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Abstract. We give a method to determine Martin boundaries of product domains for elliptic
equations in skew product form via Widder type uniqueness theorems for parabolic equations. Itis
shown that the fiber of the Martin boundary at infinity of the base space degenerates into one point
if any nonnegative solution to the Dirichlet problem for a corresponding parabolic equation with
zero initial and boundary data is identically zero. We apply it in a unified way to several concrete
examples to explicitly determine Martin boundaries for them.

1. Introduction.

This paper is a continuation 064] and [65], and its aim is to explicitly determine Martin
boundaries for elliptic equations in skew product form via Widder type uniqueness theorems for
parabolic equations.

The Widder type uniqueness theorem for a parabolic equation asserts that its nonnegative
solution with zero initial (and boundary) value must be identically zero; while the Martin repre-
sentation theorem for an elliptic equation says that any positive solution of it is represented by an
integral of the Martin kernel with respect to a finite Borel measure on the Martin boundary. Dur-
ing the last few decades, Widder type and related uniqueness theorems have been investigated to
a satisfactory extent (cf.9[, [15]-[18], [21], [23], [25], [2€], [28], [32], [34], [42]-[44], [46],

[48], [57]-[61], [65], [69], [76], [78], [8]]), and there has been a significant progress in deter-
mining explicitly Martin boundaries in many important cases (8f-[7], [10]—[13], [20], [29]-

[31], [36], [38]-[40], [49]-[51]], [53]-[56], [63], [64], [6€], [72], [73]). Among others, Ishige

and Murata 44] showed that under a general and sharp condition, any nonnegative solution to
the Cauchy problem for a parabolic equation is determined uniquely by its initial value; while
Murata [64] constructed Martin boundaries for a wide class of elliptic equations in skew product
form.

The purpose of this paper is twofold: (1) to determine Martin boundaries for elliptic equa-
tions in skew product form via Widder type uniqueness theorems for parabolic equations on the
basis of general results on Martin boundaries giver6#;[and (2) to apply it, together with re-
sults given in 4] and [65], in a unified way to several concrete examples to explicitly determine
Martin boundaries for them. We are deeply motivated by concrete examples.

We consider positive solutions of an elliptic equation in skew product form

Lu= (L1 +WL)u=0 inD=D;xDy CM=M; x M. (1.1)
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HerelL; andWj are an elliptic operator and a positive measurable function on a Riemannian
manifold M1, respectivelyl, is an elliptic operator on a domaid, of a Riemannian manifold

M,, D1 andD = D; x D, are non-compact domains bk, and the product Riemannian manifold

M = M x My, respectively. We assume th@dt, D) is subcritical, i.e. there exists a minimal
positive Green function of on D. In order to determine explicitly the Martin boundady D

of D with respect td_, we study uniqueness of nonnegative solutions to the initial and boundary
value problem for a parabolic equation

(@ +W,L1)v=0 inDyx (0,0), (1.2)
v(x,00=0 onDy, (1.3)
v(%,t)=0 ondDj x (0,). (1.4)

(It is needless to say that when the bounddB of D1 in M; is empty, the condition (1.4)
is redundant, and the problem reduces to the initial value problem.) We shall show from the
uniqueness of nonnegative solutions that the fibed(fD1 x D2) at infinity of the base space
D; reduces into one point.

Now, in order to state our main results, we fix notations and recall several notions and facts.
Fori = 1or2, letM; be a connected separabledimensional smooth manifold with Riemannian
metric of clas<C?. With N = M; or My, TyN andT N denote the tangent spaceNatx € N and
the tangent bundle, respectively. We denoté&hd T,N) andEnd(T N) the set of endmorphisms
in TxN and the corresponding bundle, respectively. The inner produtibis denoted byX,Y),
whereX,Y e TN; and|X| = (X,X)¥2. The divergence and gradient with respect to the metric
onN are denoted bdiv andV, respectively. Let; be an elliptic differential operator av; of
the form

Lyu = —my div(mgA; Vu — muGCy) — (Bg, Vu) +Vau, (1.5)
wheremy is a positive measurable function dh such that
my andm{1 are bounded on any compact subseVief (1.6)

Aq is a symmetric measurable section lda of EndTM;j), B; andC; are measurable vector
fields onM4, andV; is a real-valued measurable function a. We assume thdt; is locally
uniformly elliptic onMj, i.e., for any compact sé&t in M; there exists a positive constahsuch
that

AEP < ((A)x€. &) <ATHER, xeK, (x&) e TMy 1.7)

Denote byv; the Riemannian measure dh, and putdi; = mdv;. Forl < p < oo, denote by

LP.(M1) = L{ .(M1,du1) the set of complex-valued functions bh locally p-th integrable with

respect talu;. We assume that

IB1|2, |C1|%, Vo € LP (M1,dpy), for somep > max<271>‘ (1.8)

loc
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Heren = n; + ny is the dimension oM = My x M. LetW; be a positive measurable function on
M3 such that

Wi, W, L e Lo (Mg, dpy ). (1.9)
Let L, be an elliptic differential operator on a domda C M, of the form
Lou = —my, tdiv(mpA Vu — mpuBp) — (Bo, Vu) +Vau, (1.10)

wherenmp, Az, Bo, andV, satisfy the conditions (1.6), (1.7) and (1.8) with obvious modifications.
Note thel, is formally selfadjoint with respect to the measdye. We assume that the general-
ized principal eigenvalugg of L, on D> is finite, i.e., withA being the set of all real numbeis
such that the equatiafh., — A )u = 0in D, has a positive solution,

Ap = SUpA > —oo. (1.11)

We denote by.% the Dirichlet realization ofL, on Dy, i.e., the selfadjoint operator on
L%(D,,duy) associated with, on D, (cf. Subsection 2.2 ofg4]).

We assume the hypothesBNI2) for (L2, D>), which is composed of three conditions (S),
(M), and (1), i.e., semismallness, minimality and intrinsic ultracontractivity (Ior, D2). Let
us state the conditions (S), (M) and (). We say that the semigeotif? generated by-.% is
IU (i.e., intrinsically ultracontractive) wheAg is the first eigenvalue aff%, and there exists a
positive continuous decreasing functio(t) on (0, ) such that

P2(X2,Y2,t) < C(t)e % go(%2) Po(Y2), X2,Y2 € D2, t >0, (1.12)

wheregy is a normalized positive eigenfunction associated Wighpz(x2, y2,t) is the integral
kernel of the semigroup 2. For IU, see 22|, [24], [64] and references therein. We assume
the following condition ().

(I) The semigroug 2 is IU and the functiorC(t) in (1.12) satisfies

tIirrg)t logC(t) =0. (1.13)

For example, wheB; is compact this condition is satisfied wilit) = at~"2/2 for some positive
constanio (cf. Example 9.2 of§4]). The condition (I) implies that the spectrum &% consists
of discrete eigenvalues with finite multiplicity. Lab < A1 < A2 < --- be the eigenvalues df,
repeated according to multiplicity. Leg be an eigenfunction associated with(j =0,1,2,...)
such that{g;}7_, is a complete orthonormal system of(D2,duy). It follows from (1) that
@/ o € L*(D2) for any j > 1. We assume the following condition (S).

