—6 16
F=4A+@d+g-1)r-25 E-Y &. (6.3)
2,57 2%

SinceF.& =1 (i =1,...,16), the rational curveg; become sections af, and we takefis as
the zero sectiofO). Thenéig and F generate the trivial sublatti®g 7 C NS(X).

PROPOSITIONG.5. For afibration of typg16;g;n), g > 6, the lattice ly¢, n~ is a positive-
definite odd unimodular lattice of rar}g + 10 whose Dynkin diagram is given by FiguBe3in
the case is even and Figuré.4in the casey is odd. In particular e, ™ is independent on d.
Here the notation is the same as in Proposita

2 1 1 2 3 15
OG-
I\
3 4 5

2-6 2-5
Figure 6.3.
3 2 3 4 15
X o
Oi:t (22223
1 2 4 5 29—6 245 1
Figure 6.4.

PROOF. Let us keep the notation as above. In particlfas given by (6.3) andO) = &36.
Take the following elements fromleyﬁnL:

He=Ec2—Ec1 (k=4,5,...,29-5),
JA = Ezg_6—£1+(n—l)£2—nF—n(O),
Hh=b1— 6 (k=2,3,...,15).

Moreover takeH;, Hy, H3 according to the following rule:
(i) The casex = (2d—g+3—3n)/4c Z:
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Hi=A+al —E;+3nF+3n(0),
Hz = E1 - B,
H:=I —-E;—Ex.

(i) ThecaseB =(2d—g+1—3n)/4e€ Z:

Hi=A+ Bl +3nF+3n(0),
Hy=T —E;—Ep,
Hs=E; — Eo.

Here the numbers attached to elements correspond to those in Figure 6.3 or Figure 6.4 according
to the parity ofg. Therefore the matrix representing the base change ftani,Eq, ..., Ez, s,
&1,...,616) 101 (H1—3n(0) —3nF,Hy, ..., Ha, 5,541 +n(O) + nF, 53, ..., #is,F, (O)) is given

by Figure 6.5 in the case (i). In the case (ii), changing the second and third rows, we have the
matrix similar to the one in Figure 6.5 which is triangular modulo off the row corresponding to

F. If g is even, we have

é15=—F —(0)+4(H1 —3(0) —3F) + (29 + 1)H2+ (29 — 1)H3
29-5 14
+ > (49+6—2k)Hc+ 141+ (0)+F)+ 5 (15— k)7,
k=4 k=2
and, ifg is odd, we have

615 =F +(0) —4H1 — (29 — 2)H2 — (29 — 4)H3

29—5 15
= 3 (4~ 28 =Tt 5 (17— ).
K=4 K=

So{Hz,...,Hy, 5,74, ..., s} is a basis fok 164 .

1 a 0 0 0 O
0 0 1 -1 0 O
0 1 -1 -1 0 O O
0 0 0 1 -1 0
0 0 0 0 1 -1

1 -1 0 O
0O 1 -1n-1 0

0 1 -1 0
0 O 1 -

0 O 1 -1 0

4 2d+g-5 -2 -2 -2 -2 .. -2 -1 .. .. -1 -1 -1
0 1

Figure 6.5.
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Then taking the minus sign on the pairing lofs , » into account, we can easily check that
the Gram matrix of.16, 01

(=HiHj)icij<or s | (—Hi-H)1cicay s1<i<15
(=) 1< j<15

(= Hj)1<i<151<j<24-5 \

is given by Figure 6.6 or Figure 6.7 accordinggas even or odd, and all other statements follow
from this.

g/2+410 0 -1 0 0 O 0]-3 0
0 2 0 -1 0 O 0
-1 0 2 -1 0 0 :
0 -1-12 -1 0 O
0 0 0 -1 2 -1
0 0 0 0 -1 2
: -1/ 0
0 -1 2|-1 0
-3 0 0 -1/3 -1 0
0 0|-1 2 -1
0 -1 2
0]
-1 2 -1
0 -1 2
Figure 6.6.
(g-1)/2 0 -1 0 0 O
0 2 0 -1 0 0
-1 0 2 -1 0 0
0 -1-1 2 -1 0 O
0 0 0 -1 2 -1
0 0 0 0 -1 2
. -1/0 0
-1 2|-1 0 O
0 -1/3 0 -1 0
0 0|0 2 -1 0 O
0|-1 -1 2 -1 0
0 0 -1 2 -1
O 0 0 -1 2
. -1 0
-1 2 -1
0 -1 2

Figure 6.7.
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