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Abstract. In [19] a method was presented, which constructs via loop group splittings all
harmonic maps into a compact symmetric space. The present paper generalizes this method to all
spaces5/K, whereG is an arbitrary Lie group (semisimple or not) aikds the fixpoint group of
some involution ofG. The method is illustrated by a number of examples.

1. Introduction.

In [19] a Weierstrass-type representation was introduced for harmonic inéesn Rie-
mannian surfacell to compact symmetric spacs= G/K, whereK is a closed subgroup of
G. The paper associates first with a harmonic miagM — N a frameF : M — G, such that the
canonical projectiont: G — N forms with ¢ andF a commutative diagram. Then, after choos-
ing conformal coordinates ol one decomposes the Maurer Cartan fa&fm'dF = a’ + a”,
wherea’ is of type (1,0) andr” of type (0,1).

Similar to [4] and [41], [19] introduces a parameter from St ¢ C. Then it turns out
that the integrability fora, is equivalent with the harmonicity of the map This permits to
integrate the Maurer Cartan equatibnldF = a,, whereF now depends o (“extended
frame”). The most crucial feature o] then is that one can spl everywhere intd- =H -F,
whereH is holomorphic inz (“holomorphic extended frame”) anfé, is holomorphic inA in
the open unit disk. Moreover, the Maurer Cartan fogm= H~*dH of H is a holomorphic
differential one-form. It is obvious that any of this form trivially satisfies the integrability
condition for the differential equation = H~1dH. We have thus replaced the Maurer-Cartan
form of the extended framE with its non-linear integrability condition withy, which satisfies
its integrability condition trivially. It is crucial to observe, that from one can reconstruct
the (associated family of the) original harmonic map. Namely: starting, conversely, from an
arbitary holomorphic one form one can obtain a harmonic mep: M — N as follows: first,
one integrates the ordinary differential equatiid = H -n, H(z=0) = |. Then one carries
out an lwasawa splittingd = F -V, and sees thdt is an extended frame for a harmonic map
¢ =F modK.

1.1.

Let g be a finite-dimensional real Lie algebra, satisfying the following conditions:

¢ There exists an involutive automorphismgofo € End(g) \ {Id}, 02 =Id;

e Ker(o—Id)nZ(g) = {0}, whereZ(g) = {& €g|[§,n] =0 forall n g} isthe center
of g.
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Theng admits the splitting
g=kaonp, (1.1.1)

wherek andp are the eigenspaces of
k = Ker(o —Id), p=Ker(o +Id). (1.1.2)
In the following we consider two connected Lie groups G, K closed inG, such that
Lie(K) =k C Lie(G) =g¢.

We assume as irB] and [4] that G admits a faithful linear continuous representation. Actually,
we assume that there exists some complex matrix g&uphe universal complexification &

in the sense 0fJ0, Section 17.5], which haG as a real form. The vector space, on whigh
acts linearly will be denoted by.

1.2.

In this paper we consider harmonic maps from non-compact simply connected, Riemann
surfaced to pseudo-Riemannian general symmetric sp&#4s. First we need to define the
notion of general symmetric space (see, e3h))[

We consider a connected matrix gro@po an automorphism of order two and denote

Fixo={ge€G|a(g) =4}

and by(Fix o) the connected component®ik o containing the identity. LetK be a subgroup
of G such thaiFix 0)p C K C Fix g, thenG/K is called a general symmetric space. Starting in
Section 1.3 we will assume in addition that we have a non-degenerate symmetric bilinear form
invariant byg.

Then we have @]) the semidirect produdt = H.M, whereH is a connected, reductive
subgroup andM is a connected, simply connected solvable subgroup. dfor our purposes it
will be important that the groups under consideration are invariant umdéf we would only
want a Levi factor to be invariant, then it would suffice to refer38][and for uniqueness ques-
tions also fi0]. However, we also want a reductive subgroup to be invariant undd@herefore
we prove:

THEOREM. There exists a choice of the subgrodthendM as above, such thatH = H
andoM = M.

PROOF. We writeG = SR, whereSis semisimple an® s the radical of. SinceLie(R)
is a maximal solvable ideal, it is easy to selde(R) = Lie(R). Thus we obtaimrR=R. By [30,
Theorem 18.4.3], and our assumptions we kiidow LM, whereL is maximal compact ifR and
abelian andM is simply connected. Analyzing the proof of loc.cit. it is easy to observeNhat
is preserved byr. We will show next that one can, if necessary, repladey some conjugate
maximal compact subgroup= hLh™1, such thaL is invariant undeio. For the proof we will
use mostly Lie algebras. To simplify notation we abbreviate Lie(S) andm = Lie(M) etc.
and recall the descending central serig8! = r andr(i+% = [r()) r()]. Moreover, sinces is
semisimple and leaves every) invariant, there are-invariant subspaced/j, j =0,1,...,n
such thaw, + W1 +...+Wh = r() and the sum is direct. First we note that
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oL=mLm?! forsomemeM, (1.2.1)

since maximal compact subgroups are conjugate to each other. Therefore fot evérye
have somé¢’ € L such thaiol = m'm~2. Applying o again we obtait = [g(m)m]l”[g(m)m] L.
Multiplying from the left by(1”)~! and observing tha¥l is normal inR, we conclude that=1",
and thato(m)m = ¢ commutes with every € L:

o(mm=ceC, (1.2.2)

where

C={reM;rl =Ir forall | eL}. (1.2.3)

Since the exponential magxp :m — M is a diffeomorphism, we can writer = exp(rh) etc.

Decomposingh relative to the subspacé¥; the idea of the proof is to replace iteratively

by some conjugate subgroiipsuch that the th” associated witi. and o has fewer and fewer

components. Altogether, we will finally obtain sorhe= M such thatl = hLh1 is invariant

undera, i.e. is so that for everlyc L there exists somk € L such thao (hlh—1) = hI’h~* holds.
Applying (1.2.1) we obtaio(h) - mI"'m=t.g(h~1) = hI’lh~2.