(S) The constant functiohis a semismall perturbation & — A on D, for someA < Ag.
This condition means that for ary> 0 there exists a compact subsebdf D, such that

/D « 908,2)9(z y2)d2(2) < €g(X3,y2), Y2 € D2\K, (1.14)
2
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Wherexg is a reference point iD,, andg is the Green function df; — A on D2 with respect to
the measurelL, (cf. [62]). WhenD, is compact, the condition (S) is redundant. WHiznis
non-compact, we denote [y, anddv D> the Martin compactification and Martin boundary of
D, with respecttd., — A, respectively (cf. 14], [49], [64], [73], [79] and references therein). We
recall that for any) € dyD- there exists a sequenég}; in D2 such that{y}}; has no point of
accumulation irD, and the sequendgy(-,y5)/g(x3,y5)}; of functions onD, converges locally
uniformly to the Martin kerneh(-, ), which is a positive solution of the equatifimp — A )u=0
in D,. We also recall a positive solutiomis said to be minimal if another positive solution
satisfiesv < u, thenv = cu for some constant. When D> is non-compact, we assume the
following condition (M).

(M) For anyn € duD2, the Martin kerneh(-,n) for (L — A,Dz2) is minimal.
WhenD; is compact, we puD; = D> andduwD2 = & as convention. The condition (S) implies
that for anyj = 1,2,..., the functiong; /g has a continuous extensi¢g / ¢o] up to the Martin
boundaryoy D, (cf. Theorem 6.3 of{1] and Theorem 5.12 of]). The condition (M) together
with (1) and (S) implies that the family[¢; /@o]; j = 0,1,2,--- } separates finite Borel measures
on D3 (cf. Proposition 9.7 of§4]). Throughout the present paper we assume the hypothesis
(SMI2):

(SMI2) The conditions (S), (M) and (l) are satisfied far, D).
For example, (SMI2) holds wheb, is compact or a relatively compact Lipschitz domain and
L, is an elliptic operator on the whole spdde (cf. Examples 9.2 and 9.3 064]). HereD is
said to be a Lipschitz domain &, when for any boundary poirte dD,, the domairD; in a
coordinate neighborhood aiis the upper side of a Lipschitz continuous graph.

Let D1 be a non-compact domain bf;. We assume that eith®y, = M3 or D; is a Lipschitz
domain ofM;. Consider (weak) solutions of the Dirichlet problem (1.2), (1.3) and (1.4). The
boundary condition (1.4) means that for apiye Cy'(M1) andT > 0,

Yo e L2((0,T);L3(D1,du1)) NL2((0,T); H3 (D1, dp1)),

whereH3 (D1,dp) is the closure o€3 (D) in the Sobolev space®(D1,dy) of orderl. We
introduce the following condition (U1), i.e., uniqueness for the positive Dirichlet problem for
(8 +W, 'Ly, Dy).

(U1) Any nonnegative solution of the problem (1.2), (1.3) and (1.4) must be identically
zero.

LetL =L; +WL, andD = D1 x D2. We assume thdt.,D) is subcritical, i.e., there exists
the (minimal positive) Green functioB of L onD. This implies thatL, +A;W;,D;) are also
subcritical for anyj = 0,1,--- (cf. Theorem 7.4 of§4]). Denote byH; the Green function for
(L1+AjWy,Dy). Fix a reference point® € D. Denote by

D*, duD, dnD, and K(x,¢)

the Martin compactification, Martin boundary, minimal Martin boundary, and Martin kernel for
(L,D), respectively. Similarly,

D1, 0uD1, dmD1  and Ko(x1,&1)



Unigueness theorems for parabolic equations and Martin boundaries 391

denote those fofL; + AgWy,D1). It is known that the closur®; of Dy in My is continuously
embedded int®3 anddD; C dmD1 (cf. Theorem 2.1 of$5]). We put

I'l = (9|V|D1\(?D1.
Our main results are the following Theorem 1.1 and new examples such as Theorem 1.3(ii),
Theorem 6.2, Examples 8.1-8.4 to be stated later on. Theorem 1.1 gives a method to determine

Martin boundaries for elliptic equations via Widder type uniqueness theorems for parabolic equa-
tions.

THEOREM1.1. Assume the conditiof$MI2) and(U1). Then the followindi)—(vi) hold
true:
(i) with & being an ideal point outside ofjDthe Martin boundangyD is equal to the
disjoint union off; x {dz},dD1 x D%, and Dy x dvD2:
0MD:I'1><{dz}ulexDEuDldeDg. (1.15)
Furthermore,
omD = (I'lﬂdel) X {dg}ulex D§|_|D1><c7MD2. (1.16)
In particular, dmD = duD if and only if (1 C dnD3, i.e.,0mD1 = duDs.
(i) For & €I, asubset U of Dis a neighborhood of; = (&1,d) if and only if there
exists a neighborhoodbf &; in D} such that
U D (UinTy) x {dx} U (U NDy) x D3. (1.17)
(i) For & € dD1 x D5UD1 x duD», a subset U of Dis a neighborhood of if and
only if there exist neighborhoods;nd W, of & and &, in D1 and D5, respectively, such that
U xUs CU.
(iV) For f S I_l X {dz},
K(x, &)= ko(xl,El)(po(xz)/tpo(xg), x e D. (1.18)
(v) For & € dD1 x D3,
K(x, &) =k(x,&)/k(X,&), xeD, (1.19)

where K-, &) is a positive solution ofl1.1)defined by

K(x, €)= ikj (%1, )0, (0) @ /@] (&2), XD, (1.20)
=

k] (leél) = lim Hj(xlvyl)/HO(ngyl)a J :07 1a 27 . (121)

D13y1—é1
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Here the series on the right hand sidgdf20)converges uniformly ofF x E) x (dD1 x D3) for

any relatively compact domains& D; and EC Dy. It also converges in®(dD; x Dj; L2(F x

D3)) for any relatively compact domain F in4D Furthermore, kx, &) is continuous on Dx

(D1 x D3), and K (-, 1) is a positive solution ofL1 +A;Wi)u=0in D; forany j=0,1,2,---.
(Vi) For & € Dy x dyDo,

K(x,&) =H(x,&)/H(X,&), xeD, (1.22)
where H-, &) is a positive solution of1.1)determined by

H(x, &) = iHj(Xl,fl)(Pj (x2)[@/@0](&2), x€ (D1\{é1}) x D2. (1.23)
j=

Here the series on the right hand side (4f23) converges uniformly on any compact subset
of (D1\ {&1}) x D2. It also converges in 3(F x D,) for any relatively compact domain F in
D1\ {&1}. Furthermore, H is continuous on (D1 x dvD3).

Theorem 1.1 says that the uniqueness for a parabolic equation implies that the fiber of
om (D1 x D») atinfinity of the base spad®; reduces into one point. This theorem will be proved
in Section 5. The condition (U1) in Theorem 1.1 implies that§pe 1 the limitk;(xq,&1) =0
forany j > 1 (see Lemma 5.3 in Section 5). This means that the perturbatiaf the operator
L1+ oW on Dy is big in some sense, since the Green funckigrof L1 + AjWy on D, becomes
smaller as the positive functidf; becomes bigger. Now, we introduce the following condition
(S1), i.e., semismallness ¥, which is complementary to the condition (U1).

(S1) Wy is a semismall perturbation &f + A¢gWi onD1.
This condition means that for argy> 0 there exists a compact subgebf D1 such that

/D ® Ho(x},2Wa(2)Ho(z y1)dp1(2) < eHo(3§,y1), y1 € D1\K,
K 1

wherex] is a reference point iD;. By Theorem 3.1 and Remark 3.4 to be stated in Section 3,
both the conditions (S1) and (U1) do not hold together. Interestingly, in several important cases,
either (S1) or (U1) holds.

When (S1) holds, the Martin compactificatién, x D2)* of Dy x D2 with respect td_ is
extremely simple. In this caséD; x D2)* is regular: (D1 x D2)* = D; x D5. The following
theorem is a special case of Theorem 9.164f [see Theorem 4.2 in Section 4).

THEOREM1.2. Assume the conditior{SMI2) and(SJ). Then the followindji)—(iii) hold
true.

(i) The Martin compactification Dof D with respect to L is homeomorphic td R D5. In
particular,

(9|\/|D=I_1><D§|_|(9Dl><DEI_lDlxﬁMDz. (1.24)
Furthermore,

0mD = (lM.NdmD1) x D311dD1 x D3 LID1 x dwD>. (1.25)



Unigueness theorems for parabolic equations and Martin boundaries 393

In particular, d,,D = duD if and only ifl; C dyD1, i.e.,0mD1 = duD1.

(i) The assertiorfv) of Theoreml.1 holds withdD replaced byr; UdDj. In particular,
the Martin kernel Kx, &) for & € (L UdD1) x D5 is given by(1.19)

(i) The assertiorgvi) of Theorent.1holds.

This theorem says that “smallness”Wf implies the regularity of D1 x D2)* , while The-
orem 1.1 says that “bigness” @f; implies the degeneration of the fiber at infinity.

Here, as an application of Theorems 1.1 and 1.2, we give a simple example concerning
positive harmonic functions on horn-shaped domair®n!,N > 2. Further examples will be
given in Section 8.

THEOREM1.3. Leta andf be Lipschitz continuous functions @) such thata > 3
and(a(r)—B(r))/ris decreasing. Let

D1={(r,s) €R% a(r)>s>P(r), 1<r < w}.

Let D, be a Lipschitz domain in the unit spherd$ of RN or the whole space™s?1, where
N> 2 LetL=—-AonR*!and

D={(zs) e R"xRYa(|Z) > s> B(|2),12 > 1,2/|7 € D,}.

(i) Suppose that
/lm(a(r) — B(r))r2dr < o, (1.26)

Then D is homeomorphic to Px D2, where O = D; U {e} is the closure of B in the one-
point compactification oRR Furthermore,dyD = dnD = dyD1 x D, UD; x dD, anddyD; =
OmD1 = D1 U {0},

(i) Suppose that

/lw(a(r) — B(r))r2dr = e, (1.27)

Then O is homeomorphic t6D; x D) LI {(e,dy)}, where a fundamental neighborhood system
of the ideal poinfe,dy) is given by the family

{({(r,;5) €Dy; €1 <1 <0} x D) U{(,d2)} }oce<1.

Furthermore,dyD = 9D = {(c0,d;)} UdD; x DoUD1 x D, anddyDy = 9Dy = D1 U {}.

The assertion (i) of Theorem 1.3 was shown by Aikawa and Mudtésge also Theorem
6.3 in Section 6). The assertion (ii) will be proved in Section 6. A special case of this theorem
was shown under more stringent condition by loffe and Pingky, [and related results were
announced by Maz'yab[].

The remainder of this paper is organized as follows. Sections 2, 3 and 4 are preliminaries.
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In Section 2, we recall a unigueness theorem for a parabolic equatid4]jmpd give a concrete
example related to Theorem 1.3. In Section 3, we recall criteria for non-h-bigness, and observe
that the Widder type uniqueness theorem implies h-bigness. In Section 4, we recall general
results on Martin boundaries for elliptic equations in skew product form givesdjn YVe prove
Theorem 1.1 in Section 5. Theorem 1.3(ii) is proved in Section 6. There we also give a theorem
on small perturbation, and generalize the assertion (i) of Theorem 1.3. In Section 7, we give a
generalization of Theorems 1.1 and 1.2. By applying it, we give several concrete examples in
Section 8.

2. Uniqueness theorems for parabolic equations.

In this section we recall for readability a typical uniqueness theorem of Widder tygd]in [
and give a simple example related to Theorem 1.3. NLdde a connected separable smooth
manifold with Riemannian metric of cla&®. We assume that the Riemannian manifblds
complete. LeP be an elliptic operator oN of the form

Pu= —wdiv(waVu—wuc) — (b, Vu) + qu, (2.1)

wherew, a, b, c,q satisfy the conditions (1.6), (1.7) and (1.8) with obvious modifications. We
further assume th& is uniformly elliptic onN, i.e., there exists a positive constansuch that

KIE[P < (ax€,&) <k HEPR, (% &) €TN. (2.2)
We denote by the Riemannian measure Binand pudA =wdv. Consider the Cauchy problem

Zu=0 inNx(0,0), (2.3)
u(x,0) =upg(x) onN, (2.4)

whereZ? = ¢ +P andyp € L%C(N,d/\ ). In order to state a Widder type uniqueness theorem, we
need two conditions. Puf® = max(+q,0). Fix a pointO in N, and letd(x) = dist(O, x) be the
Riemannian distance betweénandx € N. PutB(O,R) = {x € N; d(x) < R} for R> 0. Letp
be a positive continuous increasing function[0r»). Then the condition [RB5] (i.e., relative
boundedness with scale functiphto be imposed ob, c,q~ is as follows.

[RB-p] There exist constantg; > 0,0< 31 < 1,0< B < 1, 0< B3 < 1such thaiB; +

B2+ B3 < 1land

. i -1 i -1 B
/<o,R> [4Bz<a b.b)+ g, @ C0 +d }“’d" (2.5)

2 2
<p o ATHTYIA +a1p(R [ wdx

: B(OR)
foranyR> 1andy € C3(B(O,R)).

The second condition to be imposed Bnis the following condition [PHRg], i.e., the
parabolic Harnack principle with scale functipn
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[PHP-0] There exists a positive constam such that for any

1
(X,t) eNx (0,00), 0< 1 < ,
( p{A(X)
any nonnegative solutiomof the equation
Pu=0 inQ=B(xr)x (t—r?t+r? (2.6)
satisfies the inequality
supu < azinfu, 2.7
QipU < ooinf (2.7)

where

o r 35 1,
Q _B(x,2>><<t 4r t 4r),
- r 1, .35
Q —B(x,2> X <t+4r ,t+4r .

For the parabolic Harnack inequality (2.7), s&&|[[27], [33], [41], [44], [48], [52], [79], [77]
and references therein. We are now ready to state a Widder type uniqueness theorem, which is a
time independent elliptic operator case of Theorem 2.24h [

THEOREM2.1. Suppose that the conditiofiRB-p] and[PHP-0] hold with p satisfying
® dr
ki 5m #9)

Then a nonnegative solution u of the Cauchy prob{2r) and (2.4) is determined uniquely by
the initial data .

As for analogous theorems concerning the Dirichlet problem, see Theorem 454 ahfl
references therein.
Here, we give a simple example related to Theorem 1.3.