Therefore[h‘la(h)m]I”[h‘lo(h)m]*l =1". As above one derives from tHis=" and we obtain

(o(h))"thd=m, (1.2.4)

for somed € C. Taking logarithms and comparing the coefficient®\iwe obtain from (1.2.2)
and (1.2.4) the equations

o (o) + i = &g (1.2.5)
and
70(ﬁ0)+ﬁo+dAo:ﬁ"b. (1.2.6)

Next we note that every subspace invariant urmlelecomposes into its eigenspaces relative to
1 and—1. With the obvious notation we thus obtain from (1.2.5) and (1.2.6) the equations

6 = 2™ (2.2.7)
and
2ho” +do” = i, (1.2.8)
and
“ R 1, .
do™ = g™ = ECOHJ =& (1.2.9)

Note thatm in equation (1.2.1) is only unique up to multiplication with element€ofThus,

in view of (1.2.7) we would like to replace with m" = m/,/c. To make this precise, we write
c = exp(€) and noteAd(l)€ = €. Thus “/c"=exp(€/2) = d is still in C, and theA, component
of the logarithm ofrY = md~1 is in the—1—eigenspace ofi. This means, that we can assume
w.r.g. o =i, Now we sets = exp(iy, //2) andL* = sLs'L. Thena(s) =s* and for
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I* € L* we obtaina(1¥) = o(sls 1) = s~ tmI'm1s = mé(sl's )mé ", wherent = s~tms 1. We

note the crucial observation that the logarithmméfdoes not have ary component anymore.
Repeating the procedure far, L andn¥ we obtain some new maximal compact subgroup
and some newr?”, the logarithm of which does not contain akyi-component nor any\p-
component. Repeating this procedure finally yields a maximal compact subigrouich is
invariant undeo. It now remains to prove that one can find not only some semisimple subgroup
of G, which is invariant undeo, but one, which also commutes wigh= L. But this follows
precisely from the first part of the proof @(, Theorem 18.4.2]. O

1.3.

LetF : D — G be a smooth mafD) =D orC; D' = {zc C| | z|< 1}.

In view of (1.1.1), the Maurer-Cartan form associatedrtoa = F~*dF € A'(D,g), de-
composes canonically

a = ag+ap e AY(D,k)2AND, p). (1.3.1)

Denoting byz, zthe complex coordinates B  R? = C, we haveTD = TLOD @ TOVD, and
d= 0+ 4. Thenayp splits accordingly,

ap=ap+ap e AMO(D, p%) @A@Y (D, p%). (1.3.2)
We consider the symmetric bracket AA(D,g%)
laAB] = ([a",B"]—[a",B])dzAdz,

fora = a’dz+a”"dz, B = B'dz+ B"dze AY(D,g%) = ALO(D,g%) o AOD(D,¢%), g€ c gl (V).
Composing- with the projection of the principaK-bundle(G, m,N = G/K), one obtains
the mappingp which closes the diagram

G
T
D —N =G/K.
s /

F

We can characterize the harmonicity of the mafthe quality of being minimizer of the
energy map (1.5.3)2P], [23], [42], [19]), in terms of the Maurer-Cartan form associated to
its lift F, as follows

THEOREM. Assumés/K carries a non-degenerate symmetric bilinear form invariant by
G. Then the following statements are equivalent

a) The mapp associated withr is harmonic.

b) The forma satisfies the integrability and harmonicity equations

2

_ (1.3.3)
dap+[ag A ap] =0.

1
{dak+[ak/\ak] = —[a;,/\ag]

c) The forms ax € AYD,k) and A~tap + Aap € AY(D,p) N (AY(D,p°) &
AOD(D, p®)) satisfy the equationd.3.3) forall A e S,
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d) The “loopified form”
ay =A"tap+ax+Aay e AY(D,g) (1.3.4)

is integrable for allA € S, i.e., it satisfies for every € S' the integrability condition
da, +%[a,\ Aay]=0. (1.3.5)

PROOF. b) < c). Straightforward, replacing in (1.3.8}, with A *1a§, andag with Aap,
whereA € S
c) < d) The relation (1.3.5) rewrites as

AHoap+ [ap Ao} +A{0ap + [ap Ao}

+{day + [ap A ag]+%[ak/\ ayl} =0, (1.3.6)
forall A € St. Then the three braces vanish separately, provided the last equation of (1.3.3), its
conjugate and the first equation of (1.3.3) vanish, whence the whole system (1.3.3) vanishes.
On the other hand, insertirig™t, A and 1 respectively into the equations (1.3.3) and adding,
we obtain (1.3.6), whence (1.3.5).
a) < b). Sinceo is an involution, one obtains by a direct computation that its eigenspaces
satisfy the relations

kK Ck, [k,p]Cp, [p,p]Ck (1.3.7)
Then the integrability condition for a 1-forim,
da+%[a/\a] =0 (1.3.8)

rewrites, using (1.3.7) and (1.3.1),

{dak+;{[ak/\ak]+[ap/\ap]}:0 (1.3.9)

dap + [ax A ap] = 0.

Thus, ifF andg are as in the discussion preceding the theorem, dherF ~1dF satisfies (1.3.8),
whence (1.3.9). Conversely, sinBeis simply connected and open, amysatisfying (1.3.9), i.e.
satisfying (1.3.8), integrates to &nvia a = F~1dF.

The harmonicity ofp = F modK is then equivalent tar satisfying the following equation
(1.3.10), which we prove independently in Proposition 1.4 below:

daj+ [ax A ap) =0. (1.3.10)

Assuming this, it is easy to observe that the system (1.3.3) is equivalent to the system (1.3.8),
(1.3.10).

Indeed, using (1.3.2), the first equation in (1.3.9) becomes exactly the first one in (1.3.3).
Also, usingc?oqJ = dorg =0, the second equation in (1.3.9) rewrites

(Qap+[axAap]) + (ap + [akAap]) =0,
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where the two parentheses are the complex conjugate of each other. Hence, this equation is just
a consequence of (1.3.10), which is exactly the second equation of (1.3.3). O

1.4.
The basic result, used in the proof of Theorem 1.3, which characterizes the harmonicity of
the mappingp is provided by the following

PrRoOPOSITION Assumeés/K carries a non-degenerate symmetric bilinear form invariant
by G. The mapp : D — G/K induced byF : D — G is harmonic if and only if the associated
Maurer-Cartan forma = F ~1dF satisfie1.3.10)

REMARK. This result is restricted to harmonic maps from 2-dimensional domains to gen-
eral symmetric spaces. We sketch its proof briefly throughout sections 1.4-1.7, following a
procedure similar to12], [ 7].