THEOREM2.2. Lety> —2. Leta andf be Lipschitz continuous functions fipe) such
thata > B and (a(r) — B(r))r¥/? is decreasing. Let

Q={(r9) eR1l<r<w, alr)>s>p(r)}
Let P= —r—Y(92/dr? + 3°/ds?). Consider the Dirichlet problem

(&+P)u=0 inQ x(0,0), (2.9)
u(x,0) =u(x) ongQ, (2.10)
ux,t)=0 ondQ x (0,), (2.11)
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where y satisfies)ug € L2(Q,r¥drds) for anyn € C3({(r,s) € R%;r > 0}). Suppose that
/ (a(r) = B(r)rVdr = o. (2.12)
1

Then a nonnegative solution of the Dirichlet probl¢h9), (2.10)and (2.11) is determined
uniquely by the initial data g1

We omit the proof, since the theorem can be shown along the line given in the proof of
Theorem 5.6 of§5).

REMARK 2.3. Actually, the condition (2.12) is also a necessary condition for the Widder
type uniqueness theorem to hold. Indeed, suppose that

Am(a(r)—B(r))rVdr< o0,

Apply Theorem 6.1 in Section 6 withy (r) =r and®(t;) =t). Then we obtain that” is a small
perturbation of-A on Q. Thus Remark 3.5 and Theorem 3.1 in Section 3 show that there exists
a positive solution of (2.9), (2.10) and (2.11) with= 0.

3. h-big perturbations.

In this section we recall a non-uniqueness theorerf®h pnd observe that the Widder type
unigueness theorem implies h-bigness.

Let N be a connected separable smooth manifold with Riemannian metric o@Jas®t
L be an elliptic operator oN of the form

Lu= —m ldiv(mAVu—mCu — (B, Vu) +Vu, (3.1)

wherem, A B,C,V satisfy the conditions (1.6), (1.7) and (1.8), with obvious modifications. Let

W be a positive measurable function Nrsuch thatV,W—1 ¢ Ligc(N,dA),dA = mdv, wherev

is the Riemannian measure bin Let Q be a domain oN. We consider the Dirichlet problem

(+WLu=0 inQ x(0,0), (3.2)
ux,00=0 onQ, (3.3)
ux,t)=0 ondQ x (0,). (3.4)

Suppose thatL, Q) is subcritical, i.e., there exists the Green funct@®wof L on Q. Leth be a
positive solution of the Dirichlet problem

Lo=0 onQ, (3.5)
v=0 ondQ. (3.6)

Here, the boundary condition (3.6) means H3,..(Q). Following [35], we say thaWV is h-big

0,loc
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(on Q) when any function satisfying

(L+W)r=0 and 0<v<h onQ (3.7)

must be identically zero. Otherwis®/ is said to be non-h-big (o®). Theorem 2.5 of§5|
partially reads as follows.

THEOREM3.1. The following are equivalent:

(i) W is non-h-big.

(i) There exist a non-empty domaindEQ and a positive solution f of the Dirichlet
problem

Lf=0 onE f=0 ondE

suchthatD < f <honE and
LGy W T (y)dA(y) <o, xeE, (3:8)

where G is the Green function of L on E with respect to the measure d
(iii) There exists a solution u ¢8.2), (3.3)and (3.4) such that0 < u(x,t) < h(x) on Q x
(0,00).

We should mention here that the statement of the assertion (ii) is slightly different from
that of the assertion (ll) of Theorem 2.5 i85, but they are equivalent because a nonnegative
solution of an elliptic equation on a connected open set is positive or identically zero.

The following is a direct consequence of Theorem 3.1 but a key observation in proving
Theorem 1.1.

PROPOSITION3.2. Suppose that the Dirichlet problef8.2), (3.3)and(3.4) has no non-
negative solution which is not identically zero. Then W is h-big for any positive solution h of
(3.5)and(3.6).

REMARK 3.3. When a positive solutioh satisfies an appropriate growth condition at
infinity, a Tacklind type uniqueness theorem (c#4], [65]) can be used also as a sufficient
condition of h-bigness.

We conclude this section by remarking facts on semismall perturbations (cf. Sectio64)of

REMARK 3.4. If W is a semismall perturbation &f on Q, thenW is non-h-big for any
positive solutiorh of (3.5) (cf. Remark 5.9 ofg4]).

REMARK 3.5. We say thatV is a small perturbation df on Q when for anye > 0 there
exists a compact subdétof Q such that

o G(x,2W(2)G(z,y)dA (2) < eG(X,Y), X,y € Q\ K.

Itis known (cf. [62]) that if W is a small perturbation, then it is a semismall perturbation. Thus,
if W is a small perturbation df on Q, thenW is non-h-big for any positive solutiomof (3.5).
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4. Martin boundaries for elliptic equations in skew product form.

In this section we recall general results @], from which Theorem 1 is derived. Consider
the equation (1.1). FoflL,,D>), we assume the same conditions as in Section 1;,96 the
operator (1.10) oD, satisfying the hypothesis (SMI2). But, in this section, we tlegaind
D; under more general conditions although we use the same notations as in SectiorDl. Let
be a non-compact domain bdf;. LetL; be an elliptic operator oB; of the form (1.5), where
my, A1, B1,C1, V1 satisfy the conditions (1.6), (1.7) and (1.8) with replaced byD;. LetW;
be a positive measurable function Ba such than,Wfl € Ligc(D1,duy). LetL =Ly +Wilo
andD = D1 x D,. We assume thdl, D) is subcritical. We denote bR}, duD1,0mD1, andkg
the Martin compactification, Martin boundary, minimal Martin boundary, and Martin kernel for
(L1 + AoWi,D1), respectively. For an open s& C D3, we denote by2* the closure ofQ in

1 while Q denotes the closur@ in the relative topology ob;. We denote by ; the formal
adjoint operator of.; with respect talu;. For an elliptic operatoP on an open se C Dy, a
subset~ of Q with FNQ =F, and a family.# of positive solutions oPu= 0in Q, we put
S = (F,P,Q,F). We say that CP (i.e., the comparison principle) holdsfowhen there exists
a positive constart such that for any andv in %

@ ﬁ @ X,y eF. 4.1

We impose o (L1 +AjW, Dl)}‘J?":O the following condition (ZCS1), i.e., zero limit, comparison
principle and semismallness.

(ZCS1) There exist subsefy and=., of dyD1 such thatyU =, = dyD; and the following
conditions (ZC) and (CS) are satisfied.

(ZC) For anyé; € =y, there exist domaind; (i = 1,2,3,4) of D; such that

U cUfori=1,23 & eUfnouDy, X eUs\Uj, (4.2)
lim  hy(x,y1)/ho(x§,y1) =0, X1 € Us, (4.3)
Uzsy1—é&

whereh; (resp. hp) is the Green function df; + AW (resp.L; + AogWy) onU,. Furthermore,
CP holds for. and#, where

% = ({Ho(-,y1);y1 € U1U(D1\Us)},L1 + AWy, U3\ U1, 0U;), (4.4)

= ({H104,),m 08, )}, Li + AaWa, Ua\ {x0},0U3).
(CS) For any; € =, there exist domaing; (i=1,---,8) of D1 such that

E CEjifori=1---,7, & ecEjnauD:;, X eEs\Es, (4.5)
W, is a semismall perturbation &f + AgWj onEg, (4.6)

and CP holds for; (i =1,2,3),.7; and%; (j=0,1,---), where
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A ={Ho(-,y1);y1 € E2i-1U(D1\ Ezis1)}, Li+AoWa, Enip1 \ E2i—1,0E2),  (4.7)
T =({Hj(-,y1);y1 € Es} U{hj(-,y1);y1 € B¢}, L1+ AjWy, Eg\ Eg, 0E7),
02/] :({HJ(Xg_)v)7hJ (ng')}> LI+)\JW17E8\{X2}70E6)? J = 07 1a2a"' .

Hereh; is the Green function df; + AjW; on Es.

This condition (ZCS1) always holds whéy is one dimensional (cf. 64]). The semi-
localized condition (4.3) and (4.6) are useful in treating domains having several connected com-
ponents at infinity. Note that CP holds for (4.7), for examplégif, E; is a compact subset of
D.

We are now ready to state Theorem 9.1&f[except for the case whek®; is compact.

THEOREM4.1. Assume the condition®&MI2) and (ZCSJ. Then the followindi)—(iv)
hold true

(i) With &b being an ideal point outside ofDthe Martin boundaryduD is equal to the
disjoint union of=g x {dz}, = x D and Dy x duD:

ouD = Zp x {dz} L = X DE LDy x duDa. (48)

Furthermore,

omD = (_:o N del) X {dz} (] (Eoo N del) X D; LDy x ouDo>. (4.9)

In particular, d,,D = dyD if and only ifgnD1 = oy D;.
(i) The assertiongi) and(iv) of Theoreml.1hold withI" replaced by=.
(iii) The assertiongii) and(v) of Theoremn.1 hold withdD1 replaced by=...
(iv) The assertiorgvi) of Theoremil.1 holds.

A special case of this theorem is worth stating.

THEOREM4.2. AssumgSMI2). Suppose that Wis a semismall perturbation of1l+
AoWs on D;. Then the Martin compactification*Dof D with respect to L is homeomorphic to
D; x D3, and all the assertions of Theorefril hold with =g = & and =, = duDs.

5. Proof of Theorem 1.1.

In this section we prove Theorem 1.1 by applying Theorem 4.1 in the last section. We use
the notations in Section 1, and assume the conditions (SMI2) and (U1). We start with a lemma
concerning small perturbation and the boundary Harnack principle for elliptic equations. For
definition of small perturbation, see Remark 3.5 in Section 3. As for the boundary Harnack
principle, seed], [5], [19], [20], [39], [39], [59], [81].

LEMMA 5.1. The condition(C§ of the hypothesi€&ZCSJ holds with=., and E replaced
by dD1 andE;, respectively.

Here and in what follows we abuse notations as follosand dE; in this section mean
the closure and boundary & in My, respectively; sd&; N D; anddE; ND; are equal to the
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symbolsE; anddE; in the hypothesis (ZCS1).

PROOF. Leté; € dD1. SinceD; is a Lipschitz domain, we can choose a local coordinate
system(U, z) such that

zZUNDy) = {z=(Z,an) € RY;|Z| <R O0< zy— f(Z) <R}, (5.1)
z2UNadD;) = {zeRY;|Z| <R zy = f(2)}, (5.2)

andz(&;) = (0,0), whereN = n1, Ris a positive number antlis a Lipschitz continuous function
on RN with f(0) = 0. We denote the right hand side of (5.1) ByR). For0 < r < R/8 with
X9 ¢ E(5r), choose a Lipschitz curvein D1 \ E(5r) such thay(0) = x2 andy(1) = (0, f (0) +6r).
Fors> 0, put

F(s={pe Ml;oigTildiSt(p» y(t)) <s}.

Chooses so small that (8s) ¢ D1\ E(5r). Fori =6,7,8, putE; = E(ir) UF(is). Modifying
F(is) if necessary, we may assume tltare relatively compact Lipschitz domain bf,. For
i=1,--,5 putE =E(ir). ThenENDy C Ej;1fori=1,---,7, & € E;NdDy, andx? € Eg \ Es.
In the coordinate systeii,z) the operatot; + AoW has the form

wli+AWyu=— % a(&diu)— 5 bjgu+ % dj(cju)+au, (5.3)

1<f TN 1<T=N 1<T=N

wherew is a positive measurable function withw~* € L*(E(R)) anda j,bj, c;,q satisfy the
condition (1.7) and (1.8) with obvious modifications. Thus, re-choosaryds sufficiently small

if necessary, we can show by Theorem 9.1’, Proposition 9.2 and the proof of Corollary 8]1 of
thatWi, which is bounded ofsg, is a small perturbation df; + AoW; on Eg (see also]], [62)).

This implies (4.6). Lei = 1,2,3. By the boundary Harnack principle, there exists a positive
constant such that

(X
c—— <
o(y

N2
N

u(x 1
<c t—=, XYye€dEyNDy, 5.4

N
c
—

for any positive solutions andv of the equatioriL; + AoWj)u = 01in Eyi+1 \ Exi_1 such that
u=0=0 on{zeRY;2i-1r<|Z|<@i+rz="f(2)}
(cf. Theorem 1.3 of§5]). (We have abused notation@Ey; in (5.4) is the boundary dty; in My,

and sodEy N D; is the boundary oEy; in D1 which is equal tadEy; in (4.7).) Here, let us give
another proof of (5.4). Denote B¥the operator on the right hand side of (5.3), and put

QU: — z di(aijdju).
N

1<iJ<



Unigueness theorems for parabolic equations and Martin boundaries 401

Choose a relatively compact Lipschitz domé&irc D; such thaEND; C Egii 1\ Ey_1 andE D

U ND; for some neighborhoaod of dE,; ND;. Letu andv be positive solutions of the equation
Pu=0in E such that they are continuous up to the boundary and vani$h®@@dE; z, = f(Z)}.

Let 0 be a positive solution of the equati@u = 0 in E with G = u on dE. Denote by and

Vx, X € E, the harmonic measures fBrandQ, respectively. Then there exists a positive constant
c1 such thatty py < vy < qlux, x € E (cf. Proposition 8.3 and the comment after Theorem
9.1’ of [8]). Thusciu(x) < G(x) < ¢;tu(x), x € E. Similarly, cio(x) < () < ¢ v(x), x € E.

By Theorem 1.4 of19], there exists a positive constamtsuch that

C2

oy) = aly) =% ay)

X,y € 0E5ND1.

This implies (5.4). Now, fory; € Ex_1 U (D1 \ Eziv1), Ho(-,y1) is a positive solution of the
equation(L; +AoWi)u=0in By 1\ Egi_1 Which vanishes ofize d(Ezi 1\ Bz _1);z2v = f(Z)}.
Hence CP holds fo; given by (4.7). Similarly, CP holds fa@; and%; given by (4.7). This
completes the proof of the lemma. O

The following lemma is essentially Lemma 5.8 6. It is a simple observation, but plays
a crucial role in proving Theorem 1.1.