SKETCH OF PROOF. We describe first the (right) Maurer-Cartan form of the homogeneous
spaceN = G/K and characterize its tangent bundle.

a) The tangent spaceN is characterized by the property that there exist a canonical iso-
morphism ofK-bundles

o : G xk (g/k) — T(G/K), (1.4.1)
given by

wo(9.6) = 2| lexpt (Adg &))4, (142)

where(g, &) € G xk g/k, andg = g modK.
b) Inthe case whe[k, p] C p, which is always satisfied under our assumptions (1.3.7), we
have the isomorphism d¢f-bundles

P1:Gxk (g/k) — [Pl =G xk P,

given by ¢n(g,&) = (9,1(<)),

whereé = ¢ modk andrmp, : g — pis the projection associated to the decomposition (1.1.1). We
consider the map

Bo=roy :TN=[p],  Bo(X;) = (9, mp(£)),

whereX; € T;N, and wheré ¢ g is determined by the relation

X, = %LZO [expt (Adg &)]. 5 € TN. (1.4.3)

Then it is easy to verify thgg is an isomorphism dk-bundles, closing the diagram

™ P
%1\ S

GXKg/k

=Gxkp
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c) The bundlgp] = G xk pis a subbundle ofy] = G xk g, via [p]#[g}, which is induced

by the natural injection.
d) [g] can be canonically identified with the trivial bundiiex g, via the diffeomorphism

Wa:lgl = Nxg,  (9,&) = (9,Adg &) forall (9,¢) € [g].

g
e) As a consequencéN can be identified withp] C [g]%2 N x g, whence there exists the
canonical injective mapping

B:TN—>N><g, B:Lljzoioﬁo,DD
B(X;) = (9.Ad gp(§)) for all X; € TN,

whereé is determined by the relation (1.4.3).
f) The right Maurer-Cartan form of the homogeneous spéeeG/K is the mapping12,

p. 6]
B:TN—g, B=praoB,  B(X)=Adg mé forall X; € T;N

and represents a vector-valued 1-fofive AX(N,g), which is equivariant with respect to the
action ofG on TN (the left translation) and the action @fong (the adjoint action), i.eg* =
Adgof forall g€ G. One can verify that its pullback @ satisfies(rt*8), = Adg6,, where
61 = mpo 6, with 8 € A1(G,g) being the (left) Maurer-Cartan 1-form &,

8(Z,) =g.%(Z,), forall , cT,G.
g) The mapB’ = Bod¢ = ¢*B |;w0p Satisfies the relation

B' = AdF o). (1.4.4)

1.5.

Note that the generalization of the notion of harmonicity of a af® — N to a pseudo-
Riemannian manifoldN can be chosen in several ways. At one hand one can consider the vari-
ational problem 4, (2.1.2)] under compactness conditions. One obtadng4.1.7), (2.2.1)].
Assuming that the metric oN is induced from &-invariant form, then the equation obtained
from the variational problem is equivalent to the conditiqg) = 0, whereT is the tension of
the mapg

T(¢) = Try(vdo), (1.5.1)

where y is the pseudo-metric oN, and 57 is the connection on the bundle of forms
AL(D,¢~1TN), induced from the (trivial) Levi-Civita connection of the Riemannian flat
manifold D and the Levi-Civita connection{l\'7 of N.

As the manifoldD is of real dimension 2, the tensiar{¢) is a multiple of the induced
covariant derivative(qb*l%)(,9/,9274)*(0/02), and its vanishing represents the holomorphicity
condition for the sectiom. (d/dz) of the induced bundlép TN, pry, D), ([34], [12], [7]).
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Hence the harmonicity of the mapcan be rewritten in terms o%
N 7]
V 6.(0/07) P+ (dz) =0, (1.5.2)

or briefly &”d¢ = 0.

REMARK. In general, if% is not the Levi-Civita, but an arbitrarily given affine connec-
tion, then (1.5.1) characterizedfine harmonic map§28, Definition 2.1, p.407]) and (1.5.2)
characterizes’\%—harmonic maps. In our case, where the range of the harmonic map is a general
symmetric space with two-dimensional contractive domain, the two definitions mentioned just
above are equivalent. Moreover, for the Levi Civita connecl%'pnthe two definitions (1.5.1)
and (1.5.2) both provide the classical harmonic map® — N, i.e. the extremals of the energy
functional

E(¢) :/N Idé 2dvol,, (1.5.3)

whereN, C N is a compact subdomain df. Moreover,t(¢) = O is exactly the Euler-Lagrange

. . . . can N
equation of the energy functionBl(¢). Since on general symmetric spacgs= v/ (see 1.6-f
below), the%n-harmonic maps coincide with the (classical) harmonic maps, the minimizers of
(1.5.3) (P8, Proposition 2.3, p. 408]).

1.6.

On the general symmetric spale= G/K, the connection% has a specific form, which
permits the reformulation of (1.5.2) in terms of the Maurer-Cartan farassociated t& .

The following steps lead to an explicit expression f;'z;r

a) The left translation o provides by left shifts op a horizontal distribution, which is
right K-invariant and hence provides a connection onKhgrincipal bundle(G, T,N = G/K),
which induces on the associated bundi&\, i, N) = ([p], 71, N) a G-invariant canonical connec-

tion %n of the general symmetric spabk
K. Nomizu ([36]) has shown that angd(K)-invariant bilinear formy : mx m — minduces
via
y(n,&) =(vgn)e forall &,nem, (1.6.1)

whereT = d/dt |i—o (expt [AdgT]).g, for all T € p, a linear connectiony on ([p], ,N) =
(TN, m,N). In general, the torsion of such a connection 8([p. 405])

T, n)=ven—vné—[&,nl=v& . n)—yn, &) —m(é,n). (1.6.2)

In particular, fory = 0 in (1.6.1) one obtains exactlcya}n ([28, Proposition 1.4, p.404]), called
alsothe canonical affine connection of the second kind.of he torsion of< ' is given by

Te(£.n) = —1p([€.0]), forall & nelple=pcy.
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Note thatT =0« [p, p] C k.
b) The connection associated via (1.6.1) toAtkK)-invariant bilinear form

y(é&,n)= %Hp([é,n]), forall &,nep

is calledthe canonical affine connection of the first kind\bfUsing (1.6.2), it is easy to see that
this connection is torsionless. Moreover, By[[it coincides with the connecti0|{1\'7.
can. . . - . N .
c) If X/ is torsion-free, it coincides witk, if and only if

Yo(&,mp[n, 1)) = ya(mp[&,n], ) forall &, n,uc(ple=pCy.

This relation is obviously fulfilled if p, p] C k.
d) The two connection%%n and % are described by the relations

can

B(V/xY)=Xp(Y) = [B(X),B(Y)], (1.6.3)

BYY)=X5(Y) ~ [BOO BV + 5 7H([BO0, BV)]): (16.4

for all X,Y € I (TN), whereftis the projectiont: N x g — N xy p.

e) The canonical connectio°67n coincides with the connectiofi? = Thp © 5/ if and only if
[p, p] C k, where<y = dis the trivial connection flat differentiation).

f) As aconsequence, in view of part c¢), if the relations (1.3.7) are satisfied,{\fhen%.
Hence, in this case, the Levi-Civita connecti&n on N is given by the relatioig o % = Tpo
</ o B, which is expressed explicitly by the equation

Bo(Ux(Y)) = T (Tx (B(Y))) forall X,Y € TN, (1.6.5)

whererzy, is the canonical projection along the fibergkif= G xk k, induced orN x g via
Mg N x g — [p], Tp(9,&) = (9,ép) forall (g,&) € Nxg, &p = 1 Adg(&).
1.7.