LEMMA 5.2. Leth(x;) =ko(x1,&1) for some; € I = duD1\ dD1, where g is the Martin
kernel for(L1 4+ AoWy, Dy). If Wy is h-big, then

lim  Hi(x1,y1)/Ho(x§,y1) =0, X1 € Da. (5.5)

D13y1—&1

PrROOF. We give a proof, since it is simple. Suppose that (5.5) does not hold. Then there
exists a positive solutionof the equatior{L1 + A1Wj )v = 0in D; satisfying0 < v < h. Thisis a
contradiction, sincéA; — Ag)W is also h-big (cf. Propositions 7.16 and 3.7 85]). O

LEMMA 5.3. Leth(xy) = ko(xq, 1) for someé; € ;. Then(5.5) holds.

PROOF. By the a priori estimates near boundary poirttsis a positive solution in
H&,OC(Dl) of the equationL; + AoWi)h =0 in D;. It follows from the assumption (U1) that
any nonnegative solution of the problem

(0[ —‘rW (Ll—l—A()W]_ )U in Dy x (O, 00)7
v(x,0) = onDq,
v(X,t) = ondD1 x (0, )

must be identically zero. Thus, by Proposition 3.2 in SectioW3is h-big. Hence Lemma 5.2
implies (5.5). O

We are now ready to complete the proof of Theorem 1.1.

PROOF OFTHEOREM1.1. We claim that the condition (ZC) of the hypothesis (ZCS1)
holds with =g replaced by7. Choose domaind; (i =1,---,4) such thaD; \ U; is a compact
subset oDy, Us = Dy, UiN Dy C Uiyq for i = 1,2,3, andx? € U3\ Uz. Then (4.2) holds. By
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Lemma 5.3, (4.3) holds. By the Harnack inequality, (CP) holdss#band % given by (4.4).
This proves the claim, which together with Lemma 5.1 implies that the hypothesis (ZCS1) holds
with =g =i and =, = dD1. Hence Theorem 4.1 in the last section shows Theorem 1.10]

6. Martin boundaries of horn-shaped domains.

In this section we show the assertion (ii) of Theorem 1.3, and generalize the assertion (i) of
Theorem 1.3.

6.1. Small perturbations.

In this subsection we give a theorem on small perturbation, Theorem 6.1. By using it we
also give an improvement of Theorem 4 d{,[Theorem 6.2, from which the assertion (i) of
Theorem 1.3 follows. Theorems 6.1 and 6.2 are of independent interest.

Let Q be a domain iR% such that —A, Q) is subcritical, i.e., there exists the Green function
H of —A on Q (cf. Theorem 8.33 0f37]). Let @(ty,---,t) be a nonnegative Borel measurable
function on(0,«]'. DefineW(ty,--- ,t) by

W(ty,---,t)=  sup  @(City, -, Q).

4-1<cy, <4
Letvj (j=1,---,1) be(0,]-valued continuous superharmonic functions@nPut
W(2) = @(vi(2),---,vi(2)).

Then we have the following

THEOREM6.1. Suppose that
[ 1@, u@)dz< . (6.1
Q

where dz is the Lebesgue measureR3nFhen W is a small perturbation efA on Q.

PROOF. Let d,Q be the boundary of2 in the one point compactification d¥. Let
F be the set of points i.,Q which are irregular with respect to the Dirichlet problem for
harmonic functions o®2. Then there exists a positive superharmonic function Q such that
lim,_xv(z) = o« for all x € F (cf. Lemmas 9.18 and 9.19 08T]). For an intervall in (0, ],
denote byy, the characteristic function of Ford > 0, put

®5(2) = X(0.6)(H(zY?)) + X (51,0 (v(2)

whereyy is a point fixed inQ. Then there exists a positive constantiepending only oh such
that

1
H(x,y)

<a | m@¥u@.v@)dz xyeQ,

/Q H(x,2)H(z,y)@5(2)W(2)dz (6.2)
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(cf. [2], Theorem 1 of fi] and the remark which follows it). Sinagz) < « for a.e.z€ Q and
H(zY°) > Oforanyz< Q, we have

clsimo(p45(z) =0 fora.e.ze Q.

By the Lebesgue dominated convergence theorem, foe ang there exist® > 0 such that the
right hand side of (6.2) is less than PutK = {z€ Q; @5(2) = 0}. Sincelim, .;H(zy°) =0
for any regular boundary poit in d»Q, @5(z) > 1 on a neighborhood of..Q. ThusK is a
relatively compact subset ¢2. We have

1
W/Q\K H(x,2)H(z y)W(z)dz

1
——— [ H(X,2H(z 2W(z)dz< ¢
< iy Jo HOCHEY B@WE)
for anyx,y € Q. HenceW is a small perturbation ofA on Q. O

The following is an improvement of Theorem 4 di [

THEOREMG6.2. Let Dy be a domain in{(r,s) € R?;r > 0}. Let D, be a Lipschitz domain
in V-1 or the whole space™s?, where N> 2. Let L= —A onR¥*! and

D={(zs) € RN xRY;(|z],s) € D1,2/|7 € D2}. (6.3)

Suppose that

//Dl d{SS (6.4)

Then the Martin compactification‘Dfor (L,D) is homeomorphic to Px D2, where O is the
Martin compactification fo—A,D3). In particular, duD is homeomorphic t¢D; x D) U
(dumD1 x D2). Furthermore,

de = (D]_ X ﬁDz) @] (ale X D72)

PROOF. We show the theorem by applying Theorem 4.2. In the polar coordinaf@, of

L—_9° N-1J9 A 07 (6.5)

L= ———=—, W== Lo =—-A, (6-6)
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we havel = L3 +WjL,. For(Ly,Dy), the hypothesis (SMI2) holds withg > O (cf. Examples
9.2 and 9.3 of§4]). Let us show that\y is a small perturbation df; + AoW; on D1. We have

p=r(N-1)/2 (L1+AoWi) o r(N=-1)/2 (6.7)
92 92 (N-1)(N-3). 1
=g gg ot ——— Iz

Apply Theorem 6.1 with®(t1) = tl’2 andvy(z) = z. Then it follows from (6.4) that\y = r—2
is a small perturbation of A on D;1. Thus the Green functiog of P on D1 is comparable with
the Green functiotd of —A on Dy, i.e.,cg < H < ¢~1g for some positive constaaet(cf. [62]).
This together with Theorem 6.1 shows th¥t is a small perturbation d? on D;. Denote by
Ho(r,s;F,8) andg(r,s;F,5) the Green functions df; + AoWy andP onD;. Then

g(r,s7,9) = (r/H)N"D/2Hy(r, 57, 9). (6.8)
Thus

9(1,821,22)9(21,2,F,8) _ Ho(r, S 21,22)Ho(21, 2;F, §)
g(r7S; Fvg) Ho(r, S, Fvg)

It follows from this thatW, is a small perturbation df; + AgWj onDs. In view of Theorem 4.2,
it remains to show that the Martin compactificatiiﬂLl AW of D1 with respect td_; + AW
is homeomorphic to Martin compactificati@y _, of D1 with respect to-A. We have

Ho(r,si7,8)  (r (A-N)/2 g(r,s,F,8)
HO(rosz;f’vg) B fo g(ro’so;i”§)7
Where(ro,so) is a reference point iD;. ThUSDZ*L,L1+)\0W1 is homeomorphic td4p which is
homeomorphic td] _,, sincer 2 is a small perturbation ofA on Ds. HenceDj | ., IS
homeomorphic t®; _,.