Combining the previous results with (1.3.7), we insée: 9 /9z, andY = d/dzinto (1.6.5),
and obtain the harmonicity condition (1.5.2) rewritten in the form:

d ~ G,
st ()0 o (9 50(3)) ) o

SettingB’ = Bod¢ = B¢.(d/02), this is equivalent with
Ttp| (9B") =0.

Then, using (1.4.4), the condition above becomes succesively

rqp}(gAdFa;,) =0 & my (5(Fa;)F‘l)) =0&
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Mg (FOapF 1+ 0F AapF 1 —FapAF LF Y9FF 1) =0
Mg {F(dap+[FL1OF Aap)F 1} =0
Mg o AdF (da+ [F19F Aap)) =0 &
mpAdF ~*AdF (Qap + [(ap + o) Adh]) = 0=
dap+ [axAap] = 0. (1.7.1)
Thus we obtain exactly (1.3.10), whence the conclusion in Proposition 1.4.
REMARK. In (1.7.1) we used besides the splittings
ax = ap+ap e AY(D,k) = A9(D k) o ACY(D, k),
F19F = ay +ap e A®Y(D,g) = ACY(D,k) A (D, p),

also the relatiorfoy A ap] = 0 and [ap A ap € A2(D,Ker(mp)), which is a consequence of
(1.3.7). The result above was obtained28,[Proposition 3.1, p. 409] and leads to

5"0¢ =05 G"9p =0 "0 = 0= daj+ [akAap] =0.

2. Loop groups.

In the last chapter, we have seen that introducing a paraetes! reduces the number of
equations to one and thus changes the discussion of harmonic maps to the investigation of PDE’s
with parameter. In this chapter we will first discuss loop groups and then apply the results to
harmonic maps.

2.1.
As before we consider a connected real Lie gr@ipVe assume thds is faithfully repre-
sented by matrices i (n,R). On.#(n,C) we consider the norm

|A = mjax(i;A@j |> : (2.1.2)

Then
|AB| < [A[-|B| and|l| = 1. (2.1.2)

Next we consider the Wiener algebra

sz{f:81HC’f fiAX, |fk<oo}. (2.1.3)

This is a Banach algebra and so is

M) = {A S — .#(n,C) ‘ gAk)\k ;|Ak<oo}. (2.1.4)
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Similarly
Ng© ={a/ :S"— ¢ Cc.#(nC)|Aj € o/} (2.1.5)

is a Banach Lie algebra with closed subalgebras

/\+g°:{Ae/\g° A= %Ak/\'ﬁAk:O ifk<o} (2.1.6)
ke
/\—gC{Ae/\gC A= %Ak/\k,Ak:O ifk>0}. (2.1.7)
ke
Clearly,
ATgC+ A€ =Ag" (2.1.8)
ATgCnA—¢C =4C. (2.1.9)

On the group level one can proceed similarly.

For this we note, that according t8(, Chapter VII], one can always define f@ra “univer-
sal complexification'GC. In this paper, we will assume th&C has a faithful linear representa-
tion, extending the faithful representation®f

Next, by a classical result for the Wiener algebra we have

Ae .#(n o) is invertibles detA#OorallA € S, (2.1.10)
We can thus define
GL(n, &) ={Ac.#(n )| detA#0 forall A c S'}. (2.1.11)

Then we have

GL(n, <) is a Banach Lie group with Lie algebre (n, «). (2.1.12)

Analogously to the Lie algebra level we set

AGC={AeGL(n,o7) | A(A) € G forall A e S', (2.1.13)

ATGC= {AeGL(n,C) ‘A: %/\kAk, Ac=0 if k<0} (2.1.14)
ke

A~ GE= {AeGL(mC) ‘ A= %/\kAk, A =0 if k>0}. (2.1.15)
ke

ThenAGE is a Banach Lie subgroup @L(n,.7) with Lie algebraAg®. Similarly, A*GC and
A~ GE are Banach Lie subgroups AfG® with Lie algebras\ ¢ andA —¢€ respectively.

In view of (1.3.4), we can expect that our discussion will require restrictions with regard to
the distribution of powers of in the coefficients of the matrices occurring in our investigation.
It seems that this restriction is exactly incorporated by using twisted algebras. For this we extend
the automorphisno of G to AG®:

(GA)(A) = O (A(=1)). (2.1.16)
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Theno is an automorphism oA G® and we set
AGE = {Ac AG® | cA=A}. (2.1.17)
ThenAGS is a Banach Lie group. On the Lie algebra level we obtain
AgS = {AeAg® | doA=A}. (2.1.18)
Expanding heré\ = 3 .2AA\ X we see
AcAgS <  doAgx=Ax and doAg1 = —Aoki1. (2.1.19)

Thus, settindk = {A € g;doA = A} andp = {A € g;doA = —A}, we see that for every
A e AgS we haveAy € k andAg,1 € p.
Analogously one defines the Banach Lie groAﬁ‘ng with associated Lie algebrasigg.

NOTE. An extended framing : D x S — Gis analyticinA € C* and therefor& (z,z -) €
AGS. SinceF even takes values i@ for all z A € S', itis natural to consider also the Banach
Lie group

AGy = {AcAGS |AA) €G forall A € S'Y; (2.1.20)

the corresponding Lie algebra will be denoted/hyy,;.
For our purposes two results are of importance

THEOREM (Birkhoff decomposition). EveryA € AGS can be written in the form
A=A_WA,,

whereA_ € A~GS, A, € ATG§ andW is a homomorphism @ into a maximal toral subgroup
of GC.

A proof of this result can be found ir8] Section 4.5]. The second important result is

THEOREM (lwasawa decompositiofi3, Theorem 6.5, p. 604 Every A € AG% can be
written in the form

A=L-W-B,,

wherel € AG, andB, € A*GS andW is as in[3].

2.2. Factorization of generalized loop groups.

In many instances it turns out that the choicé af S' is too narrow to facilitate discussion
of geometric objects sufficiently well. One therefore uses sometimes generalized loop groups
and the corresponding generalized Birkhoff and Iwasawa decompositions. The necessity for this
was already recognized i2]] and later generalized irlp]. We present here briefly the main
features of this generalization.

For G andK as above we have the (classical, finite-dimensional) lwasawa decompositions

K€ =K-B, Gt =GB,
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whereB is a Borel subgroup dk€ andB is a Borel subgroup oB°.
We fix € € (0,1) and set

—{zeCl|z7l =g} cCU{=} =C,

C® =C.UCy e,

E:{A eC||A| e <si_’>} | =C\E.

Then it is natural to consider the following loop groups and loop algebras (seel€lp., [

NG ={g:C* — GC| g(A) = g(1/A),A €C*}
NEG = {g € A?G| g extends holomorphically t&}

/\fBG = {g € N¥G] g extends holomorphically tbandg(0) € I§}

NEGg ={g € \*G| 0g(A) =g(—A)}
NEGg = {g € A*Gg| g extends holomorphically t&}

/\fEG(, = {g € A¥G,| g extends holomorphically tbandg(0) € B}

€G) =Afg={&:CE —¢C| E(A) =&(1/A), forall A €C*}
Lie(AfGy) = Afgy = {E € A¥g| 0E(A) = E(-A)}

Lie(AEGeo) = AEg, = {& € A¥g,| & extends holomorphically t&}

NgGo) = AEBgU {& € A%g,]| & extends holomorphically tbandZ (0) € b},

whereb = Lie(B). With these notations we have the lwasawa loop group decomposifipn ([
[10)) A2G ~ AEG-Af5G and 28, Corollary 5.4, p. 415])

AEGg ~ AEGq - AfCo, (2.2.1)

where the intersection of the right factors{it. Moreover, one can show that in (2.2.1) one can
replace the right side, up to a real analytic diffeomorphism, by the product of the corresponding
groups. The symbol~” expresses the fact that the right side is not necessarily equal to the left
side, but does contain at least an open neighbourhood of the identity element. A characterization
of when the right side is open and dense would be of great interest.

2.3. Actions of loop groups.
From (2.2.1) we obtain the following group actior,[[13], [21], [28]:
a) The group\/;Go acts oG, via

gth=(g-h)e,
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whereg € Ae GJ andh € A£G, and the right side is the first factor gf hin its decomposition
(2.2.1). Note that this group action is not globally defined, since in (2.2.1) there is (in general)
no equality.

b) If F is an extended framing thene Af5Go acts orF via

(94F)(p) = gi(F(p)), wherep € D. (2.3.1)

It is easy to see P8, Proposition 6.1, p. 417]) thatF is again an extended framing. However,
due to the non-global nature of the group action used, the fragiiignay have singularities at
pointsp, whereF does not have any singularity.

c) The action (2.3.1) induces canonically an action’\égGg on AEGy /K ([28]). This

extends via (2.3.1) to an action AféGU on all St-families of harmonic maps.

3. Generalized Weierstrass representation of general harmonic maps.

3.1

Following the procedure ofif] we want to construct a “holomorphic potential” and a “nor-
malized potential” (called originally “meromorphic potential” ihg]) for each harmonic map.
First we note that the proof oflp, Appendix] generalizes immediately to our setting and yields

THEOREM. LetF =F(zZzA) be the extended frame of some harmonic D, A € S.
Then there exists sovg : D — A TGS such that

Cz)) =FZZAV:(2Z)) (3.1.1)

is holomorphic orD \ T;, whereT; is the discrete subset &, and the generalized lwasawa
decomposition needs some middle term.

For the rest of this paper wermalize the extended framekharmonic maps so that they satisfy
F(20,20,A) = | at some fixed base poiag € D.

DEFINITION. Any mapC as in (3.1.1) will be called bolomorphic extended fram&lore-
over, the Maurer-Cartan form of any holomorphic extended frame

n=c-dc (3.1.2)

will be called aholomorphic potentialor the harmonic mag (or for the extended frame). As
usual one verifies

LEMMA. Every holomorphic potentiaj is of the form
Nn=A"N_1+A%0+A 1 +... (3.1.3)
wheren; is a holomorphiqg(1,0)-form onD.

We note that the integrability condition is trivially satisfied for any holomorghi®)-form on
D. Thus, we have

PROPOSITION Assumey is a holomorphiq(1,0)-form onD with values inAg$S which is
of the form(3.1.3) Then the equation
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CcldC=n,C(z,A) =1 (3.1.4)
is globally solvable oD. Moreover, decomposing via lwasawa splitting
C=FV,; FeAGyV, eA*GE, (3.1.5)
we obtain an extended frame of some harmonic fhaP\S— G/K, where
S={zeD|C(z - ) ¢AGy-ATGE}.

REMARK. SinceC(z,A) =1 forall A € S, we know thatD\S does contain an open
neighbourhood ofy.

3.2.
As in [19] the results of Section 3.1 are used to construct normalized potentials. First we
note

LEMMA. We retain the notations and the assumptions of The@&dmif C = C_C, with
C_eAGE C, e A*GE andC_ =1+ ¢(A~1) on some open subsetc D\S, thenC_ is
holomorphic orJ and

cldC. =A"1& 1dz (3.2.1)
for some holomorphic mag_1 onU.

PrROOF. By our assumption€ is a holomorphic map fromd to the open se,t'\‘Gg«
ATGE. Since the splitting map

A"GE-ATGE - A~GE x ATGS

is also complex analytic, the mafs andC, are holomorphic. Therefor@'dC_ is a holo-
morphic1-form. The usual argument shows that it is of the foxmt&_,dz. The main question
is for whichz € D\Sone can spli€ = C_C; analytically, and how the (additional) singular set
Slooks like; letU = (D\S)\S To address this issue we follow the argumentif [ O

THEOREM. We retain the notations and the assumptions of The@&dmThen for every
holomorphic extended fran@: D\S— AGg there is a holomorphic functiorp, s : D\S—C
suchC can be splitC = C_C; analytically exactly on the open set on whighs # 0. ThusSis
discrete inD\S.

Moreover, considered as functions BAS, C_ andC;. are meromorphic. In particular, the
normalized potentiaf = C~1dC_ is a meromorphic differentigl1, 0)- form onD\S

PrRoOOF.  Following the analogous argument df9 we consider a representation of
AGL(n, ) in the group of automorphisms of an infinite dimensional Grassmannian like mani-
fold Gr. Considering the dual determinant bundle and a holomorphic (highest weight) section
we sett 4, (z) = T(H(2) po), wherepg denotes the canonical base poinGifrelative tor. Then
H splits analytically exactly at all points wheret ,(z) # 0. Pulling back the line bundldet
on Gr to ./ via .# — Gr, z— H(z)po, we obtain a holomorphic line bundlg on .# with
holomorphic sectiorr. induced fromr , as defined above. Sinc# is Stein,L* is trivial, and
T4 can be considered as a complex valued functionZon O
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DEFINITION. The differential(1, 0)-form
&=cldc_ (3.2.2)

is calledthe normalized potentidbr the harmonic mag (or theextended frame associated to

¢).

REMARK. We reiterate that every normalized potenfais of the form& = A~1&_;dz
whereé_1 is meromorphic on some open subdet (D\S)\S.