In Theorem 4 of §], it was assumed that every boundary poinbDafis regular with respect
to the Dirichlet problem. Theorem 6.2 removes this regularity assumption.

The following is a special case of Theorem 6.2 and a generalization of the assertion (i) of
Theorem 1.3.

THEOREM6.3. Leta and 8 be continuous functions ofi,) such thata > 3. Let
D1={(r,s) e R%a(r)>s>P(r), 1<r < w}. Let D;,D and L be as in Theorem3. Then the
assertion(i) of Theorent.3 holds.

PROOF. By virtue of Theorem 6.2, it suffices to show tHa§ = D; U {co} andduD1 =
0mD1 = dD1 U {o}. But this follows from the Cara#rodory theorem (cf.74]) which says that
there exists a homeomorphism frdd U {e} onto the closed unit disc which is conformal in
D1. U
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6.2. Proof of Theorem 1.3 (ii).
In this subsection we show the assertion (ii) of Theorem 1.3 by applying Theorem 1.1.

LEMMA 6.4. Let Dy be as in Theoren.3. Then the Martin compactificationiDof Dy
with respect to L+ A oW, (see(6.6))is homeomorphic t®1 U {«} which is the closure of bin
the one point compactification & RFurthermore,dyD; = dnD1 = D1 U {oo}.

PrROOF. We give only an outline of the proof. Le¥ be the set of all positive solutions
of (L1 +AoWi)u=0in D such thai=0o0ndD; andu(x‘l’) = 1. Then the boundary Harnack
principle and the scaling argument as in the proof of Theorem A%jffhow that# consists of
one element. It follows from this th&t; = D; U {0} anddyD1 = dmD1. O

PROOF OFTHEOREM1.3(ii). Recall that the hypothesis (SMI2) fok,,D2) holds (cf.
Examples 9.2 and 9.3 o6fl]). By Lemma 6.4 and Theorem 1.1, it suffices to show that the
condition (U1) holds. Consider the equation

(@ +W, L))o =0 inDy x (0,0)
(see (6.6) and (6.7)). We have
r~(N=D/26 (6 + W) orN"D/2 = g —r2A 4 (N 1)(N—3) /4.

Thus Theorem 2.2 and the assumption (1.27) show that any nonnegative solution of (1.2), (1.3)
and (1.4) must be identically zero, i.e., (U1) holds. O

7. Generalization.

In this section we slightly generalize Theorems 1.1 and 1.2 for giving more concrete exam-
ples.

LetL =L;+WL,; andD = D1 x D2 be as in Section 1. Assume (SMI2) fr,,D2).
Suppose that

N
D; = U E;j. (7.1)
j=0

whereN is a natural numbeg; (j =1,---,N) are Lipschitz domains iM1 or the whole space
M; such thatEj NEx = @ for j # k, andEq is a relatively compact Lipschitz domain My or
an empty set. Herg; is the closure oE; in My, while E denote the closure d&; in Di. For
j=1,---,N, consider the Dirichlet problem

(@ +W,L)p=0 inEjx(0,m), (7.2)
v(x,00=0 onE;, (7.3)
v(x,t)=0 ondE;j x (0,»). (7.4)

We introduce the following condition.
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(US1) There exists an integesuch that ()0 <1 <N, (ii) for 1 < j <, any nonnegative
solution of (7.2), (7.3) and (7.4) must be identically zero, and (iii) farj < N, W is a semismall

perturbation ol; + AW onE;.
THEOREM7.1. Assume the conditiofSMI2) and(USJ). Put

N
U E*mdMDl UaDs.

|
U E*ﬂﬁMDl )\ 0Dy,
.7N

=1
=Jforj,k=1,--

Then all the conclusions of Theorehi hold true. Furthermore, ENEg

with j #£ k.
This theorem can be shown as Theorems 1.1 and 1.2. For proving the last assertion, use

Lemma 1.5 of §4)].
8. Examples.
In this section we give several concrete examples as applications of Theorem 7.1

EXAMPLE 8.1. LetL = —A onR*'™. LetD, be a bounded Lipschitz domain R". Let

D, be a Lipschitz domain iR of the form

N
D1=UE,-,
'7N;

whereN is a natural number arig; are Lipschitz domains defined as follows: For 1
let f; be a Lipschitz continuous positive function ine) such that it is decreasing arig{1

1/2; and let
Ej={(ns) e RJs—j| < fj(r), r>1}, j=1, N,
N
Eo= J{(9 e R%[s—j| < fj(r), 1<r < 2}U(0,1) x (O,N+1)
j=1
Let0<I| < N be an integer. Suppose that
| tindr=e, 1<j<1,
/ fi(r)dr<oe, I<j<N
Forj=1,---,N, let n; be the point at infinity of the one point compactificationegf and set
nj # nk for j #k. Put
Zo={nii=1-

S}, Ze={nj;j=1+1,--- ,N}uUdD;.
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LetD = D4 x D,. Then the Martin boundargy D for (L,D) is homeomorphic to
Zox {d2} U= x D2UD1 x dD3.
FurthermoregyD = dynD. Indeed, by Theorems 2.2 and 6.1, the hypothesis (US1) holds. We

see thatyD1 = dnD1=0D1U{n;j;j =1,--- ,N}. Thus Theorem 7.1 shows the assertion.

ExXAMPLE 8.2. LetD = {x€ R";|x| > 1}. LetV be a locally bounded measurable real-
valued function or{1,c). LetL = —A +V(|x]). Suppose thafL,D) is subcritical. Then it is
known thatdy D = dnD D dD and the set

I =oduwD\dD

is homeomorphic to the unit sphe®& 1 or one point.
(i) Suppose that

/j( sup §|V(s)|+1)—1/2$ = oo, (8.1)

1<s<r

Thenl™ consists of one point.
(i) Suppose that?V(r)+a > 1on[1,) for some positive constant. Assume that

/1w(r2V(r)+a)‘1/2$ < o, (8.2)

Thenl™ is homeomorphic to the unit sphes& 1.

For results related to (i) and (i), se4q, [53], [55], [56], [67], [72], and Example 10.1 of
[64].
Let us show the assertion (i) by applying Theorem 7.1. In the polar coordinaR¥s of

7] 7] N
L:—l’l_na (rn—lar> +V(r)_r7’ (8.3)

whereA is the Laplace-Beltrami operator on the sph8te'. Let Dy = (1,), Do = S™ 1,
L= —ri"@/ar)(r"10/ar) +V(r), Wo=r"2 L= —A.

ThenL =Ly +WiL, on D = Dy x Da. PutEg = (2,9),E; = (€?,00) andE = (1,3). Then
D1 = EgUE1 UE2. We see that\y is a small perturbation df; on E; (cf. Theorem 6.3 of§4]).
Consider the Dirichlet problem (7.2)—(7.4) fpe= 1. We claim that any nonnegative solution of
it must be identically zero. Change the variabte z=logr. Then (7.2) becomes

2
%—%—(n—Z)%—eZZV(eZ) 5=0 in(2,0)x (0,0), (8.4)
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whered(zt) = v(r,t). Let us show that there exists a positive continuous increasing furgtion
on [0, ) such that

© dR
LA 2|V (9)| < p(R?2.
/ SR = U N E) <o)
ForR> 0, put
@(R) = ( sup eV ()| +1)%2. (8.5)
0<z<R

For any natural numbes, denote byyy the characteristic function of the interval
lk={R>0;2"1< (R) < 2¢}.