3.3.

The main feature of the procedure developedlf s that every harmonic map can be
constructed from some holomorphic or normalized potential. We recall that the integrability
condition is trivially satisfied for the potentials under consideration.

THEOREMA. Letn =A"1n_1+A%)0+An1+... be a holomorphid1,0)-form with
values inp® defined on a simply connected suhsétc C. LetC be the solution onZ to the
ODEdC=Cn, C(z,A) = for all A € S. ThenC is the extended holomorphic frame of some
harmonic mapp : Z\T — G/K. More precisely, splitting = FV,. on some open subséf\T,
we obtain the extended frarfreof the harmonic mag : £\T — G/K, given byp = F modK.

PROOF. ltis easy to see that the Maurer-Cartan fornidfias the form (1.3.4). The rest
is straightforward. a

THEOREMB. Let& = A~1& 1dz be a meromorphig1,0)-form on L c C and assume
that there exists a globally meromorphic solutidrto the ODEdC = C&, C(z,A) = | for all
A € St ThenC is the extended holomorphic frame of some harmonic hap\T — G/K.
More precisely, splitting = FV, on some open subslé\'f, we obtain the extended frarfeof
the harmonic mag : I:\'f — G/K, given byp = F modK.

PROOF.  First we remove the points froih whereC has a pole. Then proceed as in the
proof of Theorem A. O

Finally, we would like to address the question to what extent the harmonic maps are uniquely
determined by the associated analytical potentials. To avoid lengthy technical assumptions we
state only a local result:

THEOREMC. Let¢ : D — G/K be harmonic and fix a base poinf € D. Then the nor-
malized potentia associated witlp is holomorphic in a neighborhood af and it is uniquely
determined by. Moreover, given a normalized potenti&iwhich is holomorphic neazy, then
Theorem B constructs a unique associated family of harmonic maps defined in some neighbor-
hood ofz,.

PROOF.  Similar to [19]. O

REMARK. Theorem C above shows that harmonic maps and normalized potentials are
essentially in a 1-1 relation.
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4. Finite type harmonic maps.

4.1.

Among the harmonic maps investigated in the literature tlbsmite typeplay a particu-
larly prominent role. We follow here primarily the approach df]} [10].

Ford € 2N + 1 we set

d
Ag = { S &A"€Ag,
n=—d

éa # 0}. (4.1.1)

Note, if & € Aq, then&y_; € K, sinced is odd. DecomposingC in the formk® = n+h+n
with b = h+n being a Borel subalgebra, we can project aryk® ontob (see [L1, (2.5)])

1
r(r) = rn+§rh. (4.1.2)
Using this notation we obtain

THEOREM. Foreachd € 2N +1andé, € Ay, there exists an open ball of O € R? where

% e g i) E@) =& @13)

is integrable, for = zg}d &nA". Moreover, in this case, thég-valuedl-form given by
a=(A"E+r(éa 1))dz+ (A& q+1(&-1))dz (4.1.4)
satisfies the Maurer-Cartan equatiofts 3.8) In addition, the extended franftedefined by
FldF=a, F(z,A) =1
onU induces the harmonic map=F modK onU.

PROOF. The proof can be taken almost verbatim frofrl,[ Chapter 2, Theorem 2.5].
However, instead of the Killing form we take the non-degenerate invariant bilinearfavhich
we have assumed to exist. At this point we also need to restrict to operbaitsundO, since
the argument for the completeness givenliti [doesn’t apply in our case. O

DEFINITION. Harmonic maps obtained by this construction outlined in the last Theorem
will be calledof finite type

We will see in the next section that harmonic maps of finite type have particularly simple holo-
morphic potentials.

4.2.
Consider the potential

n=A%"1¢dz (4.2.1)

whereé, € Ag.
Then the holomorphic extended fra@elefined bydC =Cn, C(2,A) =1, is of the form

C(z,A) =expA971E,). (4.2.2)
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Consider the Iwasawa splitting (locally arouny)
C=FV,. (4.2.3)

For the purposes of this section we will use the freedom in choosing the coeffigienyt/,. at
A% and requird/y € B, whereK® = KB is the (classical) Iwasawa decompositiorkd. At any
rate, by the general theoRy defines an associate family of harmonic maps.

DEFINITION. Maps obtained from potentials of the form (4.2.1) are calie8ymes finite
type

The main result of this section is

THEOREM. a) Every map of finite type is of Symes finite type.
b) Every map of Symes finite type is of finite type.

PROOF. a) Letp: D — G/K be of finite type and, as in the last Theorem. LE&tdenote
the extended framing a@p. On the other hand, by the arguments at the beginning of this section,
and starting frorm = A9-1£,dz using (4.2.2) and (4.2.3) we obtain some frafélhen

E=F15F c Ay, (4.2.4)

which follows fromé = F1&,F =V, £,V and the fact thaf, is in Aq.
It is straightforward to verify

0,8 = [E,F10F], &(z,))=E.. (4.2.5)
Next we use the fact that under our assumptions we have
n.dz= 291 dz=cdc=dcc?. (4.2.6)
Inserting the unique decomposition (4.2.3) into the right side yields
n.dz=dFF 1+ Fav,V 1F 1 (4.2.7)
from which we derive
Adz=A%4"1Edz=F1dF —dV,V L. (4.2.8)

Therefore,a = F~1dF is the projection offdz along /\+ggc. In particular, we obtain
A7 4dz=a’p=A"1&_g andfodz= & g 1dz= ay — (dV,V; D)o, whenceny = (§_q1d2)x,
the projection ofé_dez ontok alongLieB. But it is straightforward to verify (see e.g2(,
Section 2.3]) that

(& g12d2k = (& gr1)dz+r (¢ qs1)dz (4.2.9)
Hence
F2dF = (A~ g+ (& g1)dz+ (A &g +T(Egi1))dZ (4.2.10)

and we havef(O) =¢&,.. The unlqueness of the solution with values/ig to the differential
equation (4.1.3) now shows = & andF ~1dF = F~1dF. ThusF = AF with some matrixA
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independent of. Evaluating at the base poinyieldsA = I. This shows that the harmonic map
(of Symes finite type) derived from = A9-1&, coincides with the given associated harmonic
map of finite type derived in 4.1.

b) This was actually part of the argument in the proof of a). O

5. The Lie group case.

5.1.
As an application of the theory presented in the paper we would like to consider harmonic
maps into Lie groups, which were discussed in a somewhat different setting via loop groups in

o I[:]t.he context of this paper we consider a real Lie gr@ugs a symmetric space
G~ (GxG)/A, (5.1.1)
where
A={(g9,9)|g € G}. (5.1.2)
The canonical projectiort is given by
m:GxG— G, (g,h) — g th. (5.1.3)