Puty =S¢ 4 2%x. Then the step functio is increasing, and satisfigs< ¢ < 2¢. By (8.5)
and (8.1),

® dR
27K = | o =00,
keZJ W o YR

where|ly| is the length ofy andJ = {k € N; |Ix| # 0}. Choose a series of interve{l!;;}kej and a
piecewise linear continuous increasing functmon [0, ) such that

I C I, 22"‘|I[<|:oo, p=y on|Jl, p>y on[0,w).
ked ked

Thenp has the desired properties. Now,léte a nonnegative solution of (8.4) witfz, 0) = 0on
(2,) ando(2,t) = 0on (0,0). Then Theorem 4.4 ofjf] together with the scaling argument as
in the proof of Theorem 6.2 ofi] shows that = 0. Thus the claim holds, and so the condition
(US1) is satisfied. Hence Theorem 7.1 shows the assertion (i).

Let us show the assertion (ii). We claim té is a small perturbation df; + aWj onD1.
Let f andg be positive solutions of the equatifiy + aWy ) f =0in Dy and(L1+ (o +1)Wy)g =
0 in D1 with f(1) = ¢g(1) =0 and f'(1) = 4'(1) = 1, respectively. Change the variahieo
z=logr, and putf(2) = f(¢?) andj(z) = g(€?). Then the equation becomes

. [d? d ¢ .
Pf[cher(nZ)dzezV(eZ)a f=0 in(0,c),

(P-1)=0 in(0,%),

with f(0) = §(0) =0andf’(0) = §/(0) = 1. By (8.2),

/:’(eZZV(eZ) +a) Y2dz< w.
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Then the same argument as in the proof of Lemma ZB8&ff $hows thalim, . §(z)/f(2) < c.
Thus

- g(r)
M <

We see that the Martin boundary fdr; + Wi, D1) is {1, 0} and the Martin kernddg(xy, ) is a
constant multiple of (cf. Appendix of b3]). Thus, by Theorem 6.3 o], Wi X2 ) is a small
perturbation ol_; + aWj on D1. SincerXu’z] is a small perturbation df; + aWj on D4, this
implies thatWj is a small perturbation df; + aW; on Dy, i.e., the claim holds. Thus the Green
functions ofL; + oWy on D; andL; on Dy are comparable. Hend#, is a small perturbation of
L1 onD1. Hence Theorem 7.1 (or Theorem 1.2) shows the assertion (ii).

ExAaMPLE 8.3. Let D; be a bounded Lipschitz domain iR", and putd;(x;) =
dist(x;,dD;). LetL; = —&1(x1)YA1, wherey is a real number and; is the Laplacian oR".
Let D, = M, be a compact manifold. Ldt, = —A,, whereA; is the Laplacian oM,. Let
L=L;+LyandD = D; x Dy. Let dyD anddnD be the Martin boundary and minimal Martin
boundary for(L,D). Then we have the following:

(i) Fory>2, 0D = 0uwD = 0D; x {dy}.

(i) Fory< 2, 0nD = dyD = dD1 x Da.

Let us show the assertions. We see that the Martin compactifidafiafi D1 with respect td_,
is homeomorphic t®1, anddyD; = dyD1 = dD1. Suppose thag > 2. Then, by Theorem 7.8
of [44], any nonnegative solution of the Cauchy problem

(& +L1)u=0 inD1x(0,®), u(x,00=0 onD;

must be identically zero. Thus the assumption (U1) of Theorem 1.1 is satisfied®withM.
Hence the assertion (i) follows from Theorem 1.1. Next, suppose/the?. Then, by Theorem
9.1 of [8], 1 is a small perturbation df; on D;. Thus the assumption (S1) of Theorem 1.2 is
satisfied. Hence the assertion (ii) follows from Theorem 1.2.

EXAMPLE 8.4. LetD; = R"andL; = —A; +Vi, where4; is the Laplacian oR" andV;
is the function orR" such tha¥/;(z) = 1 for z, > 0 andVy(z) = 2 for z, < 0. LetWy(x1) = (x1)Y,
wherey is a real number angk;) = (1+ |x1/%)2. LetD, = R™ and

Lo = (x)*(~42+1) - B,

wherea > 2, 4; is the Laplacian olR™, andf3 is a positive constant such thd$ =0, i.e.,0 is
the first eigenvalue of the selfadjoint operai# associated witlh., onD,. LetL = L1 +WiL,
andD = Dj x D». Itis known (cf. B4]) that the Martin boundargy D1 and the minimal Martin
boundaryomD; for (L1,D1) are homeomorphic to the sEtando defined by

o={weR"|w =1w>0}U{weR";|w = V2w < -1},
S=0U{(w,-0) e R |w|=10<6 <1},
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respectively, i.e.,ouD1 = > and D1 = 0. Furthermore, 1 is a small perturbation of
(X2)9(—A2+1) on R™ (cf. Theorem 5.1 of§4]); the Martin boundarydyD, for ((x2)? (-4,
+1),R™) is homeomorphic to the unit sphe® 1 at infinity (cf. [53]), i.e., duD2 = S" 1,

5=R"U S™1eo; the hypothesis (SMI2) fofl,, D,) is satisfied (cf. Example 9.4 06f]); and
D1 x duD2 C dmD. Put

r :0|\/|D\(D1><(9|\/|D2).

Then we have the following:
() Fory> -1, 2> andl NdwD = 0.
(i) Fory< —1,I =3 xDjandl NdnD = g x Ds.

Let us show the assertions. Suppose that—1. ThenWi(x1) = (X1)¥ is a small perturbation of
L; onR" (cf. Theorem 5.1 of§4]). Thus Theorem 1.2 shows the assertion (ii). Next, suppose
thaty > —1. Consider the Cauchy problem

(&+ (@ YL1)v=0 INR"x(0,), v(z0)=0 onR" (8.6)

In order to show that the Cauchy problem (8.6) allows no positive solution, we introduce a
Riemannian metrig = (g;;) onR" by g; = (2" andg;; = 0for i # j. ThenM; = R" becomes

a complete Riemannian manifold with this meticThe associated gradieitand divergence

div are written as

0= (27'0° div=(2~"/2div%(2)"/?,
where1° anddiv® are the standard gradient and divergenc®arPutmy (z) = (2)(1-"/2)¥, Then
(2L = —my tdiv(m Ov) + (20" Vi(2)0. (8.7)

Forzwith |z > 1, denote byd(z) the Riemannian distance frodto z. Thend(z) is comparable
with |2(¥/2tD, Thus

(21 (2)] < Cd(2) Y2 <Cd(2)?, |7 > 1,

for some constant > 0. We see from this that the assumption [PHPef Theorem 2.1 is
satisfied withp(R) = C(R+ 1) for a sufficiently large positive constaft (cf. the proof of
Theorem 6.2 of44]). By Theorem 2.1, any nonnegative solution of (8.6) must be identically
zero. Thus the assumption (Ul) of Theorem 1.1 is satisfied. Hence Theorem 1.1 shows the
assertion (i).
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