Thus our approach requires to consider the loop group with valués inG)© = G€ x G€.
Similar to [21] we set

A =GxG (5.1.4)
and
N #C = AGE x AGE. (5.1.5)
Analogously we set
AF =NAGxAG. (5.1.6)

For our approach we also need some graup#C. It is natural to consider pairg(A),h(A))
of functionsA € St, which have holomorphic extensions to the interior of the unit disk

AT T = ATGE x ATGE, (5.1.7)
and analogously

A~ #C =A"GEx A GE. (5.1.8)
Finally, we mention that the involutioo(f,g) = (g, f) of AJ# has the fixpoint grougl and
thus defines the symmetric spa@e Therefore, by our theory, we need to twist#’C by o and

obtain the twisted groups8.#$, A*.#S andA 7.
Note that for(f,g) € A.#C the twisting condition is

f(A) =g(=A). (5.1.9)

While this makes the second component in our group basically superfluous, we will nevertheless
continue to useé\ %g since we want to illustrate the general theory with this example.
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5.2.
The rest of this example follows closel{4, Section 9]. We consider a harmonic map
¢ : D — Gand lift it to an extended framing

F:D—-GxG,F=(e¢). (5.2.1)
For the Maurer-Cartan form we obtain
& =F 1dF = (0,¢ 1d¢). (5.2.2)

Abbreviatinga = ¢ ~1d¢ we need to decomposge= (0,a) in the formé = G + &p, wherek,
p C h=g x g are defined by:

k=Lie(A)={(AA) |Acg}, (5.2.3)

p={(A,—A) |Acg}. (5.2.4)
Hence

&k:%(oua), &p:%(—ma). (5.2.5)

Next we need to introduce the loop paramé«teDecomposingx;,Jr ag = ap into the(1,0)-part
ap and the(0,1)-partag we define

) =A"tap+ G+ Adp, (5.2.6)
which yields by a straightforward computation

~ 1 1 1 1
&, = (2(1—)\1)a;,+ 5(1—/\)01;;, é(l+/\*1)a;,+ 2(1+)\)ag>. (5.2.7)

At this point it is useful to recall g, Proposition 4.2])

THEOREM. A smooth mag : D — Gis harmonic if and only if thd-form

1 1
ay, = é(1+)r1)or;,+§(1+/\)a;; (5.2.8)

is integrable for allA € St.

ReEMARK. 1. ForG=U(n) this is a classical result (see e.41]).
2. The Theorem also holds, of course, if one replacéy —A. Thus (5.2.8) is equivalent
with &, = (a_,,a,) being integrable.

Sinceaq, is integrable, we can solve
FldF =a,. (5.2.9)

For G = U (n) this is Uhlenbeck’s “extended framing”. In our setting, an extended framing
associated witli, is given by

F(2,ZA) = (F(zZ-A),F(zZA)). (5.2.10)
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REMARK. Note that we usually normalize framings in a way, such that at some base point
z. ¢ Cwe havep(z.) =1 andF (z.,z.,A) =1, forall A € St. Then alsdF (z.,z.,—A) =1, for all
A € St. Butaglance at (5.2.7) shows thaz, z —1) =const., whenc€ (z,z,—1) = |. Since¢(2)
andF(z,z 1) satisfy the same differential equation with same initial conditipfz) = F(z,z, 1)
follows. Incidentally we have shown that the framifgs “based ap = —1",i.e.,F(z,z —1)=1.
Since our extended framing is not based at any € S, we do not use “based loop groups”,
opposite to41] or [4].

As a consequence, in the discussion above, the associated fymd§ harmonic maps
containing¢. 1 is given by

$x(22) = F(zzA) modA =F (2,2 -A) " F(zZA). (5.2.11)

We would like to point out that Uhlenbeck’s extended frami(@, z A ) yields a harmonic map
into G only for A = +1, while our setting produces naturally 8hfamily of harmonic maps into
G.

5.3.

In Section 3.1 we have introduced holomorphic potentials and normalized potentials. The
general theory states that the extended framifige A7 can be multiplied by somé&’, €
A+#S such that

CK(Z’A) :y(Z,Z)\)qu»(Z,Z_,)\) (531)
is “holomorphic” inz. For the present discussion we thus obtain
(zA) = F (2074 (22)), (5.3.2)

where %1 denotes the first component @f. The second component is determined by (5.1.8).
Hence, all holomorphic potentials are of the form

= (n(zA)dzn(z—-A)dz), (5.3.3)
where
N=A"1n_1+A%0+An1+... (5.3.4)

where all the matrix functiongy are holomorphic ire. Analogously, normalized potentials are
of the form

E=(8,-9), (5.3.5)
& =A"1&_4, £ 1 meromorphic. (5.3.6)
5.4.
For the discussion of maps of finite type, we considdg™ i.e., those elements in

Lie(A %), which only involve finitely many powers of. Then these elements need to be
shifted byA9-1. In our setting we thus obtain

THEOREM. Harmonic mapsgp : D — G of finite type are exactly those maps which are
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obtained from potentials of the type
A=A p()dz (~)%tu(-A)d2) = A% Y(u(A), u(~A))dz, (5.4.1)

wherepy € Ag, i.e., it =3 _g<j<qMjAl, d 0dd, pig # 0.

5.5.

Finally, we would like to mention some explicit examples. Comparihgt[2.1] to (5.2.8)
we see that our framing is of the form (5.2.10), wherE is the framing considered id]. In
view of (5.3.3) and (5.3.5) it thus suffices to consider one component. Therefore the potentials
used in this section can be read off directly from the potentials usef].im[particular

1. For the nilpotent group

- {(31)

one gets the potentidl = (A(A),A(—A)), whereA(A) = ((1—-A71)/2) < 8 g ) dzandais
a meromorphic function.
2. For the Heisenberg group of upper triangular unipotent matrices

ac R}, (5.5.1)

0 a b
G = 0 0 c a,bceR}, (5.5.2)
0 0O
0 d.a od,c—adb
the potential i€ = (A(A),A(—A)), whereA(A) = (1-A2"1/2)| 0 0 a;b dz
anda,b,c: D — Rare meromorphic functions. 0O O 0
3. For the special linear Lie group
a b
G = S2,R) = c d a,b,ccde R ad—bc=1, (5.5.3)

the potential i€ = ((1—A~1)/2,(1+A~1)/2)&dz, for & given in [4, (5.3.8)].
In all three cases one obtains the normalized potential in the sense of Section 3.2 by gauging
away the coefficient at©,

6. More examples.

6.1. CMC surfaces.

The immersions of constant mean curvature (CMC) surfaces can be characta@izeyd [
the harmonicity of the Gauss map: D — G/K = SQ(3)/SQ(2) = SU(2)/SU(1). HereG® =
SL(2,C) andK = SU(1) is the subgroup of diagonal elementsGn= SU(2). Thenormalized
potentialshave the form15, (3.2.1); Theorem 3.13]

_ 0 f
5=/\1<E/f O>dz, (6.1.1)
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wheref has only poles of even orderl§, Corollary 2.3]) and does not vanish identically. The
solution tog—'dg_ = & can be decomposed in the form (Iwasawa splitting)

gi(Z,/\) = F(Z7/\)gJ_rl(Z’)\)

and we can assume thiate A;SU(2) andg, € AFSL(2,C) are smooth ire. Then the Sym-

Bobenko formula (5, (1.1.4)], [L6, (2.2.11)]) provides the associated family of immersions,

which consists of CMC surfaces without branch poirits S' x D — su(2) = so(3) = R®.
Theholomorphic potentialef the form ([L9, Section 4])

n)\‘1< 01 )dz (6.1.2)
g O

with f andg holomorphic, provide CMC surfaces with umbilic points at the zergsasfd branch
points at the zeros dof. E.g., we have:

a) for f = 1,¢ = 0, the punctured sphef#\ {one poin};

b) for f = 1,9 =1, the right circular cylinder;

c) for f =1,9=cZ"(ce C*,m> 0), B. Smyth’s CMC surface with an umbilic of order
at the originz= 0 [17, Proposition 4.1]. This is nondegenerate onlyrfor= 0 and|c| # 1 ([17,
Proposition 4.4]).

d) forf=1g=(z—2z1)-...- (z— z), B. Smyth’'s CMC surface witim umbilic points at
Z, k=1,...,n.

Similarly, one can obtain surfaces with branch points; e.g, the potential

f/\_l<2 ZBZO )dz

yields a CMC surface with one branch pointzat z,.

6.2. Willmore surfaces.
The DPW method was applied for a description of the Willmore surfaces in terms of poten-
tials [26] by F. Helein. The Willmore surfaceSare the minimizers of the Willmore functional

W(S) = [Hado = [(a—ke)2do +4n(1—g)
where the variation is made within the set of surfacesSimmersed inR®, which are oriented
and without boundary. Moreovet denotes the mean curvatukg,andk; the principal curva-
tures,g the genus ando the area element &c .77

Willmore surfaces are characterized by the equatibint-2H (H? —K) = 0. The only CMC
Willmore surfaces ar&” and the minimal surfaces.

In the DPW approach one associates to a conformal Willmore immersion a fraRfe in
which encodes the tangent plane of the surface and the conformal Gaus2@dii]j. Outside
the umbilic set, this fram& : U c D — G = SQ(4,1) incorporates the conformal transform of
the surface. The immersion is Willmore if and only if the loopified Maurer-Cartan form (1.3.4) of
F is integrable; DPW works for (1) the noncompact subgrup SQ(3,1) C SO4,1), and (2)
for K = SQ(3) x SQ(1,1). ThusSis Willmore if (1) the induced map : U — G/K is harmonic,
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or respectively (2) iff is “roughly harmonic”, i.e. it provides a harmonic map byaright
gauge shift ofr. The second case has the peculiarity tdnatis not necessarily holomorphic;

still, this alternative is constructive and the meromorphic potentials can be explicitly described
[26, Section 4.2, Theorem 9, p. 38].

6.3. Minimal surfaces.

These, regarded as special cases of CMC surfaces, are characterized as well by the holo-
morphy of the Gauss map. The associated meromorphic potentials have the8&Mngrem
3.1,p.5]

5:/\1< 0 O)d; (6.3.1)
g O

a particular form of (6.1.2). Then the classical Weierstrass representation produces directly from
g and the coefficients of the extended framebtained fronC = FV,. the minimal surfacels,
Section 4].

6.4. The tangent group case.

Given a connected real Lie gropwith an involutiono, letK = (Fix 0)o C G. We set
G=TG, K =TK and consider the homogeneous spa¢k = TG/TK ~ T(G/K) [6]. We note
that forg = (0, 0. ¢), we haveK = (Fix 0)o C §. ThenG = TG~ G x g, whereg = Lie(G). Let
k = Lie(K) and sek = {(A,a) | A,ac k} ~ kx k. Letg = ka p be the Cartan decomposition
relative too andp = {(A,a) | Ajac k} ~ px p. Theng = k p is the induced decomposition
on the tangent group level. Consider the group operatio@ given by

(g,X) o (h,Y) = (gh,X +Ad,Y), where(g,X),(h,Y) e Gx g~ TG. (6.4.1)

Then the Lie bracket oM G ~ g x g reads

A a B b)\| ([AB [Ab-[B.a
(33)(0 )] (" *a®) ea

For a harmonic functiog : D — G/IZ, the corresponding liff : D — G induces a normalized
potential of the formf = A ~1&_,dz with £_1 : D — p® = pC x pC.

Conversely, letan§ = A ~1&_;dz with £_; : D — pC = p€ x pC be given. We can assume
that for this potential the differential equatid@ = C& has a meromorphic solutig: D — G
where€ is of the form& = A~1(£ £@)dzandC = (g, X), whence

[(a,A),(b,B)] =

C'dC= (g,X) 'd(g.X) = (g 'dg, (—AdyX + Ad,-1X")d2).
For the solutiorC = (g, X) to this differential equation we perform an lwasawa splitting

(9, X) = (gr, %) 0 (94, X4) €AG-ATGE,

which is equivalent to

9g=9r9+
X=X +Adng+.
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Note that the first equation is the usual Iwasawa splitting equationdof G© and yieldsy, and
g Rewriting the second equation we obtain

(Ady, )" IX = (Ad,, ) 1% + X4

Since the first summand is real, we can fiadandX; as follows: first, decompog@d,, )X =

Yr +Y,; second, seX, =Y, andX = X —Ad, X, ; theng,,g,, X, X, are the components of the
Iwasawa splitting ofg, X). By the general theory (Proposition 3.1, X;) € AGis the extended
framing of some harmonic map. In particular, the Maurer-Cartan foyra- A or’f, +ag+A ag of

(g;,%) is integrable. Moreover) = (g,, %) mod.# is an associate framing of a harmonic map
from D to T (G/K).

ExamMPLE.  For G = SU(2),0 = Ad g3 we obtain (see 15]): K = SU(1) =

{ : 291 ) zeC*\ = (Fix 0)o. ThenTG = SU(2) x su2), TK = SU(1) x su1) and
TG/TK=T(SU(2)/SU(1)) = TS. Our costruction then produces the harmonic map® —
TZ[2].
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